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Abstract
Deformable objects present a formidable challenge for robotic manipulation due to the lack of
canonical low-dimensional representations and the difficulty of capturing, predicting, and con-
trolling such objects. We construct compact topological representations to capture the state of
highly deformable objects that are topologically nontrivial. We develop an approach that tracks the
evolution of this topological state through time. Under several mild assumptions, we prove that
the topology of the scene and its evolution can be recovered from point clouds representing the
scene. Our further contribution is a method to learn predictive models that take a sequence of past
point cloud observations as input and predict a sequence of topological states, conditioned on tar-
get/future control actions. Our experiments with highly deformable objects in simulation show that
the proposed multistep predictive models yield more precise results than those obtained from com-
putational topology libraries. These models can leverage patterns inferred across various objects
and offer fast multistep predictions suitable for real-time applications.

1. Introduction

Dealing with highly deformable objects in robotics entails unique challenges. Since the shape of
such objects is dynamic, canonical low-dimensional representations suitable for rigid objects mostly
fail to capture the information necessary for modeling, planing and control. A black-box approach
of training a large neural network (NN) to solve a particular task lacks modularity. With such
approaches, new policies need to be trained for each task; moreover, these do not yield interpretable
representations. Furthermore, flexible NN models that excel in capturing local features useful for
control are not guaranteed to capture high-level structure needed for planning advanced tasks.

Topology can capture global shape properties of objects, such as their connectivity, holes, voids,
and spacial relationships between them, while ignoring unnecessary details. In robotic manipula-
tion, notions and tools from topology can be used to efficiently represent scenes, objects, and their
states (Stork et al., 2013; Pokorny et al., 2013; Varava et al., 2016; Yan et al., 2020). Topological
representations are especially promising for deformable objects, since many topological properties
are invariant under continuous deformations, and thus capture the shape and behaviour of objects in
a succinct way. In this work, we tackle the problem of constructing compact topological represen-
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SEQUENTIAL TOPOLOGICAL REPRESENTATIONS FOR PREDICTIVE MODELS

tations for highly deformable objects. Figure 1 illustrates one of the scenarios we consider: putting
an apron on a hook. To perform such task, it is crucial to identify and control the neck strap of the
apron, while representing other parts of the object explicitly might not be necessary and increases
the complexity of the object model. The openings of the apron can be found as topological fea-
tures of the object point cloud without any semantic labeling; a low-dimensional topological state
representation of the apron thus consists of the main openings, their location and width.

We propose a rigorous formulation for extracting topological state representations and analyz-
ing their evolution over time. Under several assumptions about system dynamics and observation
quality, we prove that it is possible to detect significant topological features (such as the straps of an
apron) and observe their dynamics from point clouds without any semantic labels. We propose the
sequential persistent homology algorithm (seqPH), building upon the persistent homology frame-
work (Edelsbrunner and Harer, 2010) that can infer the topology of static point clouds. We validate
the proposed algorithm on simulated scenarios with clothing items and flexible bags.

The proposed seqPH algorithm is directly applicable to settings that use the extracted represen-
tations in an offline manner. To make our method suitable for real-time planning and control we
propose to learn predictive NN models. These models take a sequence of point cloud observations
as input, and output predictions for the relevant topological features up to a horizon of k steps, con-
ditioned on a future/desired sequence of control actions. The resulting multistep predictive models

Figure 1: Hook & apron

are well-suited for real-time planning and control. Since the proposed
topological features are interpretable, various task-specific objective/cost
functions can be obtained by employing topological tools, such as the link-
ing number – a topological invariant that captures the ‘linking’ or ‘entan-
glement’ relationship between two curves (Ho and Komura, 2009; Poko-
rny et al., 2013; Varava et al., 2016). For instance, to hang an apron on
a hook we would want to achieve a spatial relationship between the hook
and the apron openings, which can be described with the linking number.
These features are general and can be used for more complex manipulation
scenarios, such as knot tying (Yan et al., 2020) and assistive dressing (Tamei et al., 2011).

Overall, our contributions yield a theoretically rigorous approach for tracking topological state
and a scalable learning component that enables future applications to real-time planning & control.

