Proceedings of Machine Learning Research 140:90-99, 2021 AAAI Workshop on Meta-Learning and MetaDL Challenge

Exploiting Performance-based Similarity between Datasets
in Metalearning

Rui Leite
Pavel Brazdil

RLEITEQFEP.UP.PT
PBRAZDILQINESCTEC.PT

LIAAD-INESC TEC, FEP, Univ. of Porto, Portugal

Editors: Isabelle Guyon, Jan N. van Rijn, Sébastien Treguer, Joaquin Vanschoren

Abstract

This paper describes an improved al-
gorithm selection method of a previous
method called active testing (Abdulrah-
man et al., 2018). This method seeks
a workflow (or its particular configura-
tion) that would lead to the highest gain
in performance (e.g., accuracy).

The new version uses a particular
performance-based characterization
of each dataset, which is in the form
of a vector of performance values of
different algorithms. Dataset similarity
is then assessed by comparing these
performance vectors. One useful mea-
sure for this comparison is Spearman’s
correlation. The advantage of this
measure is that it can be easily recalcu-
lated as more information is gathered.
Consequently, as the tests proceed, the
recommendations of the system get
adjusted to the characteristics of the
target dataset. We show that this new
strategy leads to improved results of
the active testing approach.
Keywords: Metalearning; Algorithm
selection; Dynamic dataset similarity;
Active testing

1. Introduction

The aim of metalearning is to use past per-
formance results on different tasks/datasets
to recommend the potentially best algo-
rithm (or workflow) for the new (target)
task/dataset (Michie et al., 1994; Brazdil

© 2021 R. Leite & P. Brazdil.

and Henery, 1994). In the early days of
metalearning, the “past results” involved
solely the results on prior datasets (i.e., past
metaknowledge). This vision has changed
later. One example of this is the Active
Testing method (Leite et al., 2012a) that
used also past results on the target dataset
to select the next algorithm to test.

The area of AutoML uses both the re-
sults on the target dataset and metaknowl-
edge (performance results and other informa-
tion) obtained on prior datasets in various
ways. Some researchers used it to initialize
the search (Reif et al., 2012; Feurer et al.,
2014, 2015). Others tried to explore past re-
sults directly in the search (Wistuba, 2018).

One crucial problem in these systems is to
decide which part of hypothesis space should
be searched through at any given point. Met-
alearning/AutoML systems need to resolve
the following two major issues. One is how
to control the selection process of different
alternatives in the configuration space. The
second one is how to focus on parts of the
configuration space that are actually relevant
to the current task. In this paper we focus
on the second issue.

Our aim is to adjust the configuration
space as the search proceeds, while taking
into account the current task/dataset and
its measures. Obviously, static dataset mea-
sures that do not change, while the search
proceeds, are not very useful here. So, it is

EXPLOITING PERFORMANCE-BASED SIMILARITY BETWEEN DATASETS IN METALEARNING

necessary to employ measures that are dy-
namic and performance-based measures are
just what is needed here. They capture in-
formation about the search and thus enable
to reorient the search.

In this paper we show how certain
performance-based measures can be incor-
porated into the variant of active testing
method (Abdulrahman et al., 2018). This
approach relies on the concept of vectors of
performance values (multiple landmarkers)
obtained on different datasets that can be
used to characterize datasets. Dataset sim-
ilarity is then assessed by comparing these
two performance vectors, by employing,
for instance, Spearman’s correlation. The
advantage of this similarity is that it can
be easily updated as the tests proceed on
the target dataset. So, the similarity of the
target dataset to existing datasets gets more
refined as more tests are carried out. This
has a positive effect on the recommendations
suggested by the system. We have used this
strategy on an experimental setup and show
that this new strategy leads to improved
results.

2. Related work

Performance-based measures exploited in
The concept of
landmarkers representing the performance
of simple algorithms was introduced by
Pfahringer et al. (2000). Relative land-
markers involve ratios (or differences) of
two performance values of two algorithms.
Relative landmarkers that exploit differences
were exploited in the active testing method
(Leite et al., 2012a). In various subsequent
publications the term performance gain was
used for the same concept (Abdulrahman
et al., 2018). The concept of subsampling
landmarkers refers to the algorithm perfor-
mance on samples of data (Fiirnkranz and
Petrak, 2001).

this work are not new.

