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Abstract

The MetaDL Challenge 2020 focused on
image classification tasks in few-shot set-
tings. This paper describes second best
submission in the competition. Our meta
learning approach modifies the distribu-
tion of classes in a latent space produced
by a backbone network for each class in
order to better follow the Gaussian dis-
tribution. After this operation which we
call Latent Space Transform algorithm,
centers of classes are further aligned in
an iterative fashion of the Expectation
Maximisation algorithm to utilize infor-
mation in unlabeled data that are of-
ten provided on top of few labelled in-
stances. For this task, we utilize opti-
mal transport mapping using the Sinkhorn
algorithm. Our experiments show that
this approach outperforms previous works
as well as other variants of the algo-
rithm, using K-Nearest Neighbour algo-
rithm, Gaussian Mixture Models, etc.

1. Introduction

Few-shot learning is increasingly popular be-
cause it can handle machine learning tasks
with just a few learning examples. It is also
more biologically plausible and closer to what
we observe in nature. While learning a new
task, one normally does not start from a ran-
domly initialised neural network presenting

© 2021 T. Chobola, D. Vasata & P. Kordik.

hundreds of thousands of examples in several
thousand epochs.

When you are told to remember a per-
son from a picture, you are able to distin-
guish this person from others even when you
see her in different positions or environments.
In machine learning, this is called one shot
learning. The task of one shot learning is
to learn new classes given only one instance
available for each class. Three-way five-shot
learning means learning three classes given
five training instances each. You do not learn
classifiers from scratch, but you typically use
neural networks trained on similar tasks us-
ing much more data. This also reflects the
natural situation when the visual perception
is already well trained on similar tasks when
trying to remember a new person from the
picture. This process can be also called meta
learning or transfer learning as one uses a
pretrained neural network called a backbone
network. Also, in a few-shot learning sce-
nario, you can often utilise unlabelled instances
apart of those few labelled samples that are
available for the task.

The MetaDL challenge 2020! focused on
few shot learning of image classification tasks.
Participants trained a meta-learner on a meta-
train set and produced a learner which was
subsequently used to train on classification

1. https://competitions.codalab.org/
competitions/26638
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tasks generated from the meta-test set and
evaluated. The goal was to discover learn-
ers with the ability to quickly adapt to new
unseen image classification tasks.

Our submissions scored second on the fi-
nal leaderboard. This paper describes meth-
ods we have experimented with and the ar-
chitecture of the meta-learning pipeline re-
sponsible for second best result in the com-
petition. The architecture of our solution
mainly follows Hu et al. (2020) with impor-
tant improvements in the preprocessing of
latent space output of the backbone model
B. The main improvement is in the differ-
ent normalization of the transformed feature
vectors which resembles the Gaussian distri-
bution assumption better. Since this is the
key assumption for the proper functionality
of the Sinkhorn mapping algorithm, it leads
to more accurate results.

2. Related Work

There are several different approaches to few
shot learning. The survey (Wang et al., 2020)
is a good resource to learn about the general
overview and taxonomy of few shot learning
methods. Prototypical networks (Snell et al.,
2017) and the Siamese networks (Koch et al.,
2015) focus on learning embeddings trans-
forming the data in a way that it can be
recognised with a simple classifier. This ap-
proach is further enhanced by relation net-
works (Sung et al., 2018) which is able to
classify images of new classes by predicting
distances between query images and the few
examples of each new class.

Another interesting direction aims at the
learning process itself. In Ravi and Larochelle
(2017) a recurrent network based meta-learner
model learns the exact optimization algorithm
used to train another learner neural network
classifier in the few-shot setup. Meta-transfer
learning (Sun et al., 2019) adapts a deep neu-
ral network for few shot learning tasks. The
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transfer is achieved by learning the scaling
and shifting functions of DNN weights for
each task. We further extend the direction
of few-shot learning research that is leverag-
ing classification capabilities in robust back-
bone models (neural networks) pretrained on
similar tasks. These transfer learning based
methods need to find a mapping of few-shot
classes to similar classes used to train the
backbone model.