2. Related Work in Robotic Manipulation and Learning Predictive Models

Topological representations have been used in robotic manipulation for various purposes. Stork
et al. (2013); Pokorny et al. (2013) propose a method for grasping rigid objects with ‘holes’ (non-
trivial first homology group), such as door handles and cups. In Varava et al. (2016), the concept
of linking number is used to compute caging grasps for objects with narrow parts. In Yan et al.
(2020), ‘topological motion primitives’ (based on the linking number) are used for tying knots. In
this work, we consider one of the most challenging classes of objects: highly deformable objects
with nontrivial topology, such as clothing items and flexible bags. The problem of sensing and
manipulation with such objects is a part of the more general topic on deformable object manipula-
tion. Recent surveys and benchmarks summarize the relevant scenarios and approaches: Sanchez
et al. (2018); Garcia-Camacho et al. (2020). Significant progress has been achieved for tasks such
as flattening, spreading and folding, e.g. Van Den Berg et al. (2010); Miller et al. (2012); Laksh-
manan et al. (2013); Doumanoglou et al. (2016); Nair et al. (2017); McConachie et al. (2020); Li
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Figure 2: Construction of a Vietoris-Rips complex with growing �ltration values. a) Starting from a set of
points in black at each �ltration levelr an edge is drawn between any pair of points that is at a distance< 2r .
Any clique ofk vertices in the resulting graph gives rise to ak� 1 simplex in the resulting complex. b) When
a topological feature (a loop) is formed by adding an edge of length2x, we say that the feature has birth-time
equal tox. c) The loop dies when it is �lled in by 2-dimensional simplices, which occurs when the red edge
and consequently its two adjacent orange triangles are added. d) Persistence diagram: death versus birth.

et al. (2018); Lippi et al. (2020). However, many of these works either consider topologically trivial
objects (tablecloth, cloth patches, ropes) or lay the objects �at of the table and do not exploit the
more complex aspects of their shapes (e.g. loops and holes, cylindrical parts). More relevant to
our work are the sub-tasks considered in assistive dressing. Ho and Komura (2009) addressed the
motion synthesis problem by constructing a succinct topological representation. Tamei et al. (2011)
used it to create a reward/cost function for optimizing a policy of putting a T-shirt on a mannequin.
However, this required an accurate motion capture system to track markers for the T-shirt neck and
sleeve loops. Recent works aimed to leverage simulators, as in Clegg et al. (2018) with the task of
animating character dressing, and in Yu et al. (2017) with putting on a sleeve in simulation and es-
timating parameters to close the sim-to-real gap. However, these works did not resolve the problem
of constructing low-dimensional representations for deformable objects.

One-step forward modelsp(X t+1jX t ; Ut ) have been used ubiquitously in control and model-
based reinforcement learning (Deisenroth et al., 2013; Moerland et al., 2020). However, these as-
sume the state to be fully observable. Predictive State Representations (PSRs) (Littman and Sutton,
2001) aimed to address partial observability, but either required simplifying assumptions or were
computationally expensive. Nonetheless, PSRs have been used successfully in several areas of
robotics (Boots et al., 2013; Stork et al., 2015). Hefny et al. (2018) proposed to encode PSR-like
states into recurrent NNs, but training RNNs is non-trivial and this work has yet to be applied to
large-scale settings. Recent works proposed adding an objective to reconstruct future states when
learning to encode history of observations into lower-dimensional latent states (Yin et al., 2017;
Zintgraf et al., 2019). However, these lack theoretical guarantees regarding what is captured in the
latent states and do not support incorporating any structured domain knowledge or representations.

In this work, instead of learning lower-dimensional representations in an unsupervised black-
box way, we construct predictive models for interpretable low-dimensional states. We take the
middle way between partially observable approaches like PSRs and fully observable single-step
forward models. Our models have a �xed size of history and prediction horizons. This allows us to
employ NN architectures that offer fast and stable training.