91

Most of the work on active testing did not
use static dataset measures. This is partly
due to the findings of Leite et al. (2012b).
They have shown that the version with static
dataset measures (ATdc) did not surpass the
baseline variant (A7'0) that did not use any
measures.

The authors also used a version of ac-
tive testing (AT1) that incorporated a per-
formance-based dataset similarity measure.
The similarity between the target dataset d
and some other dataset d; was assessed using
a method captured in Eq. 1.

Simper (dy, dy) =
AP(ay,ay—,dy) >0 & AP(ay,ay—,dg) >0
(1)
AP(ay,a,—,d;) represents perfor-
mance gain of current best algorithm (in-
cumbent) a, over the previous incumbent
a.— on dataset d;. The condition states that
two datasets are similar if the performance
gains on datasets d; and dj are both posi-
tive. The authors reported that the version
AT1 achieved better performance than the
baseline method AT(0. We have evaluated
this version on the current setup and found
that its performance was inferior to the new
version discussed here. This is probably
due to the fact that AT takes into account
the performance of two algorithms only in
the calculation of similarity, which is not
the case with the current method. This
approach can be seen as a predecessor of the
improved method described here.

where

3. Enhancing the Active Testing
Method

3.1. Overview of active testing

The active testing method AT™ uses past
performance results to guide the search for
the potentially best algorithm for a given
task/dataset (Abdulrahman et al., 2018). It
is an iterative procedure that uses, at each

EXPLOITING PERFORMANCE-BASED SIMILARITY BETWEEN DATASETS IN METALEARNING

step, algorithm a,, considered as the current
best (the incumbent), to determine the best
competitor (a.) to test. This is done on the
basis of estimates elaborated on the basis
of past performance results. The aim is to
consider different algorithms and select the
one that maximizes the performance gains
on prior datasets. This can be captured by
Eq. 2,

(. = argmax Z AP(ag,ax, d;)
Gk d; €D

(2)

where a. and aj represent algorithms from
a given set of algorithms (portfolio) A, D
represents the set of datasets used in prior
experiments for which we have obtained per-
formance results for the set of algorithms A.
The term AP(ay,as,d;) represents the esti-
mate of the performance gain of algorithm
ap, with respect to a, on dataset d;. In the
previous publication by Abdulrahman et al.
(2018) this was calculated using Eq. 3, where

A3RZ§C7G* is computed as shown in Eq. 4,
AP(ag,ax,d;) = max(A?)Rg;,a* —1,0) (3)
P/ pdi
A3RY = 735/ by (4)
(Ta)./Tar)"

where P(fji represents the performance of al-
gorithm a; (e.g., accuracy, AUC etc.) on
dataset d; and T, fji is the time spent on run-
ning a;. The parameter g expresses the rela-
tive importance of time with respect to accu-
racy. The authors suggested that the value of
q = 1/32 represents a good default. We note
that smaller values would attribute less im-
portance to time, while larger values would
have the opposite effect. As can be seen,
Eq. 3 uses values greater than 1 to calculate
the value of AP.

3.2. Introducing an improved version

of AP

In this study we have also conducted exper-
iments with a simpler version of AP defined

92

in Eq. 5:

AP(ay,as,d;) = A3RY

o i (5)
The corresponding version of active testing
method that uses this AP is referred to as
AT* . Surprisingly, we found that this ver-
sion has achieved better results than the orig-
inal version AT™ (see Section 4.2). So, we
have used the new version (AT™) as the ba-
sis for further improvements.

3.3. Role of dataset measures in
algorithm selection

A great deal of work in the area of metalearn-
ing has explored dataset measures in the de-
sign of the algorithm selection methods (Vi-
lalta and Drissi, 2002; Brazdil et al., 2009;
Murtioz et al., 2018). This is motivated by the
fact that dataset measures enable to restrict
search to a subset of datasets that is most
similar to the target dataset d;. In classifi-
cation tasks many different dataset measures
have been defined in the past.

