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Abstract

Meta-learning is typically applied to set-
tings where, given a distribution over
related training tasks, the goal is to learn
inductive biases that aid in generaliza-
tion to new tasks from this distribution.
Alternatively, we might consider a sce-
nario where, given an inductive bias,
we must construct a family of tasks
that will inject the given inductive bias
into a parametric model (e.g. a neural
network) if meta-training is performed
on the constructed task family. Inspired
by recent work showing that such an al-
gorithm can leverage meta-learning to
improve generalization on a single-task
learning problem, we consider various
approaches to both a) the construction
of the family of tasks and b) the proce-
dure for selecting support sets for a par-
ticular single-task problem, the SCAN

compositional generalization benchmark.

We perform ablation experiments aimed
at identifying when a meta-learning al-
gorithm and family of tasks can impart
the compositional inductive bias needed
to solve SCAN. We conclude that exist-
ing meta-learning approaches to inject-
ing compositional inductive biases are
brittle and difficult to interpret, show-
ing high sensitivity to both the family of
meta-training tasks and the procedure
for selecting support sets.

© 2021 E. Mitchell, C. Finn & C. Manning.

1. Introduction

Compositional generalization, also referred
to as systematic or combinatorial generaliza-
tion, is the challenge of generalizing to situa-
tions when familiar concepts are combined
in unfamiliar ways. Humans are typically
able to generalize in this manner (Franklin
and Frank, 2019), a capability that largely
still eludes modern machine learning systems
(Klinger et al., 2020). As a simple example of
compositionality, given that a human knows
how to “walk” and how to “walk quickly”,
once they learn to “cook” or “run”, it is gen-
erally believed that they should be able to
immediately understand the concepts “cook
quickly” and “run quickly” by combining the
old concept of “quickly” with the (now fa-
miliar) concept “cook” or “run.” However,
current machine learning models, especially
neural networks, do not demonstrate this abil-
ity to generalize compositionally, requiring a
relatively dense sampling of the set of possi-
ble combinations of atomic concepts (“walk”,
“run”, “cook”, “quickly”). For problems with
narrow scope, this limitation can make data
collection somewhat costly but manageable;
for more open-world domains, such as a robot
that must navigate and interact with the gen-
eral public in the outdoors, this set of possi-
ble “composite experiences” grows impracti-
cally large. Thus an important challenge for
machine learning and artificial intelligence
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researchers is to better understand these com-
positional mechanisms so that we might ul-
timately endow our models with them.
Several recent studies have shown that
compositional generalization on realistic tasks
will require stronger inductive bias than is of-
fered by current standard deep learning ar-
chitectures and training objectives (Lake and
Baroni, 2018; Hupkes et al., 2020; Klinger
et al., 2020; Bahdanau et al., 2019). Re-
search that aims to endow neural networks
with the ability to generalize composition-
ally has thus drawn on many of the tradi-
tional strategies for injecting inductive bias
into deep networks, including specialized ar-
chitectures, data augmentation strategies, reg-
ularization schemes, and customized objec-
tives through meta-learning. All of these ap-
proaches have shown some success on some
(but not all) of the various benchmarks for
testing compositional generalization, but we
suggest that meta-learning based approaches
might be particularly promising because they
are (at least conceptually) architecture ag-
nostic. While experts in deep learning have
spent significant energy developing custom
architectures that perform very well for par-
ticular tasks, the level of expertise required
to tailor an architecture to a task can be
very high, providing a barrier to many people
or organizations hoping to apply deep learn-
ing to their problem(s). On the other hand,
meta-learning approaches to injecting induc-
tive bias can use relatively standard archi-
tectures and pass in domain knowledge by
specifying a family of tasks that captures the
‘types of biases’ a model should learn. In
general, stating a family of tasks can be a
far more intuitive process, with a lower bar-
rier to entry, than experimenting with archi-
tectural adjustments (McCoy et al., 2020).
This possible future, in which practitioners
can select an architecture from a handful of
standard architectures (conv-nets, sequence
models, etc) and adapt it to their problem

by specifying families of related tasks rather
than excessive architectural experimentation,
is the motivating premise for exploring meta-
learning as a tool for injecting inductive bi-
ases even in single task settings.