3. Topology Background: De�nitions and Notation

Here, we brie�y describe the necessary de�nitions from computational topology (see Koplik (2019)
for an informal introduction with animations and Edelsbrunner and Harer (2010) for a formal in-
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troduction). Given a point cloud observation, we want to recover the topology of the underlying
scene. Asimplicial complexconsists of simplices and provides a way to discretely represent a topo-
logical space (the scene, in our case). Ak-dimensionalsimplex� can be de�ned as a convex hull
of k + 1 points: a single point (or a vertex) is a 0-dimensional simplex, a segment (or an edge) is
a 1-dimensional simplex, a triangle (or a face) is a 2-dimensional simplex, etc. The diameter of a
simplex� is the maximum distance between any 2 points in� , and is0 in case� is a single point.
We use a special kind of simplicial complexes:

De�nition 1 (Vietoris-Rips complex) Consider a �nite set of pointsP � Rn and r > 0. The
Vietoris-Rips �ltration Rps(� ) is a function of a simplex that is equal to half of its diameter:
Rps(� ) = 1 =2 maxpi ;pj 2 � d(pi ; pj ). The Vietoris-Rips simplicial complexVR r (P) consists of all
simplicies� such thatRps(� ) is less than or equal tor .

Givenr > 0, a Vietoris-Rips complexVR r (P) can represent a union of ballsB r (P) of radiusr cen-
tered at the pointsP: a 0-dimensional simplex is any point fromP, a 1-dimensional simplex is any
segment between 2 points fromP such that the respective balls overlap, a 2-dimensional simplex is
any triangle formed by 3 points fromP such that all 3 balls overlap pair-wisely, etc.VR r (P) ex-
hibits k-dimensionaltopological features, formally referred to ask-dimensional homology classes:
connected components (k = 0 ), holes/loops (k = 1 ), voids (k = 2 ), etc. A Vietoris-Rips �ltration
can be seen as growing the radiusr of the balls and considering the respective complexesVR r (P).
For anyr 0 > r , we will haveVR r (P) � VR r 0(P). As r grows, the topology ofVR r (P) changes:
connected components merge together, holes appear and then get �lled (formally, features become
trivial), see Figure 2.Persistent homologycan be used to �nd topological features that remain for
different values ofr , and thus describe the underlying topology of the space approximated byP.

De�nition 2 (Topological feature) A topological featureof a point setP is a non-trivial homol-
ogy class ofVR r (P) for somer . A k-dimensional featuref has abirth valuebirth (f ) equal
to the smallest �ltration valuer at which it appears inVR r (P). Similarly, f has adeath value
death(f ) equal to the �ltration value at whichf is trivial in VR r (P). Thelifetime of a feature
f is the difference between these values,LT (f ) = death(f ) � birth (f ). The lifetime infor-
mation can be collected in apersistence diagram, denotedPDk (P) which is a set of the form
f (f; birth (f ); death(f ))g.

The lifetime of a feature indicates its signi�cance: features that die soon after being born are likely
to be present due to noise in the point cloud, while features with high lifetime values are likely to
be present in the underlying true space. In our case, loops with high lifetime correspond to handles
and openings of objects. A set of simplices comprising a featuref is called arepresentativêf of f .
Each feature can have multiple representatives. Two representatives of the same feature are called
homologous. The death of a feature occurs when a certain �ltration value is passed and the interior
of the feature gets �lled in by a simplex, or, formally, becomes trivial (for example, in dimension 1:
a hole is �lled in by triangles). This leads us to consider the simplices that “kill” the feature. In
the Vietoris-Rips case, a simplex is added to the �ltration as soon as all its edges are added. Thus,
the longest edge is added together with the higher-dimensional simplices adjacent to it. Hence, this
edge “kills” the feature.

De�nition 3 (Killer edge) Let f be ak-dimensional topological feature, then thekiller edge� of
f is the edge withRpsdeath(f ) (P) that leads to the death off . Similarly, thekiller simplicesof f
are the simplices of dimensionk + 1 that are added toVRdeath(f ) (P) and lead to the death off .
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4. Sequential Topological State Representations

We now present our theoretical formulation for identifying topological features of the scene and
their evolution over time. LetSt � R3 be the state of the scene at timet. We cannot observeSt

directly, and instead rely on a point cloud observation – a �nite set of pointsOt � St . Under several
assumptions about the quality of the observations and the changes between states, we prove that it
is possible to recover the topological features ofOt � St . Based on this, we design an algorithm
for identifying 1-dimensional topological features (loops) in a sequence of observationsO1; :::; OT .
To guarantee that the signi�cant topological features of the scene can be recovered, we assume that
the observed point cloud coversSt densely enough: for each point inSt there is at least one point in
Ot that is� � close to it (Assumption 1). Given this, Lemma 1 and Lemma 2 show that signi�cant
features (those with lifetime higher than� ) of St can be recovered from the observationOt .