The measures can be organized into two
major groups depending on whether they
are static (i.e., non-performance-based) or
performance-based. The static ones include
various types, including, for instance, simple,
statistical and information-based measures
(Brazdil et al., 2009). Some researchers have
also considered concept characterization and
complexity-based measures (Munoz et al.,
2018).

The performance-based measures include
landmarkers representing performance of al-
gorithms on given datasets, sampling land-
markers representing performance of algo-
rithms on samples of given datasets and par-
tial learning curves (series of sampling land-
markers on a particular dataset).

In this paper we focus on performance-
based measures, as these have the advantage
that they can be updated as the search pro-
ceeds. The following subsection describes the
details.

EXPLOITING PERFORMANCE-BASED SIMILARITY BETWEEN DATASETS IN METALEARNING

Performance-based similarity

Performance-based dataset similarity uses,
as the name suggests, performance values
to determine similarity between datasets.
Specifically, here we consider the concept of
a series of landmarkers, representing per-
formance values of different algorithms on a
given dataset. Let us represent this measure
by Pj*, where A represents the algorithms
and d; the given target dataset. This mea-
sure can be calculated for any dataset used
in the past.

The measure Pji is particularly use-
ful, as it can be recalculated as the search
progresses and more algorithms have been
tested. Consequently, it can thus be used
to refine the measure of similarity between
datasets, as more results have become avail-
able. More details about how this is done
are given in the next subsection.

Correlation-based similarity between
datasets

Pairs of measures Pff and Pf{' discussed
in the previous subsection can be used to
calculate dataset similarity. Different func-
tions can be used to estimate this similarity.
First, let us consider Spearman’s correlation
(Neave and Worthington, 1992). The sim-
ilarity based on this can be calculated as
shown in Eq. 6

Simap(PY, PY) = ro(PY, PY) (6)
where rg represents the Spearman’s correla-
tion function. The weighted rank measure of
correlation 1, (da Costa and Soares, 2005;
da Costa, 2015) gives different importance
to items according to where they appear in
the ranking. The importance decreases lin-
early with the position in the ranking. So,
this measure can be used in the definition of
similarity, as is shown in Eq. 7.

(7)

Simg (P4, PY) = (P4, PT)

93

3.4. Exploiting correlation-based
similarity in algorithm selection

The correlation-based similarity described
above can be used to upgrade the active
testing method. The upgraded version is
referred to as AT} . This method requires
various inputs, including the target dataset
d; and the set of algorithms to choose from.
It requires also a good starting point, i.e., an
algorithm that should be used to initiate the
search. Any algorithm could be used, but
here we use the topmost algorithm returned
by the average ranking method AR*, as it
usually leads to good results. Let us refer to
this ranking as A4%",

This method requires also the value of
parameter ¢ that controls the relative impor-
tance of accuracy and time. Here we follow
the recommendation given by Abdulrahman
et al. (2018) and use the default setting of
q=1/32.

This method is based on the algorithm
in Abdulrahman et al. (2018), but differs
from it in one important aspect. It includes
dataset weights capturing dataset similarity
of each dataset d; to the target dataset dy.
The identification of the best competitor
takes these weights into account. Basically,
the method calculates a weighted average
of the individual performance gains using a
vector of weights Wy, , as shown in Eq. 8.

@, = argmax Z (Wa, x AP(ag,ax,d;, q))
€A d;eD
(8)

The complete algorithm is shown in Algo-
rithm 1. The instructions used to recalculate
the dataset similarity have been separated
out and appear in Algorithm 2. They are
recalculated using W, <+ Simsp(Pdtt,Pji)
on the basis of Spearman’s rank correlation
applied to two vectors, PAfli and Pji, that
include the performance values of different
algorithms.

