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Abstract
Value iteration (VI) is a ubiquitous algorithm for optimal control, planning, and reinforcement
learning schemes. Under the right assumptions, VI is a vital tool to generate inputs with desirable
properties for the controlled system, like optimality and Lyapunov stability. As VI usually requires
an infinite number of iterations to solve general nonlinear optimal control problems, a key question
is when to terminate the algorithm to produce a “good” solution, with a measurable impact on
optimality and stability guarantees. By carefully analysing VI under general stabilizability and
detectability properties, we provide explicit and novel relationships of the stopping criterion’s
impact on near-optimality, stability and performance, thus allowing to tune these desirable properties
against the induced computational cost. The considered class of stopping criteria encompasses
those encountered in the control, dynamic programming and reinforcement learning literature and it
allows considering new ones, which may be useful to further reduce the computational cost while
endowing and satisfying stability and near-optimality properties. We therefore lay a foundation to
endow machine learning schemes based on VI with stability and performance guarantees, while
reducing computational complexity.

1. Introduction

Value iteration (VI) is an established method for optimal control, which plays a key role in rein-
forcement learning (Sutton and Barto, 2017; Lewis and Vrabie, 2009; Buşoniu et al., 2018; Pang
et al., 2019). This algorithm consists in iteratively constructing approximations of the optimal value
function, based on which near-optimal control inputs are derived for a given dynamical nonlinear
systems and a given stage cost. The convergence of said approximations to the optimal value
function is established in, e.g., (Bertsekas, 2012, 2017) under mild conditions. To benefit from this
convergence property, VI often needs to be iterated infinitely many times. However, in practice, we
cannot do so and must stop iterating the algorithm before to manage the computational burden, which
may be critical in online applications. Heuristics are often used in the literature to stop iterating by
comparing the mismatch between the value functions obtained at the current step and at the previous
one, see, e.g., (Bertsekas, 2012; Sutton and Barto, 2017; Pang et al., 2019; Kiumarsi et al., 2017;
Liu et al., 2015). An important question is then how far the obtained approximate value function is
to the optimal one. To the best of our knowledge, this is only analysed in general when the cost is
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discounted and the stage cost takes values in a bounded set (Bertsekas, 2012). An alternative consists
in asking for a sufficiently large number of iterations, as the near-optimality gap vanishes as the
number of iterations increases, e.g. (Bertsekas, 2012; Heydari, 2018, 2014, 2016; Liu et al., 2015;
Granzotto et al., 2020a), but the issue is then the computational cost. Indeed, any estimate of the
number of iterations is in general subject to conservatism, and, as a result, we may iterate many more
times than what is truly required to ensure “good” near-optimality properties. There is therefore a
need for stopping criteria for VI whose impact on near-optimality is analytically established, and
which are not too computationally demanding.

Our main goal is to use VI to simultaneously ensure near-optimal control and stability properties
for physical systems. Stability is critical in many applications, as: (i) it provides analytical guarantees
on the behavior of the controlled system solutions as time evolves; (ii) endows robustness properties
and is thus associated to safety considerations, see, e.g., (Berkenkamp et al., 2017). We therefore
consider systems and costs where general stability properties are bestowed by VI based schemes,
which follows from assumed general stabilizability and detectability properties of the plant model
and the stage cost as in (Grimm et al., 2005; Postoyan et al., 2017; Granzotto et al., 2020a).

In this context, we consider state-dependent stopping criteria for VI and we analyse their impact
on the near-optimality and stability properties of the obtained policies for general deterministic
nonlinear plant models and stage costs, where no discount factor is employed. Instead of relying on a
uniform contraction property as in, e.g., (Bertsekas, 2012; Liu et al., 2015), our analysis is centered
on and exploits stabilizability and detectability properties of the plant and stage costs, which are
expressed in terms of Lyapunov inequalities. Our work covers the state-independent stopping criteria
considered in the control, dynamical programming and reinforcement learning literature (Sutton
and Barto, 2017; Lewis and Vrabie, 2009; Buşoniu et al., 2018), but provides analytical guarantees
for undiscounted stage costs taking values in unbounded sets. By carefully analysing the stopping
criterion’s impact on near-optimality, stability and closed-loop cost guarantees, we provide means to
tune these properties against the induced computational cost, thus clarifying the tradeoff between
“good enough” convergence of VI and “good properties” of generated inputs. Considering that VI is,
via Q-learning, the basis of many state-of-the-art reinforcement learning methods, we believe the
results of this paper contribute to the (near)-optimality analysis for reinforcement learning, as we
lay a foundation to endow such schemes with stability and performance guarantees, while reducing
computational complexity.