Assumption 1 (Observation quality) The spaceSt is covered by an� -neighborhood of the sam-
pling Ot , i.e. St � B � (Ot ), whereB � (Ot ) =

S
x2 Ot

B � (x).

Lemma 1 (Feature approximation) For everyk-dimensional featuref in VR r (St ) with k > 0,
there exists some featuref O in VR r + � (Ot ) so thatf O � f (are homologous) inVR r + � (St ).

Proof Note that sinceSt � B � (Ot ), VR r (St ) � VR r (B � (Ot )) , which means that for every
simplex� in f̂ , a representative off in VR r (Ot ), � 2 VR r (B � (Ot )) . Now let us consider the case
whenk = 1 . In this case we can constructf O in a straight-forward manner, namely for each edge
f p; qg, let o; o0be the nearest neighbours top andq, respectively. The we can place the edgef o; o0g
in f O (if o = o0 there is no edge added). Note that by construction, sincef p; qg 2 VR r (St ), then
kp � qk � 2r , and sincep 2 B � (o), andq 2 B � (o0) ko � o0k � k o � pk + kp � qk + kq � o0k �
2(r + � ), and thereforef o; o0g 2 VR r + � (Ot ). The same construction follows fork > 1 from the
fact that a simplex of dimensionk is in VR r + � (Ot ) if all its edges are. A proof thatf O � f in
VR r + � (St ) can be done directly using the construction, for which we provide a sketch. For each
simplex � = f p0; : : : ; pkg of a featuref , consider the transformed simplex� O = f q0; : : : ; qkg.
Consider the simpliceŝ� i = f p0; : : : ; pi ; qi ; : : : ; qkg for i = 0 ; : : : ; k. The union

S
� 2 f

S k
i =0 �̂ i

forms a subsetVR r + � (St ) whose boundary is the union off andf O .

Lemma 2 (Observability of signi�cant features) Let Ot be a point cloud approximation ofSt .
Any topological featuref in St whose lifetime is higher than� has a corresponding topological
featuref O in PDk (Ot ), s.t.0 � birth O(f O) � birth S(f ) � �; 0 � deathO(f O) � deathS(f ) � � .

Proof First note thatOt � St thereforebirth O(f O) � birth S(f ), anddeathO(f O) � deathS(f )
which implies the left-hand sides of both inequalities. By Lemma 1 given any representativef̂
of f in VRbirth S (f ) (St ), it can be approximated bŷf O in VRbirth S (f )+ � (Ot ) so thatf̂ � f̂ O in
VRbirth S (f )+ � (Ot ). SinceLTS(f ) > � , f̂ O is non-trivial inVRbirth S (f )+ � (St ) and consequently
in VRbirth S (f )+ � (Ot ). This implies thatbirth O(f O) � birth S(f ) + � which completes the �rst

inequality. Recall thatVRdeathS (f ) (St ) � VRdeathS (f ) (B � (Ot ))
�
�= VRdeathS (f )+ � (Ot ), where the

map� is given by� 7! � O . SincedeathS(f ) > birth O(f O), f̂ O is in VRdeathS (f ) (St ), where it
satis�esf̂ O � f̂ which is trivial inVRdeathS (f ) (St ). Thusf̂ O is also trivial inVRdeathS (f ) (B � (Ot )) .
Since� preserves trivial classes, and acts as the identity onf̂ O , it must be thatf̂ O is trivial in
VRdeathS (f )+ � (Ot ). Hence:deathO(f O) � deathS(f ) + � , completing the second inequality.
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Next, we analyze how the topology of the statesSt changes over time. We assume that between
successive time steps the stateSt undergoes a transformation� which is small enough, so the dis-
placement of each point is bounded (Assumption 2). With this, we can guarantee that signi�cant
topological features are preserved between consecutive statesSt andSt+1 , and their lifetime does
not change drastically, meaning that wide loops do not suddenly appear or collapse (Lemma 3).