EXPLOITING PERFORMANCE-BASED SIMILARITY BETWEEN DATASETS IN METALEARNING

Algorithm 1: Algorithm with dynamic per-
formance similarity

ATBS(dta D7 AAIf* ’ A7 q)

A; — a, — AAE[1]

(Initialize alg. sequence)

Wa, < 1/|D| (Initialize dataset weights)

d;eD

Pt « CV(ay, dy)

(Use CV to evaluate as on dy)

while |[A| > 0 do
ac = argmax »., (Wy, x AP(ag,a.,d;,q))
ar€A d;eD

(Best competitor) P& «+ CV(ac,dy)
P§ = {Pd : a), € Ay}

Recalc. dataset weights
- see Algorithm 2 (or 3)

Choose between a. and a, depending on
performance (accuracy):
if Pd* > Pd then
Pt < Pg
Gy < G
end
At — At U {ac}
A<+ A\ {a.} (Move a. from A to A;)
end

return a,, Pif

Algorithm 2: Recalculating dataset weights

with correlation-based similarity
for d; in D do
di i .
PAt:{ng.akeAt}
(Similar performance (accuracy) on d;)
- di pdi
Wa, + Simgp(Py, Pyl)
(Recalculate weights)
end

94

3.5. Exploiting dynamic adjustment
of similarity

The algorithm discussed in this section ex-
ploits the idea of dynamic adjustment of
the dataset similarity. This is done first by
calculating the difference between the value
of AP(ac,ax,d;,q) obtained on the target
dataset d; and the predicted value

Z (I/I/VdZ X AP(ac; A, d’i’ q))
d;€D

on prior datasets. The difference of the two
values is used as a reward. This value can
be positive or negative. If it is positive (neg-
ative) it is used to increase (decrease) the
weight of the datasets that contributed most
to the decision. The contribution is judged
by considering the value of AP(a., ax, d;, q).
The larger this value is, the larger the ad-
justment. Parameter 1 controls the rate of
adjustment. The instructions just described
are summarized in Algorithm 3.

The complete algorithm is the same as
Algorithm 1 with the exception that the
code of Algorithm 2 is substituted by the
code of Algorithm 3. Our preliminary exper-
iments have shown that the setting n = 0.5
leads to good results, so we have used this
value in all experiments reported further on.

4. Experiments and Results

In this section we describe experiments that
were conceived to compare the performance
of different metalearning methods. We start
by describing the experimental setup, which
involves, in the first place, the datasets and
workflows used in the process. Following
this, we list the metalearning methods used
in the experiments.

EXPLOITING PERFORMANCE-BASED SIMILARITY BETWEEN DATASETS IN METALEARNING

Algorithm 3: Recalculating dataset weigh
using reinforcement learning

R@U}d <— Ap(am A s dt7 q)_

Z (Wy, x AP(ac, ax, d;, q))
d; €D

for d; in D do
Aw, = n x Rewd x AP(ac,a, d;,q)
(Calculate weight adjustment)
Wdi — Wdi + AWd.
(Recalculate dataset weight)

end

4.1. Experimental setup and
methodology

Datasets and workflows used

The experimental setup used was similar to
the one in the previous work in Cachada
et al. (2017). It included 184 workflows, cor-
responding to two sets of 92 workflows. The
first set included 62 algorithms with default
configurations and 30 variants of some of the
algorithms with different hyperparameter
configurations (3 extra versions of MLP, 7
of SVM, 7 of RFs, 8 of J48 and 5 of k-NN).
The other set was similar to the first set, but
with one difference. The particular classifier
was preceded by feature selection (i.e., CFS
method (Hall, 1999)).

Baseline metalearning methods

In this study we consider the following met-
alearning methods as baselines:

e AR* - average ranking as in Abdulrah-
man et al. (2018) with parameter set-
ting ¢ = 1/32,

e AT™* - active testing as in Abdulrah-
man et al. (2018) with parameter set-
ting ¢ = 1/32,

ts

95

o AT* - active testing variant described
in subsection 3.1 with the same param-
eter setting of q as in AT™,

Metalearning methods with dynamic
dataset similarity

In this study we have considered the follow-
ing metalearning methods that employ dy-
namic similarity:

. ATE’S - active testing with dynamic
similarity based on Spearman’s corre-
lation,

° ATB’W - similar to above, but based on
weighted rank correlation.