In Rohrbach et al. (2013) the Propagated
Semantic Transfer has been applied to em-
ploy semantic knowledge transfer to origi-
nal classes, combine the transferred predic-
tions with labels for the novel classes, ex-
ploit the manifold structure of novel classes
by graph based learning and improve the lo-
cal neighborhood in such graph structures by
replacing the raw feature-based representa-
tion with an attribute-based representation.

When transferring the knowledge, deep
embeddings are far superior, compared to
weight transfer, as a starting point for novel
tasks as investigated by Scott et al. (2018).
Another similar approach is TransMatch (Yu
et al., 2020), where a feature extractor is pre-
trained on original classes and subsequently
used to initialize few-shot classifier weights
for the novel classes, the classifier is also up-
dated with a semisupervised learning method.

Our research proceeds from Hu et al. (2020),
where the latent space produced by a back-
bone deep network is preprocessed by a power
transform and optimal-transport algorithm
maps original classes to novel classes while
centres on new classes are iteratively adjusted.
This approach has shown significant improve-
ment in accuracy in our experiments. The
importance of feature transformation for few-
shot learning is confirmed by Wang et al.
(2019).
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Figure 1: In order to predict the class label of a test example, we transform the image
using a backbone CNN to the latent space and preprocess vectors by the Latent
Space Transform algorithm that helps to transform the distribution of individual
classes to Gaussian like. Then a test example is processed and compared to the
class centres that have been iteratively adjusted using a Sinkhorn mapping with
unlabeled data projected to the latent space in the same way. The closest class
is assigned to the test example as the prediction.

3. Model description

Formally, in a few-shot learning task one has
a dataset D containing a part Dg with a few
labelled samples from w classes and a part
D¢ with some unlabelled samples. The goal
is to predict the classes for samples in Dg.
We will assume that Dg contains exactly s
labelled samples for each class and Dg con-
tains exactly ¢ unlabelled samples for each
class. Hence, there are ws samples in Dg and
wq samples in Dq. The i-th sample from D
will be denoted by z; and if it is from Dg we
will denote its label by y;.
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Moreover, let us assume that there is an-
other dataset Dp corresponding to some re-
lated task, such as image classification to some
novel classes. This dataset can be used to
train the backbone model b which maps the
initial space into some latent feature space
£ = R<. In order to train such a model one
might train the neural network for classifi-
cation and then remove the last classifica-
tion layers as we did in the experiments. Or
an encoder part of an autoencoder might be
used.
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The next step is to preprocess the points
in the latent space to be prepared for the
final prediction algorithm that estimates the
labels. As was recently researched this step is
crucial and may lead to significant improve-
ments of the result, see Wang et al. (2019).
To proceed we will further assume that the
features obtained from the backbone model
B are non-negative, i.e. £ = ]Rﬁlr. This is of-
ten the case when one extracts b as a part of
some neural network with the ReLLU activa-
tion function on inner layers. Let us denote
by B the dataset D transformed by b and
by Bs and By its parts corresponding to Dg
and Dg, respectively.

In the preprocessing, we transform the
dataset D of points in the latent space L
to a final dataset F' of points in the final
feature space F = R", where the dimen-
sion r = min{d,w(s + ¢)} is the minimum
of the dimension d of £ and the number of
points in the dataset D. The preprocessing
is a composition of three steps and we will
call it the Latent Space Transform algorithm
(LST). The first is the power transform com-
bined with the semi-normalization of each
point given by

(u+te)’

——~—— forallueLl,
Il(u +€)8]15

Ji(u) =
where the power is taken component-wise,
e = 107% is the normalization parameter,
and || - || is the Euclidean norm. The hy-
perparameter 5 controls the strength of the
power transform and the hyperparameter ¢
controls the strength of the normalization,
where § = 1 means the full normalization
and 6 = 0 yields no normalization at all.
The power transform is known to help sta-
bilising the variance and making the data
more Gaussian distribution-like by reducing
its skewness, see Box and Cox (1964). The
normalization on the other hand leads to the
projection on the unit sphere which is not
compatible with the assumption used later in

the optimal-transport that the components
of points in the same class are independent
with Gaussian distribution of the same vari-
Hence, the semi-normalization con-
trolled by the hyperparameter ¢ enables for
having some variance in the perpendicular
direction to the unit sphere surface and thus
does not a priori break the compatibility of
the resulting distribution with the Gaussian
assumption. Let us denote the dataset with
all points in B transformed using fi by Fj
and F1 g, F1 g analogously.