In this work, we study a compositional
generalization problem to better understand
the process of applying meta-learning to a
single-task problem with the goal of acquir-
ing a particular inductive bias. In particular,
we examine recent work applying few-shot
learning to the SCAN compositional general-
ization benchmark (Lake, 2019), which tests
a natural language model’s ability to gen-
eralize in systematic ways such as adding a
new verb to its vocabulary from only a sin-
gle example. Our extended ablations study
how design choices of a) the family of tasks
used for meta-training and b) the strategy
used to select test-time support sets affect
whether or not the model will actually per-
form well on the meta-test task(s), finding
that sometimes surprisingly small changes in
these factors have outsized effects on meta-
test set accuracy. Our experiments lead us
to conclude that acquiring inductive biases
for single-task problems via meta-learning in
a family of generated tasks is a promising di-
rection, but significant further research is re-
quired to better understand the mechanisms
by which these approaches work and in what
settings they might be applicable.

2. Using Meta-Learning to Acquire
Compositional Inductive Biases

As indicated in recent work, there are many
sub-types of compositional inductive biases
(Hupkes et al., 2020). Compositional bench-
marks generally consist of several train/test
splits of the data in order to provide compo-
sitional generalization problems correspond-
ing to some or all of these different “types” of
generalization. The vast majority of the ben-
efits of existing methods have been observed
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Command Sequence ‘ ‘

Target Sequence

run RUN
look LOOK
jump JUMP
run twice RUN RUN
look after walk WALK LOOK
jump twice JUMP JUMP
jump after run twice || RUN RUN JUMP
jump around right RTURN JUMP RTURN JUMP RTURN JUMP RTURN JUMP

Table 1: Example commands from the SCAN command following dataset. The top section
includes example commands from the train split; the bottom section shows exam-
ple commands from the ‘add primitive’ test split. The primitive command ‘jump’
is the only jump command present in the train set; all test commands use the verb

jump at least once.

on a sub-type of compositionality that Hup-
kes et al. (2020) refer to as systematicity, that
is, problems that amount to re-combining fa-
miliar atomic concepts into novel composite
concepts; however, other notions of composi-
tional generalization exist, such as productiv-
ity, also referred to as “making infinite use of
finite means”, which in practice means cre-
ating or processing inputs at test time that
are larger in some sense than those seen dur-
ing train time, but still produced using the
same atomic set of rules. A concrete ex-
ample of a systematic compositional gener-
alization split is the ‘add primitive’ split in
the SCAN command-following dataset (Lake
and Baroni, 2018). See Table 1 for examples
from this task. We focus our experiments on
this setting.

2.1. SCAN compositional
generalization benchmark

In SCAN, a model is presented with a nat-
ural language command such as ‘walk twice’
and must output the correct sequences of ac-
tions (WALK WALK, in this case); SCAN can
be interpreted as either a seq2seq translation

problem or an open loop control problem,
where the command is the initial condition
of the system. We refer the reader to prior
work for more examples of commands and
target action sequences in SCAN (Lake and
Baroni, 2018). The SCAN vocabulary is sim-
ple, containing only 4 different verbs as well
as several adverbs and connectives. How-
ever, it is rich enough to construct challeng-
ing compositional generalization splits, one
of which being the add primitive split. In
this split, the train set contains the primi-
tive command ‘jump’ (simply mapped to the
action JUMP) as well as all composite com-
mands that do not use the verb ‘jump’. All
‘jump’ composite commands are held out for
the test set. This split is challenging, but in
principle not impossible due to the symme-
try of the grammar with respect to different
verbs. This symmetry (‘__verb_’ — VERB,
‘__verb__ twice’ — VERB VERB, ‘__verbl__ and
__verb2__’ — VERB1 VERB2, etc.) is explained
in detail by (Gordon et al., 2020), is the in-
ductive bias that we need to inject into the
model in order to achieve good generalization
performance on the test set.
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2.2. Meta seq2seq (Lake, 2019)