Assumption 2 (Regularity of motion) Everyx 2 St satis�esk� (x) � xk< " , for some"< 1
2 � .

Lemma 3 (Temporal persistence of topological features)Consider two consecutive statesSt and
St+1 . Any topological featuref in PDk (St ) with lifetime higher than" has a corresponding feature
in PDk (St+1 ), such that:jbirth St (f ) � birth St +1 (f )j � "; jdeathSt (f ) � deathSt +1 (f )j � " .

Proof SinceSt andSt+1 have the same set of points,� only affects the distance between them.
From Assumption 2, we know that� (VR r (St )) � VR r + " (St+1 ) for all r � 0 therefore, given
any representativêf of a topological feature inVR r (St ), it is necessarily the case that� (f̂ ) is a
representative of the same topological feature inVR r + " (St+1 ). Furthermore, since the birth and
death of this representative corresponds to half the length of some edge which has the property of
being the longest edge in some �nite set of edges, this length can change by at most2" and therefore
we have:jbirth St (f̂ ) � birth St +1 (� (f̂ )) j � "; jdeathSt (f̂ ) � deathSt +1 (� (f̂ )) j � " . Since this is
true for all representatives, it is true for the featuref (with f̂ as a representative off ).

We have shown that, under Assumptions 1 and 2, the topology of the scene can be recovered from
observations, and, moreover, does not drastically change over time. In theory, this makes it possible
to track the topological features. In practice, however, we can have several topological features
with similar lifetime, and to distinguish them we need additional information about theirgeometric
location. For this, we will identify each feature with the corresponding killer edge, and observe
how it moves over time. Thus, we assume that a killer edge representing each feature can be
uniquely identi�ed. Furthermore, we assume that different topological features inSt are located
far enough from each other, so it is possible to distinguish their respective killer edges based on
Hausdorff distancedH (:; :) (Assumption 3). Then, Lemma 4 shows that killer edges fromSt can
be recovered given an observationOt . Lemma 5 shows that the motion of killer edges is limited
between consecutive statesSt andSt+1 , and thus we can track them over time given the respective
observationsOt andOt+1 : if two killer edges in consecutive observations are close enough to each
other, then they correspond to the same topological feature inSt andSt+1 (Corollary 1).

Assumption 3 (Uniqueness of killer edges and feature separation)For eachSt and each fea-
ture f in PDk (St ) with LT (f ) > � , there is a unique edge� kill (f ) that kills f , and any other
edge� 0 with �ltration value satisfyingj Rps(� kill (f )) � Rps(� 0)j � � is � -close to� kill (f ):
dH (� 0; � kill (f )) � � . Furthermore, any 2 distinct featuresf 1; f 2 in PDk (St ) are separated:
dH (� kill (f 1); � kill (f 2)) > 2� + � + " .

Lemma 4 (Recovering killer edges from observations)Consider a featuref S 2 PDk (St ), for
anyk � 1. There exists a corresponding featuref O 2 PDk (Ot ) s.t. dH (� kill (f S); � kill (f O)) � � .

Proof First, f O 2 PDk (Ot ) exists by Lemma 2, and0 � deathO(f O) � deathS(f S) � � .
Let � kill (f O) 2 V RdeathO (f O ) (Ot ) be the killer edge off O in Ot . Then, Rps(� kill (f O)) =
deathO(f O) � deathS(f S) + � . By Assumption 3,dH (� kill (f S); � kill (f O)) � � .
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Lemma 5 (Regularity of motion for killer edges) Let � kill (f ) be the killer edge of a featuref 2
PDk (St ). Its Hausdorff distance to� kill (� (f )) that kills its image� (f ) does not exceed� + " .