. ATE/A - active testing with dynamic
similarity based
learning.

on reinforcement

Evaluation methodology

The experiments were run on 37 datasets
shown in Table 4 in the Appendix. All
datasets include the OpenML task id, en-
abling anyone to download the same data.

The evaluation was done in a leave-one-
out mode. In each cycle the performance
metadata on all but one datasets were used
by each metalearning system to generate
a series of recommendations of algorithms
(workflows) for the target dataset. FEach
recommended algorithm (workflow) was run
and the corresponding performance and
runtime were recorded. This in turn en-
ables us to elaborate loss curves and rank
curves. The curves obtained for individual
datasets in the leave-one-out cycle are then
aggregated into a single curve for each met-
alearning method. The details of how this is
done are given in the next subsection.

EXPLOITING PERFORMANCE-BASED SIMILARITY BETWEEN DATASETS IN METALEARNING

4.2. Results

In this subsection we present the evaluation
results in terms of rank and loss curves of
different metalearning methods.

Analysis of rank curves

The rank curves show the evolution in time of
the ranks of different metalearning methods
considered. The calculation is done for each
time point separately. For each time point,
different datasets are considered one by one.
Suppose we are considering dataset d;. The
performance (or loss) of different metalearn-
ing methods on this dataset is used to cal-
culate their ranks. After all datasets have
been processed, it is possible to calculate the
mean rank of a particular method across all
datasets. The points obtained this way for a
particular metalearning method are used to
construct a rank curve. This is then repeated
for all metalearning methods.

ranks (Q=1/32)

methods
AR*
— AT*
N ATx/
- ATES

3.6-

mean rank

- - ATy

10000

i 10 100 1000
time sec. (logl0 scale)

Rank curves of different met-
alearning methods for 184 work-
flows

Figure 1:

The rank curves obtained by different
metalearning methods are shown in Fig. 1.

96

Table 1: Mean interval rank (MIR) val-
ues for different runtime intervals,

6 metalearning methods and 184

workflows

1-10 | 10-100 | 100-10% [103-10% 1-10%
AR* 3.29 3.44 3.35 3.37 3.36
AT* 3.92 4.12 3.95 3.92 3.98
AT 3.59 3.55 3.48 3.51 3.53
ATB;G 3.25 3.03 3.16 3.21 3.16
AThy, | 3.26 3.04 3.17 3.22 3.17
AT;)'A 3.68 3.81 3.89 3.77 3.79

— ATpw

Table 1 accompanied these curves and helps
in the analysis of results. It shows, for each
metalearning method, a mean rank that this
method has achieved in a particular runtime
interval. We refer to this measure as mean
interval rank (MIR). The first interval in
our table spans from 1 to 10 seconds. We
see, for instance, that the proposed method
ATE/S has the lowest rank in this interval,
namely 3.25.

The rank curves show that the proposed
method ATI*)/S, that exploits correlation-
based similarity, is the best one in all run-
time intervals. This version uses Spearman’s
correlation in the calculation of dataset
similarity. The variant ATB/W, that uses a
weighted correlation, has a rather similar
rank and behaviour.

As for the improved variant AT*, dis-
cussed in subsection 3.2, we see that it
achieves better mean rank (3.21) than the
original version used in Abdulrahman et al.
(2018) (rank 3.92). The original version
was even inferior to average ranking method
AR* (rank 3.37), which is much simpler than
AT*. This is not the case with AT*', which
has surpassed AR*, as expected.

Analysis of loss curves

The results of different methods are pre-
sented in the form of loss curves, which have
been used by various authors to compare

EXPLOITING PERFORMANCE-BASED SIMILARITY BETWEEN DATASETS IN METALEARNING

Table 2: MIL values for different runtime
intervals, 6 metalearning methods
and 184 workflows
1-10 10-100 100-103 1-10%

AR* 0.9733 | 0.1003 | 0.0000 0.2790

AT* 1.1363 0.1757 0.0078 0.3437

AT 1.1597 | 0.0673 | 0.0000 0.3216

ATB;S 0.9900 0.0716 0.0000 | 0.2787

ATE L | 1.0282 0.0914 0.0000 0.2914

AT\ 1.0688 0.1361 0.0000 0.3157

different metalearning methods (see e.g.,
(van Rijn et al., 2015; Abdulrahman et al.,
2018)). The loss curve used here represents
a median curve across all datasets. The loss
curves obtained by different metalearning
methods are shown in Fig. 2. Each loss curve
can be characterized by the mean value in a
given interval (MIL). The results are shown
in Table 2.