The paper and its contributions are organized as follows. In Section 2, we formally state the
problem and the main assumptions. We introduce the design of stopping criteria for VI in Section
3, and show that the VI stopping criterion is indeed verified with a finite number of iterations. Our
main results are found in Section 4. There, we provide near-optimal guarantees, i.e. a bound on
the mismatch between the approximated value function and the true optimal value function. The
bound can be easily and directly tuned by the designed stopping criterion. Additionally, stability and
performance guarantees of the closed-loop system with inputs generated by VI are provided, given
that the stopping criterion is appropriately chosen. In Section 5, we provide an example to illustrate
our results. Concluding remarks are drawn in Section 6. The proofs are omitted and available in the
associated technical report (Granzotto et al., 2020c).
Prior literature. The classical stopping criterion is analysed in (Bertsekas, 2012), albeit restricted
to when the cost is discounted and the stage cost takes values in a bounded set. Concerning stability,
works like (Granzotto et al., 2020a; Heydari, 2017; Wei et al., 2015) provide conditions to ensure
that the feedback law obtained ensures a stability property for a dynamical system. In particular,

2



WHEN TO STOP VALUE ITERATION:STABILITY AND NEAR-OPTIMALITY VERSUS COMPUTATION

it is required in (Granzotto et al., 2020a) that the number of iteration d be sufficiently large, and
lower bounds on d are provided, but these are subject to some conservatism. As explained above, by
adapting the number of iterations with data available during computations, the algorithm avoids the
conservatism often incurred by offline estimations for stability and near-optimality guarantees. This is
indeed the case in an example (see Section 5), where we observe 91% fewer iterations for comparable
guarantees. Similar ideas related to the stopping criterion were exploited in (Granzotto et al., 2020b),
for a different purpose, namely for the redesign of optimistic planning (Hren and Munos, 2008) to
address the near-optimal control of switched systems. We are also aware of work of (Pavlov et al.,
2019), which adapts the stopping criterion with stability considerations for interior point solvers for
reduced computational complexity for nonlinear model predictive control applications.
Notation. Let R := (−∞,∞), R≥0 := [0,∞), Z≥0 := {0, 1, 2, . . .} and Z>0 := {1, 2, . . .}. We
use (x, y) to denote [x>, y>]>, where (x, y) ∈ Rn × Rm and n,m ∈ Z>0. A function χ : R≥0 →
R≥0 is of class K if it is continuous, zero at zero and strictly increasing, and it is of class K∞ if it
is of class K and unbounded. A continuous function β : R≥0 × R≥0 → R≥0 is of class KL when
β(·, t) is of class K for any t ≥ 0 and β(s, ·) is decreasing to 0 for any s ≥ 0. The notation I stands
for the identity map from R≥0 to R≥0. For any sequence u = [u0, u1, . . . ] of length d ∈ Z≥0∪{∞}
where ui ∈ Rm, i ∈ {0, . . . , d}, and any k ∈ {0, . . . , d}, we use u|k to denote the first k elements
of u, i.e. u|k = [u0, . . . , uk−1] and u|0 = ∅ by convention. Let g : R≥0 → R≥0, we use g(k) for
the composition of function g with itself k times, where k ∈ Z≥0, and g(0) = I.

2. Problem Statement

Consider the system
x+ = f(x, u), (1)

with state x ∈ Rn, control input u ∈ U(x) where U(x) ⊆ Rm is the set of admissible inputs, and
f :W → Rn whereW := {(x, u) : x ∈ Rn, u ∈ U(x)}. We use φ(k, x,u|k) to denote the solution
to system (1) at time k ∈ Z≥0 with initial condition x and inputs sequence u|k = [u0, u1, . . . , uk−1],
with the convention φ(0, x,u|0) = x.

We consider the infinite-horizon cost

J∞(x,u) :=

∞∑
k=0

`(φ(k, x,u|k), uk), (2)

where x ∈ Rn is the initial state, u is an infinite sequence of admissible inputs, ` :W → R≥0 is the
stage cost. Finding an infinite sequence of inputs which minimizes (2) given x ∈ Rn is very difficult
in general. Therefore, we instead generate sequences of admissible inputs that nearly minimize
(2), in a sense made precise below, while ensuring the stability of the closed-loop system. For this
purpose, we consider VI, see e.g. (Bertsekas, 2012). VI is an iterative procedure based on Bellman
equation, which we briefly recall next. Assuming the optimal value function, denoted V∞, exists for
any x ∈ Rn, the Bellman equation is

V∞(x) = min
u∈U(x)

{
`(x, u) + V∞(f(x, u))

}
. (3)

If we could solve (3) and find V∞, it would then be easy to derive an optimal policy, by computing
the arg min corresponding to the right hand-side of (3). However, it is in general very difficult to
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solve (3). VI provides an iterative procedure based on (3) instead, which allows obtaining value
functions (and associated control inputs), which converge to V∞. Hence, given an initial cost function
V−1 : Rn → R≥0, VI generates a sequence of value functions Vd, d ∈ Z≥0, for any x ∈ Rn, by
iterating

Vd(x) := min
u∈U(x)

{
`(x, u) + Vd−1(f(x, u))

}
. (4)

For any d ∈ Z≥0, the associated input, also called policy, is defined as, for any x ∈ Rn,

u∗d(x) ∈ arg min
u∈U(x)

{
`(x, u) + Vd−1(f(x, u))

}
, (5)

which may be set-valued. The convergence of Vd, d ∈ Z≥0, to V∞ in (3) is ensured under mild
conditions in (Bertsekas, 2017). In the sequel we make assumptions that ensure that the arg min in
(5) exists for each x ∈ Rn.