The second step is the removal of unnec-
essary dimensions using the QR decomposi-
tion of the transposition of the already pre-
processed data matrix F; € R¥(5+0:d corre-
sponding to dataset F1,

ance.

F' = QR
and thus we define

F; =FQ

so that Fy € R¥(5T9" where r = min{d, w(s+
q)}, and the corresponding dataset is denoted
by F>. We again denote by F5 g and F3 ) the
parts of F5 that corresponds to samples orig-
inally in Dg and Dg, respectively. It cor-
responds to the change of the orthonormal
basis in the R¢ and throwing away the di-
mensions that are zero for the data points.
The last preprocessing step is the center-
ing and further semi-normalization given by

uU— U
where 1)
w(s+q
_ 1
U= —F/——"7——= U;
w(s+q) ;

is the centroid (component-wise average) of
the dataset Fb. Again, the hyperparameter ~y
allows to control the strength of the normal-
ization. For v < 1 the resulting points are
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only partially normalized and one may ex-
pect to better resemble the Gaussian distri-
bution assumed in the next step. The typical
result for the final Euclidean norms of trans-
formed points is shown in Figure 2.

Let us denote the final preprocessed dataset

by F and its respective parts corresponding
to original parts Dg and Dg by Fs and Fg,
respectively.

Once the preprocessing of the dataset is
finished, the actual optimal-transport can be-
gin. In this part we directly follow Hu et al.
(2020). The preliminary assumption of the
method is the independent Gaussian distri-
butions of all components of points in indi-
vidual classes with class centres cq, ..., ¢, as
parameters. Moreover, it is assumed that
all the Gaussian distributions have the same
variance A/2, where \ is the hyperparame-
ter. Under this assumption the maximum a

posteriori estimate (MAP) 91, ..., Juq of the
labels of unlabelled samples f1,..., fuq from
Fg corresponds to
{95521 i
= arg max P(y;l fs
s der} = (@il 2
= arg max P(fily:) P(y;
{yshdert = (ilyi) Pwi)
= arg max 6_)‘_1||fi_cyi”%P(yi).
{ys e}t

This is directly related to the Optimal Trans-
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Figure 2: Latent Space Transform algorithm
produces Gaussian like distribu-
tion also for the norms of the
transformed samples. The figure
was produced for one batch from
the CUB dataset with s = 5,q =
15,6 =0.5,6 = 0.3, and v = 0.9.

Cuturi (2013) the mapping matrix is defined
as

M* = Sinkhorn(L, a, b, \)

min MijLij + )\H(M
MeU(a,b) ig

= ar

);

where U(a,b) is a set of positive matrices in
Rw2*® for which the rows sums to a vector a
and columns sums to a vector b, L € RW9*%

port theory, see Hu et al. (2020); Cuturi (2013);is the cost function consisting of Euclidean
Berman (2020); Villani (2003), and one may distances between unlabelled instances and
use the iterative expectation-maximization like class centres, that is L;; = || f; — ¢;|3, the hy-

approach incorporating the Sinkhorn algo-
rithm to get the MAP estimate. It consists
of repeating two steps, where the first is the
construction of the mapping matrix M* with
elements M}, = P(y; = j) which is max-
imizing the previous term for a given cen-
tres ci, ..., Cy and the second step is the es-
timation of class centres that is for the fixed
mapping matrix again optimizing the previ-
ous term. For the Sinkhorn algorithm, see
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perparameter A is a regularisation coefficient
forcing the entropy H(M) = — Zij M;; log M;;
to become smaller, a denotes the distribution
of the amount that each unlabelled example
uses for class allocation, i.e. a is the vector
of ones with wq elements, and b denotes the
distribution of the amount of unlabelled ex-
amples allocated to each class, i.e. b is the
vector with w elements that equals to q.
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The iterative approach starts with initial-
ising the class centres from the labelled sam-
ples in Fg. Then the mapping matrix M* is