Meta seq2seq is a meta-learning approach
(specifically, a few-shot formulation) to in-
jecting the verb-symmetry inductive bias de-
scribed above. The author defines a fam-
ily of tasks {7}, which includes the original
SCAN task, and trains a few-shot learning
model on this family. The original SCAN
task (the add primitive split) is held out as
the meta-test task. Each task is defined by
a pair of permutations of the verbs (i, 73).
The data for task ¢ is generated by applying
these permutations to the verbs in the com-
mand and target sequence of each data point
in the original dataset. Abusing notation
slightly, we have (x},y;.) = (7} (zx), 75(yx)),
where (xg,yr) is the k-th data example in
task 7. The original task (the single-task
SCAN add primitive split) corresponds to
the task where both permutations are the
identity permutation; this task is held out
as the (single) meta-test task. To formal-
ize slightly, we define two sets of words, W,
and Wi, which are the words that may be
permuted in the command and target, re-
spectively. In meta seq2seq, we have W, =
{walk, run,look, jump} and W, = {W ALK,
RUN,LOOK,JUMP}. One immediate re-
sult of this selection of W, and W; is that
the model is exposed to all possible command
and target sequences during training, because
composite commands that do not use the
word ‘jump’ will be transformed to form the
corresponding ‘jump’ command, even though
composite ‘jump’ commands were not present
in the original training set. For example,
for some task that maps the command word
‘walk’ to the command word ‘jump’, the com-
mand walktwice would be mapped to the
command jumptwice; a similar phenomenon
occurs for target sequences. Thus, by se-
lecting this family of tasks, meta seq2seq re-
duces the compositional generalization prob-
lem into an IID learning setting; this likely

explains why meta seq2seq is effective on the
add primitive split and not other splits, such
as the length generalization split (training
on examples with labels of length less than
N, testing on examples with labels of length
greater or equal to N). During meta-training,
meta seq2seq samples support sets uniformly
from the current tasks’ data; during meta-
testing (for which there is only one task, the
original SCAN task), the support set uses
only the four primitive verb commands.

By selecting different sets of words for W,
and Wy, we can in some sense generalize meta
seq2seq to a much broader class of composi-
tional symmetries. This is useful to evalu-
ate the robustness of the meta seq2seq pro-
cedure to poorly-specified or unknown sym-
metries in the data. Assessing this capabil-
ity is important for several reasons. First,
when applying this meta-training procedure
to real-world tasks, it is unlikely that we will
be able to specify the desired inductive bias
as succinctly and accurately as can be done
in SCAN. Additionally, even if we can ar-
ticulate the desired inductive bias, applying
the transformations to the original dataset
needed to produce the meta-training tasks
might be difficult or unknown. Finally, an
idealized approach to using meta-learning for
injecting inductive biases would involve a par-
tially or fully automated approach to gener-
ating tasks for meta-training, which would
likely be prone to imperfect task family spec-
ification. Thus, any inductive bias injection
algorithm based on meta-learning should still
provide some benefits if the task family spec-
ified only partially captures the desired in-
ductive bias.

3. Experiments

Our experiments are intended to assess the
impacts of a) the family of tasks used for
meta-training (Table 2) and b) the meta-
train and meta-test support selection proce-
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Experiment H W, W, H Train Acc. ‘ Test Acc.
A Verbs Verbs 100% 99.7%
B Verbs - {jump} Verbs - {JUMP} 100% 0%
C Verbs None 100% 0%
D None Verbs 100% 50.0%
E Verbs - {walk} Verbs - {WALK} 100% 97.0%
F {run, look, jump} {LOOK, JUMP} 100% 100%
G {look, jump} {LOOK, JUMP, RUN} 100% 0%
H {look, jump} {LOOK, JUMP} 100% 0%
I Verbs + {and, then} Verbs 96.1% 94.3%
J All Verbs 92.5% 84.2%
K All All 11.1% 0%

Table 2: Train and test performance of our re-implementation of Meta seq2seq (Lake, 2019)
when various different groups of command and target sequence words are included
in the permutation sets W, and W;. The original train set contains only a single
command using the word ‘jump’; some meta-training task generation procedures
(e.g. A, C) ultimately generate additional usages of the command word jump
during training, while others do not (e.g. B, D). The model can perfectly fit the
generated family of training tasks in almost all settings, but in many cases does
not generalize to the SCAN ‘add primitive’ test split.

dure (Table 3) on the ability of a model to
learn the desired inductive bias. We evalu-
ate variants of the meta seq2seq regime pre-
sented in Lake (2019) on the ‘add primitive’
split of the SCAN benchmark (Lake and Ba-
roni, 2018), using our own re-implementation
of the architecture described in Lake (2019).