Q=1/32(median)

2.0-

0.0-

1000

100
time sec. (logl0 scale)

Figure 2: Loss curves of different metalearn-
ing methods for 184 workflows

We see that the results corroborate the
conclusions of the previous subsection. We
note again that the proposed method ATE,S
is the best one in the interval spanning from
1 to 10* seconds.

5. Conclusions

In this paper we have described a new ver-
sion of Active Testing method that can be
used for selecting algorithms (workflows) for
a given task. This method seeks a configured
algorithm (workflow) that would lead to the
highest gain in performance (e.g., accuracy).

Our work on the active testing approach
had also one rather positive side-effect. We
have noted that the way the performance
gain was calculated before (Abdulrahman
et al., 2018) could be improved. Curiously
enough, the improvement was obtained by
simplifying the formula used before.

The new version uses a novel perfor-
mance-based measure - multiple landmark-
ers - to compute dataset similarity. We
have investigated several alternative ways of
calculating this similarity and have shown
that the variant ATI*)’S, based on Spearman’s
correlation, achieves the best results. The
advantage of this measure is that it can
be recalculated and refined as more perfor-
mance data is obtained through tests on the
target dataset. Consequently, the recom-
mendations of the metalearning system that
are based on past metaknowledge get ad-
justed to the target dataset. We have shown
that this new strategy leads to improved
results of the active testing approach.

The concept of performance-based sim-
ilarity based on multiple landmarkers re-
ported here is, to the best of our knowledge,
novel.

Although these results can be considered
as preliminary — given that we have not yet
conducted tests regarding the statistical sig-
nificance of differences — we believe that they
represent an important finding that can be
reused in other settings. Performance-based
dataset measures are relatively easy to define
in many domains, unlike the static dataset
counterparts, which may not even be effec-
tive.

97

EXPLOITING PERFORMANCE-BASED SIMILARITY BETWEEN DATASETS IN METALEARNING

ACKNOWLEDGEMENTS

This work was financed by National Funds
through the Portuguese funding agency, FCT
- Fundacao para a Ciéncia e a Tecnologia,
within project: UIDB/50014/2020.

References

S.M. Abdulrahman, P. Brazdil, Jan N. van
Rijn, and J. Vanschoren. Speeding up
algorithm selection using average rank-
ing and active testing by introducing run-
time. Machine Learning, 107(1):79-108,
Jan 2018. ISSN 1573-0565.

P. Brazdil and R. J. Henery. Analysis of re-
sults. In D. Michie, D. J. Spiegelhalter,
and C. C. Taylor, editors, Machine Learn-

ing, Neural and Statistical Classification,
chapter 10 (175-212). Ellis Horwood, 1994.

P. Brazdil, C.G. Carrier, C. Soares, and
R. Vilalta. Metalearning: Applications to
Data Mining. Springer, 2009.

M. Cachada, S.M. Abdulrahman, and
P. Brazdil. Combining feature and al-
gorithm hyperparameter selection using
some metalearning methods. In Proc. of
Workshop AutoML 2017, CEUR Proceed-
ings Vol-1998, pages 75-87, 2017.

J. P. da Costa. Rankings and Preferences:
New Results in Weighted Correlation and
Weighted Principal Component Analysis
with Applications. Springer, 2015.

J. P. da Costa and C. Soares. A weighted
rank measure of correlation. Aust. N.Z. J.
Stat., 47(4):515-529, 2005.

M. Feurer, J. T. Springenberg, and F. Hut-
ter. Using meta-learning to initialize
bayesian optimization of hyperparameters.
In ECAI WS on Metalearning and Al-
gorithm Selection (MetaSel), pages 3-10,
2014.