Proof By Lemma 3, we havej Rps(� kill (f )) � Rps(� kill (� (f ))) j � " , where� kill (� (f )) is
the killer edge corresponding to� (f ), which is the feature inPDk (St+1 ) corresponding tof .
Now, consider� (� kill (f )) – the image of� kill (f ) in St+1 . By Assumption 2, the distance from
each vertex of� kill (f ) to its image� (� kill (f )) does not exceed" , implying j Rps(� kill (f )) �
Rps(� (� kill (f ))) j � " , and hencej Rps(� kill (� (f ))) � Rps(� (� kill (f ))) j � 2" . Furthermore,
dH (� kill (f ); � (� kill (f ))) � " . Finally, in Assumption 2 we established that2" < � whereby As-
sumption 3 allows us to conclude that:
dH (� kill (f ); � kill (� (f ))) � dH (� kill (f ); � (� kill (f ))) + dH (� (� kill (f )) ; � kill (� (f ))) � " + � .

Corollary 1 (Tracking killer edges) Consider two consecutive observations,Ot and Ot+1 , and
two featuresf o 2 PDk (Ot ) andf 0

o 2 PDk (Ot+1 ). Let f s andf 0
s be the features inPDk (St ) and

PDk (St+1 ), corresponding tof o andf 0
o respectively. Iff s andf 0

s represent the same feature, then
dH (� kill (f o); � kill (f 0

o)) � 2� + � + " .

Proof By triangle inequality we have:dH (� kill (f o); � kill (f 0
o)) � df o ;f s ;f 0

s ;f 0
o

H , with

df o ;f s ;f 0
s ;f 0

o
H = dH (� kill (f o); � kill (f s)) + dH (� kill (f s); � kill (f 0

s)) + dH (� kill (f 0
s); � kill (f 0

o)) .
By Lemma 4dH (� kill (f 0

s); � kill (f 0
o)) anddH (� kill (f s); � kill (f o)) are both smaller than� , and by

Lemma 5dH (� kill (f s); � kill (f 0
s)) � � + " . And sodH (� kill (f o); � kill (f 0

o)) � 2� + � + " .

Algorithmic Procedure (Algorithm 1): Given an observationOt , we compute a Vietoris-Rips �l-
tration and 1D topological features (loops).PH t represents a 1D persistent diagram ofOt , and
contains 1D topological features together with their birth and death values. We �lter out those
whose lifetime is smaller than� , as they are likely to appear due to noise. For each remaining loop,
we extract the corresponding killer edge and its immediate neighborhood – the two killer triangles
and the triangles adjacent to them. Since killer triangles capture the geometric properties of the loop
better than a killer edge, in practice, we use them to identify and visualize the loops. The �ltration
value of a killer triangle corresponds to the radius of the widest part of the loop, see Figure 2. The
list f � l g

L t
l=1 stores a representation� l for each loop loopl in PH t . � l contains the killer triangles (for

loopl), their �ltration values and immediate neighborhoods (adjacent triangles);ID l identi�es each
loop and is used for tracking (IDs are set arbitrarily in the �rst iteration). We useX t := f � l g

L t
l=1 to

denotea topological state. The matrixDist stores Hausdorff distances between the killer edges of
Ot � 1 andOt . Since only those pairs of loops whose birth and death values are similar can corre-
spond to the same topological feature (Corollary 1), we set the distance between them to in�nity for
other pairs. Given the distance matrixDist , we �nd the best matching between the loops fromOt

andOt � 1 using the Hungarian algorithm (Kuhn, 1955). This matching, together with the IDs of the
loops from the previous time step, provides a consistent labeling of features through time.

5. Predictive Models for Deformable Objects

Using the proposed sequential persistent homology algorithm we gain ability to extract compact
topological representations of deformable objects. Such representations can be directly useful for
any setting that requires a dataset (modeling, supervised learning, of�ine planning, etc). However,
the best-performing computational geometry libraries still take from 100 milliseconds to several
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Algorithm 1: seqPH
Input: Sequence of observationsO = f O1; :::; OT g, parameters�; � and"
Output: Sequencef X 1; :::; X T g of topological states
for Ot 2 O do

PH t = persistent-homology-1D(Ot ) // compute loops
PH t :remove-small-features(� ) // remove loops with lifetime< �
L t = jPH t j // number of loops in the scene
f � l g

L t
l =1 = killer-triangles(PH t ) // extract loop representation� l for each loopl in PH t