3.1. Specifying the meta-training task
family

Section 2.2 explains one approach to spec-
ifying a family of tasks over which to per-
form meta-training in order to acquire the
compositional inductive bias: permutation-
based task generation with W, and W; equal
to the verbs in the command and target se-
quences, respectively. In this group of exper-
iments, we investigate the extent to which
this compositional inductive bias is acquired
when this task family is perturbed. This is

intended to assess the extent to which a pro-
cedure like meta seq2seq might be viable in
settings where we either can’t exactly spec-
ify the desired inductive bias, generating the
data for some of the tasks in the desired task
family is infeasible, or our procedure for gen-
erating the meta-training task data is noisy.
Experiment A begins by replicating the
results from Lake (2019). In Experiment
B, we follow the meta seq2seq procedure,
but only permute the non-jump verbs. Re-
call that in the add primitive SCAN split,
our goal is to correctly predict the action se-
quence for commands using the verb jump,
when we have only been exposed to the word
jump in a single context, the primitive com-
mand ‘jump’ — JUMP. One might hope that
in this setting (permuting only words other
than ‘jump’), we might achieve a ‘best of
both worlds’ solution, where we aren’t re-
quired to actually synthesize new data as in
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the original meta seq2seq procedure (assum-
ing all possible usages of the non-jump verbs
are in the training set), but we can still ac-
quire the inductive bias needed to generalize
to the test problem. However, we find that
this isn’t the case; this procedure yields a
model with zero test task accuracy.

In Experiments C and D, we assess
whether the meta seq2seq procedure learns
a useful inductive bias when meta-trained
only on tasks where either the command or
target verb words (but not both) are per-
muted, respectively. Interestingly, the per-
formance is markedly different in both cases
(and consistent across random seeds). Meta-
training on tasks generated from only per-
muting command words produces essentially
no useful inductive bias; however, generating
tasks by only permuting target words yields

E tests the simple setting where we omit
one non-jump verb from the permutations
used to generate the meta-training task fam-
ily; in this case, we still see good train and
test performance, indicating that some mis-
specification of the desired symmetry can be
tolerable. This result is significant because
in realistic settings, specifying the desired in-
ductive bias exactly might be very difficult or
impossible.

Experiments F, G, and H compare
three similar settings, differing by whether
the set of words permuted in the task family
includes ‘run’ for either the command words,
the target words, or neither. Based on the re-
sults of Experiments C and D, we might ex-
pect that it is more important for the model
to be exposed to more tasks that permute
the target words, as permuting only the verbs

non-trivial performance on the test task. Thesein the target sequence performed far better

results are in fact reasonable because Ex-
periment C is a concept drift problem; at
test time, the model sees familiar inputs (the
model was exposed to all jump commands
during training), but with ground truth la-
bels never seen during training. Thus the
model has been explicitly optimized during
meta-training to assign low probability to ex-
actly the labels we would like the model to
output during meta-testing. Thus it is un-
surprising that the model achieves essentially
zero accuracy during meta-testing (the orig-
inal SCAN task). On the other hand, Ex-
periment D can be seen as a domain shift
problem, in which we are assessed on pre-
viously unseen commands (the model was
exposed only to the jump target sequences
during training here), but the meta-training
procedure hasn’t entailed explicitly optimiz-
ing the model to assign the correct labels
low probability for these commands (which
it has in the concept drift case); thus there
is a chance that the model will achieve some
generalization simply by way of the inductive
bias of the neural network. Experiment