Table 1: Hyperparameters used in the fi-
nal evaluation of the LST+MAP

calculated using the Sinkhorn algorithm. It model.
is then used to re‘—estlmate the class centres T-shot 5shot
via the update using Parameter | CIFAR-FS CUB | CIFAR-FS CUB
N B8 0.5 0.5 0.5 0.5
o= D ek M fi + 3 pocps =i fr ) 10 10 10 10
J = wq * : «a 0.3 0.4 0.2 0.2
s+ > L M*E
22_1 ij Nisteps 20 30 20 20
. . . . 1) 0.3 0.7 0.4 0.3
To avoid unnecessarily big steps in centre es- S 0.8 0.5 0.95 0.9

timations, the new centre is set to be ¢; =
¢j + a(p; — ¢j), where the « is the learning
rate. The number of iterations is fixed to
Neteps- Once the iteration process finishes,
the labels of the samples from Fp might be
estimated from the last mapping matrix as

64 base classes, 16 validation classes and 20
novel classes. CUB dataset contains 11,788
images of birds, each with size 84 x 84, dis-
tributed over 200 classes. The dataset is split
into 100 base classes, 50 validation classes
and 50 novel classes.

In each testing run, w classes are ran-
domly and uniformly drawn from novel classes,
where each class consists of s instances with
a label and ¢ instances without a label.

We chose the WideResNet (Zagoruyko and
Komodakis, 2017) augmented with the S2M2
method (Mangla et al., 2020) as the back-
bone architecture for our model because of
its high performance in the few-shot setting.

A *
i, = arg mjax Mij.

The overview of the algorithm is given in Al-
gorithm 1. The overall process of our ap-
proach is depicted in Figure 1. The code is
available at https://github.com/ctom2/latent-
space-transform.

Algorithm 1: Optimal map algorithm

Parameters: w, s, q, \, &, Ngteps

Initialisation: ¢; = L3, cpo o i fi
repeat ngeps times:
Lij = |lfi — ¢jl* Vi,
M* = Sinkhorn(L,p = 14,9 =
Calculate 1 ¢; = ¢j + a(pu; — ¢j)

qly, A)

The latent representation of images produced
by the backbone is a vector with a dimension
of 640. The QR decomposition reduces the
said dimension to 80 in 1-shot setting, and
to 100 in 5-shot setting.

end All experiments are based on w = 5,9 =
return g; = arg max; ij 15 and s = 1 or 5. To evaluate the per-
formance of the models we run 10,000 ran-
dom draws to obtain mean accuracy with
95% confidence scores. By tuning the hyper-

parameters of the model we observed evolu-
The performance of the stated methods was tion in accuracy in both 1-shot and 5-shot

measured based on standardised few-shot clas- setting with dependency on tested dataset.
sification datasets CIFAR-FS (Bertinetto et al., The overview with the hyperparameters can

2019) and CUB (Wah et al., 2011). CIFAR- 1 found in Table 1. The final accuracy can

F'S dataset consists of images with a size of 1,4 geen in Table 2 and Table 3 for l-shot
32 x 32 distributed into 100 classes, each con-

taining 600 images. The dataset is split into

4. Experiments

and 5-shot setting, respectively. Moreover,
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Table 2: 1-shot accuracy of models based Table 3: 5-shot accuracy of models based

on Power Transform (PT), our
proposed Latent Space Transform
(LST) and WideResNet backbone.