98

M. Feurer, A. Klein, K. Eggensperger, J.T.
Springenberg, M. Blum, and F. Hutter.
Efficient and robust automated machine
learning. In C. et al. Cortes, editor, Ad-
vances in Neural Information Processing
Systems 28, NIPS’15, pages 2962-2970.
Curran Associates, Inc., 2015.

J. Firnkranz and J. Petrak. An evaluation
of landmarking variants. In C.G. Carrier,
N. Lavra¢, and S. Moyle, editors, Working
Notes of the ECML/PKDD2000 Work-
shop on Integrating Aspects of Data Min-
ing, Decision Support and Meta-Learning,
pages 57-68, 2001.

M.A. Hall.
tion for machine learning.
University of Waikato, 1999.

Correlation-based feature selec-
PhD thesis,

R. Leite, P. Brazdil, and J. Vanschoren. Se-
lecting Classification Algorithms with Ac-
tive Testing. In Machine Learning and
Data Mining in Pattern Recognition, pages
117-131. Springer, 2012a.

R. Leite, P. Brazdil, and J. Vanschoren.
Selecting Classification Algorithms with
Active Testing on Similar Datasets. In
J. Vanschoren, P. Brazdil, and J.-U. Ki-
etz, editors, PlanLearn-2012, 5th Planning
to Learn Workshop at ECAI, 2012b.

D. Michie, D. J. Spiegelhalter, and C. C. Tay-
lor. Machine Learning, Neural and Statis-
tical Classification. Ellis Horwood, 1994.

M. Munoz, L. Villanova, D. Baatar, and
K. Smith-Miles. Instance Spaces for Ma-
chine Learning Classification. Machine
Learning, 2018.

H. R. Neave and P. L. Worthington.
Distribution-Free Tests. Routledge, 1992.

B. Pfahringer, H. Bensusan, and C.G. Car-
rier. Meta-learning by Landmarking Var-
ious Learning Algorithms. In P. Langley,

EXPLOITING PERFORMANCE-BASED SIMILARITY BETWEEN DATASETS IN METALEARNING

editor, Proc. of 17th ICML, pages 743-750,
2000.

M. Reif, F. Shafait, and A. Dengel. Meta-
learning for evolutionary parameter opti-
mization of classifiers. Machine learning,
87(3):357—-380, 2012.

J. N. van Rijn, S.M. Abdulrahman,
P. Brazdil, and J. Vanschoren. Fast
algorithm selection using learning curves.

In Int. Symp. on Intelligent Data Analysis
XIV, pages 298-309, 2015.

R. Vilalta and Y. Drissi. A perspective view
and survey of meta-learning. Artificial In-
telligence Review, 18(2):77-95, 2002.

M. Wistuba. Automated Machine Learning:
Bayesian Optimization, Meta-Learning &
Applications. PhD thesis, University of
Hildesheim, Germany, 2018.

Appendix
Table 3: Alternative hyperparameter config-
urations.
. Parameter ..
Algorithm | Parameter description**
interval*
Random P = [80, 100] Bag size (% of the tre?ining‘sct size)
Forest K = [0, 250] #attrs. to Arandomly 1nve§t1g;ate7
’ where 0 = int(log2(#attributes)+1).
M = [1, 10] Minimum of instances per leaf .
C= Confidence threshold for pruning
148 [0.01, 0.25, 0.5] (smaller values incur more pruning).
M = [2, 10, 20] Minimum of instances per leaf .
SMO C =1[0.1,1,10] Complexity parameter.
PolyKernel E = [1, 2] Exponent of the polynomial kernel.
SRI,B[;)Kernel C =[0.1,1,10] Complexity parameter.
K = [1, 5, 20 The number of neighbors to use.
IBK 3 - ——
I = [No, Yes| PeI‘fOI‘I?l distance weighting
by 1/distance?
Number of hidden layers, where
Multilayer ~ H = [a, o] ‘a’ = (#attributes + #classes)/2
Perceptron ‘0’ = #classes.
D = [No, Yes] Whether the learning rate decays

as training progresses.
*Parameters in bold are the default.
**Adapted from WEKA documentation.
The parameters not mentioned were set to their default values except
in MultilayerPerceptron where epochs (N) set to 100 instead (def. 500)

99

Table 4: Datasets used in the study.