X t = f � l g
L t
l =1 // new topological state

Dist i;j = 1 // initialize distances
for l 2 f 0; :::; L t g do

for l0 2 f 0; :::; L t � 1g do
if j� l 0:birth � � l :birth j < 2� + " and j� l 0:death � � l :deathj < 2� + " then

dist = Hausdorff
�
� l .killer, � l 0.killer

�

if dist < 2� + � + " then Dist l;l 0 = Dist l;l 0 = dist // Corollary 1
f ID l g

L t
l =1 = matching(X t , X t � 1, Dist ) // matching killer triangles

X t .update-loop-IDs(f ID l g
L t
l =1 ) // matching new loop IDs with loops from previous scene

return f X 1; :::; X T g

seconds per point cloud. Hence, techniques based on computational topology alone would not
be feasible for real-time planning and control. One solution could be to learn a forward model
p(Ot+1jOt ; Ut ), which predicts the next high-dimensional stateOt+1 given the current observation
Ot and the vector of control actionsUt . However, predicting point clouds directly with high preci-
sion would be an extremely challenging problem. An alternative is to employ an approach similar
to �ltering or any other approach that infers latent space dynamicsp(X t+1jOt ; Ut ). While such ap-
proaches can successfully model rigid object dynamics, it would be challenging to train these to be
highly precise for deformable objects. Hence, planning could be ineffective for longer horizons due
to error accumulation when such a single-step model is used sequentially to obtain multistep predic-
tions. Therefore, we propose to learn a multistep predictive model. Requiring the model to predict
into the future has been shown to enhance ability to capture non-trivial patterns (Guo et al., 2020).
Moreover, by obtainingk predictions from a single forward pass we can avoid a costlier alternative
of advancing the model step-by-step for estimating rewards/costs of a multistep trajectory.

5.1. Learning Multistep Predictive Models

For dealing with deformable objects, we propose to learn multi-step predictive models that take
point clouds of the scene as input and predict the evolution of the topological state up to a horizon
of k steps into the future. We construct a dataset of trajectories of point clouds and the corresponding
topological states, which are computed using the algorithm from Section 4 to extract 1-dimensional
homologies (i.e. loops). We refer to this approach as seqPH. We then train a predictive model that
takesh previous point cloud observationsOt -h:t and future/target control actionsUt+1:t+k as input
and outputs a sequence of predicted topological states for the nextk time steps:X t+1:t+k .

EachX t := f � l g
L t
l=1 contains a list of topological features� l for each loopl identi�ed by seqPH.

� l is comprised of a killer simplex/triangle and its neighboring simplices/triangles, the ID & lifetime
of the loop and the Hausdorff distance to the corresponding loop at the previous timestep (see
Section 4). We train a neural networkf NN(Ot -h:t ; Ut+1:t+k ) to produceX t+1:t+k as output. The
supervised training regresses directly on the topological features using anL 2 loss. To create �xed-
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Figure 3: Examples of our scenarios with clothing and bags. Thin lines show killer simplices & the neighbors.

size NN inputs & outputs we pad (or sub-sample) the point clouds and fix the maximum number
of loops Lt. For experiments with fully-connected NNs we used 4 hidden layers (512, 512, 256,
128 units). To leverage recently proposed scalable architectures for point cloud processing, we also
experimented with an alternative of first passing each input Ot trough a PointNet (Qi et al., 2017).

5.2. Probabilistic Interpretation of Topological States

We construct a probabilistic interpretation of the topological state. For each loop reported by seqPH
we compose a mixture of Gaussians that expresses the probability over where this loop is located.
The centers of a killer simplex and the centers of the neighboring simplices comprise the means of
the components of the mixture. The filtration values associated with each simplex (see Section 4)
comprise the weights of the mixture. One natural choice of how to construct the covariances is to
treat the 3 vertices vvv1; vvv2; vvv3 2 R3 of each simplex s as samples from the corresponding Gaussian
component xxxs � N (���s;���s). We can then compute the unbiased sample covariance of these 3
points: ���s = 1

2

P3
l=1(vvvl � ���s)(vvvl � ���s)T . To ensure that ��� in non-singular we can place a prior

on the covariance and compute posterior treating vvv1; vvv2; vvv3 as data. Alternatively, we can use a
simpler heuristic of regularizing the covariance with a noise term: ���reg

s = ���s + �III . To summarize:
our probabilistic interpretation of each loop l that is described by simplices s0; :::; sn is a Gaussian
mixture:

pl(xxx) =
Pn

i=0wsiN (xxxj���si ;���
reg
si ) (1)

where s0 is the killer simplex for the loop l and s1; :::; sn are the n neighbors of this killer simplex;
wsi is the filtration values of the simplices (the death time in the case of the killer simplex), and
���si ;���

reg
si are computed based on the vertices of each simplex si as explained above.