1-shot

Method Backbone CIFAR CUB
PT+MAP WRN 87.69 +£0.23%  91.55 £ 0.19%
PT+GMM WRN 86.96 +0.22%  90.06 &+ 0.18%
PT+KNN WRN 86.17+0.19%  89.07 +0.17%
LST+MAP WRN 87.79+0.23% 91.68+0.19%
LST+GMM WRN 87.01 +0.21% 89.9 +0.18%
LST+KNN WRN 85.76 &+ 0.19% 89.26 + 0.17%

the tables include results obtained by sub-
stituting MAP with different clustering al-
gorithms, Gaussian Mixture model and k-
means model, that take the transformed fea-
tures as their input. The k-means model is
initiated with centres corresponding to the
labeled instances in a testing run. The cen-
tres are then iteratively refined to produce
better representations of the class centres.
Similarly, Gaussian Mixture model is pro-
vided with initial means corresponding to the
labeled examples at the beginning of each
run. To compare our proposed transform
method with the Power Transform (PT) (Hu
et al., 2020), we performed the same substi-
tutions for the PT+MAP model.

The scores show that even by omitting
the MAP part from the architecture and re-

placing it with simpler classification approaches

while keeping the transformation intact pro-
duces competitive results. Moreover, to com-
pare the statistical significance of the supe-
riority of the LST+MAP model against the
PT+MAP model we performed the paired t-
test with p-values presented in Table 4. We
can see that except for the CUB dataset in
5-shot scenario the LST+MAP model is sig-
nificantly better than the PT+MAP model.

In terms of execution time, we measured
an average of 0.0026s per run in 1-shot set-
ting and 0.003s per run in 5-shot setting with
the GPU backend.

on Power Transform (PT), our
proposed Latent Space Transform
(LST) and WideResNet backbone.
The authors of the PT+MAP
model presented accuracy 93.99 +
0.10% in 5-shot setting for CUB
dataset, however we were able to
obtain higher accuracy with their
described model configuration.

5-shot

Method Backbone CIFAR CUB
PT+MAP WRN 90.68 +0.15%  94.09 + 0.09%
PT+GMM WRN 87.16 £ 0.21% 90.04 £ 0.20%
PT+KNN WRN 86.70 4 0.19% 89.72 +0.18%
LST+MAP WRN 90.73 £0.15% 94.09 + 0.09%
LST+GMM WRN 87.33 £+ 0.20% 90.06 £+ 0.18%
LST+KNN WRN 86.56 +0.18%  89.64 + 0.18%

Table 4: p-values of the paired t-test with
the null hypothesis that the ac-
curacy of the PT+MAP model
is greater or equal than the ac-
curacy of the LST+MAP model
against the alternative that the ac-
curacy of the PT+MAP model is
smaller than the accuracy of the
LST+MAP model.

1-shot 5-shot
CIFAR-FS CUB CIFAR-FS CUB
p-value 9.09e—5 1.99e—-9 1.68e—7 0.78
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5. Challenge submission

In this section, we describe the modification
to our method we have elaborated for the
MetaDL challenge 2020. The main limita-
tion of the challenge was the submission run-
time which had to include backbone training
time and was limited to two hours. There-
fore we were not able to utilise the WRN
backbone as we suggest above.

Our best performing solution was relying
on a lighter backbone network based on the
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ResNet architecture. During the backbone
training, the fed images could either be left
as they were, or their saturation or bright-
ness could be changed with the probability
set to 1/3 for each alteration. Moreover,
the training batches also included the same
images rotated by 90, 180 and 270 degrees
to further improve the backbone capabilities
and augment the training overall.

6. Conclusion

Extracted features from backbones often do

not resemble Gaussian-like distributions, even G. E. P. Box and D. R. Cox.

though multiple algorithms are built on that
assumption. In this paper we show how to

transform feature vectors into better Gaussian-

like distributions. By applying an iterative
optimal-transport algorithm to estimate class
centres empirically, the subsequent cluster-

ing method gains significant improvement over

other few-shot classification methods.

Our experiments confirmed that the La-
tent Space Transform algorithm introduced
above outperforms other forms of feature pre-
processing including the Power Transform.
We have also compared our approach based
on optimal transport mapping to other clas-
sification methods based on Gaussian mix-
tures and nearest neighbours. For both CI-
FAR and CUB datasets, our approach proved
to be superior in both 1-shot and 5-shot learn-
ing scenarios. We have adjusted our method
for the MetaDL challenge 2020 competition
and scored second on the final leaderboard.
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