OpenML

Dataset Task_id #Inst. #Attrs. #Classes
anneal 2 898 39 6
kr-vs-kp 3 3 196 37 2
letter 6 20 000 17 26
balance-scale 11 625 5 3
mfeat-factors 12 2 000 217 10
mfeat-fourier 14 2 000 s 10
breast-w 15 699 10 2
mfeat-karhunen 16 2 000 65 10
mfeat-morphological 18 2 000 7 10
mfeat-pixel 20 2 000 241 10
car 21 1728 7 4
mfeat-zernike 22 2 000 48 10
cmc 23 1473 10 3
mushroom 24 8 124 23 2
nursery 26 12 960 9 5
optdigits 28 5 620 65 10
credit-a 29 690 16 2
page-blocks 30 5473 11 5
credit-g 31 1 000 21 2
pendigits 32 10 992 17 10
cylinder-bands 33 540 40 2
segment 36 2 310 20 7
diabetes 37 768 9 2
soybean 41 683 36 19
spambase 43 4 601 58 2
splice 45 3 190 62 3
tic-tac-toe 49 958 10 2
vehicle 53 846 19 4
waveform-5000 58 5 000 41 3
electricity 219 45 312 9 2
solar-flare 2068 1 066 13 3
yeast 2073 1484 9 10
satimage 2074 6 430 37 6
abalone 2075 4177 9 29
kropt 2076 28 056 7 18
baseball 2077 1 340 18 3
eucalyptus 2079 736 20 5

Table 5: Algorithms used in the study.

Algorithm # Algorithm
1 AIDE 32 Kstar
2 AdaBoostM1_DecisionStump 33 LADTree
3 AdaBoostM1_IBk 34 LMT
4 AdaBoostM1_J48 35 LogitBoost_DecisionStump
5 AdaBoostM1_LMT 36 LWL _DecisionStump
6 AdaBoostM1_NaiveBayes 37 LWL_J48
7 AdaBoostM1_OneR 38 LWL_RandomTree
8 AdaBoostM1 _RandomTree 39 MultiBoost AB_DecisionStump
9 AdaBoostM1_REPTree 40 MultiBoostAB_IBk
10 Bagging_DecisionStump 41 MultiBoostAB_J48
11 Bagging IBk 42 MultiBoostAB_JRip
12 Bagging J48 43 MultiBoostAB_NaiveBayes
13 Bagging_Jrip 44 MultiBoostAB_OneR
14 Bagging LMT 45 MultiBoost AB_RandomTree
15 Bagging LWL _DecisionStump 46 MultiBoost AB_.REPTree
16 Bagging NaiveBayes 47 MultilayerPerceptron
17 Bagging OneR 48 NaiveBayes
18 Bagging_RandomTree 49 NaiveBayesUpdateable
19 Bagging REPTree 50 NBTree
20 BayesNet 51 OneR
21 ClassificationViaRegression M5P 52 PART
22 CVParameterSelection_ZeroR 53 RacedIncrementalLogitBoost
_D.Stump
23 Dagging_DecisionStump 54 RandomCommittee_RandomTree
24 DecisionStump 55 RandomForest
25 DTNB 56 RandomSubSpace REPTree
26 END_ND_J48 57 RandomTree
27 HoeffdingTree 58 REPTree
28 IBK 59 SimpleLogistic
29 TterativeClassifierOptimizer 60 SMO_PolyKernel
_LogitBoost_D.Stump
30 J48 61 SMO_RBFKernel
31 JRip 62 ZeroR

	Introduction
	Related work
	Enhancing the Active Testing Method
	Overview of active testing
	Introducing an improved version of P
	Role of dataset measures in algorithm selection
	Exploiting correlation-based similarity in algorithm selection
	Exploiting dynamic adjustment of similarity

	Experiments and Results
	Experimental setup and methodology
	Results

	Conclusions