6. Experiments

We created PyBullet (Coumans and Bai, 2016–2019) simulations with objects that have non-trivial
topology: clothing items and deformable bags. At the beginning of each episode two gripper an-
chors were attached to the deformable object in the scene. They were actuated (with a simple PD
controller) to approach the target area with a hanger, a hook or a mannequin figure (Figure 3).

For training predictive models we collected 23,000 trajectories, pairing randomly the deformable
& rigid objects in the scene, and randomizing trajectories of the gripper anchors. We also varied
elastic and bending stiffness to emulate cloth/deformable materials with various properties.

Figure 4 illustrates topological states extracted by seqPH (from Section 4) versus those obtained
using a predictive NN model (from Section 5). NN gets as input point clouds from the previous
h=16 states (not visualized) and the sequence of proposed actions for the steps t+1; :::; t+60. NN
returns predicted topological states for each of the 60 steps into the future. We visualize predictions
for step t+ 1 and t+ 60. Each loop is expressed by a Gaussian mixture, visualized by plotting
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Figure 4: The left sides in each group show results from seqPH. The right sides (with red margins) show
mixtures predicted by NN; NN gets point clouds from steps t-h : t, so the current point cloud is not given
as input to NN, it is only visualized for easier interpretation. Left column: results for the small bag object;
the dominant mixture/loop (dark blue) has a long lifetime (LT), indicating the loop is large. Middle column:
apron (dominant mixture in light blue). Right column: backpack; mixtures for handles in dark & light blue;
the other mixture (in cyan) is phantom, but can be advantageous if it consistently tracks a certain object part.
Right plot shows evaluation on a set of objects for which we marked approximate ground truth loop locations.

1000 samples. Compared to topological states reported by seqPH, the predictions from NN tend to
produce tighter mixtures. This is likely because NN serves as a regularizer, since it is trained on a
large number varying trajectories and has to guess the future location of the loop only based on the
point clouds from the previous sates and the future/target motion of the gripper anchors. In contrast,
topological states extracted from seqPH are based on the point cloud at a given timestep (and loops
tracked from the previous steps). Hence, seqPH could be more precise, but could be vulnerable to
noise or peculiarities of the current trajectory.

In addition to qualitative evaluation above, we also conducted quantitative evaluation. The latter
was highly non-trivial, since the exact ground truth for the topological state was unknown. Hence,
we focused on one aspect for which it was tractable to obtain approximate ground truth as follows.
We marked a subset of mesh vertices of the main loops in several objects (aprons with one and two
loops). Then, we collected a test set of trajectories where these vertices were tracked. To indicate
the main area of the loops we computed convex hulls of the tracked points for each loop. The right
plot in Figure 4 shows results for the fraction of the test samples (out of 800) where the mean of
the mixture with the longest lifetime was inside the convex hull of the true loop area (for objects
with two loops: top two mixtures in two true convex hulls). Predictive model with fully connected
architecture (labeled NN) matches results from seqPH. Note that seqPH does not do prediction, we
report the loops it extracts from the sequence of the point clouds given to it. The plot also shows that
our approach can benefit from the more advanced network architectures, such as PointNet, which
outperforms NN and even seqPH results. This demonstrates the ability of NN-based learning to
benefit from patterns in the whole dataset and correct the occasional mistakes that seqPH makes.

Conclusion: We proposed a topological state representation for deformable objects, provided a
theoretical formulation for tracking its evolution over time, and designed a method for training a
multistep predictive model to enable real-time applications. The model was tested on scenarios
with highly deformable objects and offered fast multistep predictions that improved over both speed
and quality of results obtained by employing only computational topology.
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