than permuting only the verbs in the input
command. However, we actually see the op-
posite effect here: including three verbs in
W, and two verbs in W, gives perfect perfor-
mance on both train and test (Experiment
F), while the opposite scenario (Experiment
G) fits the train set but does not acquire the
necessary inductive bias to generalize at test
time. Similarly, including only two verbs in
W, and W; is not effective. Finally, Ex-
periments I, J, and K examine the ex-
tent to which meta-training on more gen-
eral task families than the ‘minimal’ family
needed to acquire the desired inductive bias
can also be effective. Somewhat surprisingly,
this is the case for both the case where W,
includes the verbs and the connectives {and,
after} and when W, includes all of the words
in the command vocabulary. However, gen-
erating tasks by simply including all words
in the command vocabulary in W, and all
words in the target vocabulary in W; pro-
duces a task distribution too difficult for the
model to fit. Nonetheless, these results indi-
cate that meta-training on families of tasks
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Experiment H Perm Group H Train Sup. ‘ Test Sup. H Train Acc. ‘ Test Acc.
1 Verbs Uniform | Primitives 99.8% 99.4%
2 Verbs Uniform Uniform 99.8% 84.7%
3 Verbs Uniform Safe 99.7% 100%
4 Verbs Safe Safe 99.7% 99.9%
5 Verbs + Connectives Uniform Uniform 73.5% 48.3%
6 Verbs + Connectives Safe Safe 97.0% 94.6%

Table 3: Comparison of different approaches to selecting the support set in meta seq2seq.
‘Uniform’ corresponds to sampling support data uniformly at random from the
train set; ‘Primitives’ means using only the 4 primitive verb commands as a sup-
port set; ‘Safe’ means sampling randomly from the train set, subject to the con-
straint that each word in the query command appears in at least one support set
command. Both the ‘Primitive’ approach (used in (Lake, 2019)) and the ‘Safe’
approach are effective; however, the ‘Safe’ sampling approach requires less task-
specific knowledge (it doesn’t require knowing which examples are the ‘primitives’
for a particular problem), which is advantageous.

that are only loosely derived from the de-
sired compositional inductive bias can still
be very useful, which is exciting, as this loose
relationship between task family and desired
inductive bias will probably be the case in
practical settings.

3.2. Selecting a support set

In general, we might apply meta-learning to
acquire an inductive bias for a single-task
learning setting; this is the case for meta
seq2seq as well as other applications of meta-
learning to acquiring inductive biases (Mc-
Coy et al., 2020). However, if we formulate
a single-task problem into a few-shot learn-
ing problem, for example (as has been done
in the previous work mentioned), in addition
to specifying tasks, we must also specify how
to sample support sets for adaptation. In this
section, we perform a batch of experiments
aimed at assessing the extent to which dif-
ferent support set selection procedures might
lead to more or less effective inductive bias
acquisition.

Experiment 1 corresponds to the meta
seq2seq procedure, where support sets are
chosen uniformly from the train set at train
time and only the four primitive verb com-
mands are used as a support set at test time.
In Experiment 2, we eliminate the assump-
tion that we have knowledge of the ‘basis
commands’ and use uniform sampling from
the train set. This leads to noticeably worse
test set generalization. Experiment 3 uses
a ‘safe’ support set selection procedure at
test time, which is similar to uniform sam-
pling but enforces the constraint that all words
used in the query commands are represented
in the support commands; this noticeably
improves performance. Experiment 4 uses
the safe support set selection procedure dur-
ing both train and test. Experiments 5
and 6 are analogous to Experiments 2 and
4, respectively, except we permute the verbs
and the connectives {and, after} together,
which is more difficult. Because W, con-
tains the connectives, there are not analo-
gous ‘primitive’ commands as there were in
the simple verbs-only setting. The gap in
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generalization performance between uniform
and safe sampling is even larger, highlight-
ing the importance of picking the right sup-
port set. Ultimately we conclude that sam-
pling the support set in a manner that consis-
tently provides sufficient information to un-
ambiguously infer the task is critical to ef-
fectively capturing the desired inductive bias
with meta-learning, and the ‘safe’ support
set strategy, at least for SCAN, allows us
to do so without relying on the task-specific
knowledge used with the ‘primitive’ strategy
used by Lake (2019). From these results and
those from the previous section, we conclude
that it is possible to acquire the desired com-
positional inductive bias using slightly mis-
specified task families as well as quite general
purpose support set selection procedures.

4. Related Work

The challenge of training neural networks to
discover compositional (or systematic) induc-
tive biases is well known and has received
significant attention in recent work. Hupkes
et al. (2020) propose a taxonomy of differ-
ent sub-types of compositional generalization
for the purposes of more precisely identifying
model failure modes. Other work has focused
on empirical evaluation of the compositional
generalization ability of ‘traditional’ neural

network (particularly seq2seq (Sutskever et al.,

2014)) models in language-based (Lake and
Baroni, 2018; Klinger et al., 2020; Keysers
et al., 2020; Lake, 2019), visual (Bahdanau
et al., 2019), and mixed grounded language
(Ruis et al., 2020; Gao et al., 2020) settings.
Having identified this shortcoming, the com-
munity has produced several diagnostic prob-
lems to more precisely test the compositional
generalization capabilities of neural networks
in settings such as visual reasoning (Johnson
et al., 2017), language-only command follow-
ing (Lake and Baroni, 2018), grounded com-
mand following (Ruis et al., 2020; Chevalier-

Boisvert et al., 2019), question answering (Key-
sers et al., 2020), and translation (Hupkes
et al., 2020).

New benchmark suites have stimulated
the development of bespoke neural network
architectures for various compositional prob-
lems. Proposed approaches exploit atten-
tion and message passing (Andreas et al.,
2016; Johnson et al., 2017; Lake, 2019; Gao
et al., 2020), utilize new recurrent architec-
tures (Hudson and Manning, 2018), or take
a program synthesis approach (Nye et al.,
2020; Hudson and Manning, 2019). In lan-
guage settings, some work has attempted to
more explicitly disentangle the structural and
semantic roles of particular words (Russin
et al., 2019; Li et al., 2019). Another ap-
proach uses group-equivariant architectures
to learn models robust to particular types of
compositional transformations (Gordon et al.,
2020). In addition to architectural approaches
to compositional generalization, targeted data
augmentation (Andreas, 2020) has proved ef-
fective in some situations. Other approaches
have begun exploring meta-learning as a way
to inject inductive biases into a model (Lake,
2019; Nye et al., 2020; McCoy et al., 2020);
in concurrent work, McCoy et al. (2020) also
discuss the strategy of designing families of
tasks to impart inductive biases through meta-
learning. Meta-learning has recently enjoyed
renewed interest in the machine learning com-
munity, building from classic work describing
hierarchies of learning algorithms (Schmid-
huber, 1987). Approaches range from learn-
ing to generate prototypes of classes (Snell
et al., 2017), using recurrent models to learn
the optimization dynamics of a learning pro-
cedure (Santoro et al., 2016; Andrychowicz
et al., 2016), or bi-level optimization (Finn
et al., 2017; Franceschi et al., 2018).
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5. Conclusion

Recent developments suggest meta-learning
can serve as a useful tool for injecting induc-
tive bias into neural networks even on single-
task problems. Attractively, this approach
seems compatible with more traditional tech-
niques such as custom architectures, regular-
ization objectives, and data augmentation.
In this work, we find that for one of the sim-
plest and widely-used compositional general-
ization benchmarks, applying meta-learning
to acquire a compositional inductive bias for
single-task problems can be quite delicate,
failing in surprising ways and highlighting
the need to better understand the relation-
ship between task distributions and the in-
ductive biases needed to solve them.

In addition to re-affirming the critical role
that the selection of the task family plays in
the ultimate success of the training proce-
dure, we also find that the procedure for se-
lecting support set data at both meta-train
and meta-test time also plays a significant
role in whether or not a particular meta-
training procedure will be fruitful. Future
work might consider not only how a family of
tasks and support set selection procedure im-
pact the model’s learned generalization abil-
ity, but also how the meta-learning algorithm
used (memory-based/black box meta-learners
vs gradient-based meta-learners) affects this
procedure. In addition, scaling this analy-
sis to more complicated settings in vision,
grounded language, or real-world language
settings, is necessary to better understand
whether meta-learning can be a useful tool
for acquiring inductive biases for single-task
problems.
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