In practice, we often stop iterating VI when a stopping criterion is verified, such as, for instance,
when for any x ∈ Rn,

Vd(x)− Vd−1(x) ≤ ε, (6)

where ε ∈ R>0, see, e.g., (Bertsekas, 2012; Sutton and Barto, 2017; Pang et al., 2019; Kiumarsi et al.,
2017). However, this stopping criterion leaves much to be desired in control applications, for the
following reasons: (i) it is not yet established how ε impacts the stability properties of the closed-loop
system; (ii) tools to bound the mismatch between Vd and V∞ for this stopping criterion often requires
a discount factor in cost function (2), which impacts stability, as shown in (Postoyan et al., 2017,
2019); (iii) when Vd is radially unbounded, i.e. Vd(x)→∞ when |x| → ∞, this stopping criterion
is in general impossible to verify for all x ∈ Rn. When the system is linear and the cost quadratic,
as in (Arnold and Laub, 1984; Anderson and Moore, 2007; Jiang and Jiang, 2012; Bian and Jiang,
2016), the convergence to the optimal cost function is shown to be quadratic and often the stopping
criterion is instead of the form Vd(x) − Vd−1(x) ≤ |ε||x|2. However, the link between the value
of ε and resulting near-optimality and stability guarantees is not established, and in practice it is
implicitly assumed that parameter ε is small enough.

We consider VI terminated by a general stopping criterion. That is, for any x ∈ Rn,

Vd(x)− Vd−1(x) ≤ cstop(ε, x), (7)

where cstop(ε, x) ≥ 0 is a stopping function, which we design and which may depend on state vector
x and a vector of tuneable parameters ε ∈ Rnε with nε ∈ Z>0. The design of cstop is explained in
Section 3. In that way, we cover the above examples as particular cases, namely cstop(x, ε) = |ε| and
cstop(ε, x) = |ε||x|2 and allow considering more general ones, e.g. cstop(ε, x) = max{|ε1|, |ε2||x|2}
where (ε1, ε2) := ε ∈ R2 or cstop(ε, x) = x>S(ε)x for some positive definite matrix S(ε) with
ε ∈ Rnε and nε ∈ Z>0. The main novelty of this work is the provided explicit link between
cstop(ε, x), near-optimality and stability guarantees. As a result, we can tune ε for the desired
near-optimality and stability properties, and the algorithm stops when the cost (hence, the generated
inputs) are such that these properties are verified.

The analysis relies on the next assumption1 like in e.g., (Grimm et al., 2005; Postoyan et al., 2017;
Granzotto et al., 2020a).

1. The assumption is stated globally, for any x ∈ Rn and u ∈ U(x). We leave for future work the case where the
assumption holds on compact sets.
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Standing Assumption 1 (SA1) There exist αV , αW ∈ K∞ and continuous function σ : Rn → R≥0
such that the following conditions hold.

(i) For any x ∈ Rn, there exists an infinite sequence of admissible inputsu∗∞(x), called optimal
input sequence, which minimizes (2), i.e. V∞(x) = J∞(x,u∗∗∗∞(x)), and V∞(x) ≤ αV (σ(x)).

(ii) For any (x, u) ∈ W , αW (σ(x)) ≤ `(x, u). �

Function σ : Rn → R≥0 in SA1 is a “measuring” function that we use to define stability, which
depends on the problem. For instance, by defining σ = | · |, σ = | · |2 or σ : x 7→ x>Qx with
Q = Q> > 0, one would be studying the stability of the origin, and by taking σ = | · |A, one would
study stability of non-empty compact set A ⊂ Rn. General conditions to ensure the first part of
item (i), i.e. the fact that V∞(x) is finite for any x ∈ Rn and the existence of optimal inputs, can
be found in (Keerthi and Gilbert, 1985). The second part of item (i) is related to the stabilizability
of system (1) with respect to stage cost ` in relation to σ. Indeed, it is shown in (Grimm et al.,
2005, Lemma 1) that, for instance, when the stage cost `(x, u) is uniformly globally exponentially
controllable to zero with respect to σ for system (1), see (Grimm et al., 2005, Definition 2), then
item (i) of SA1 is satisfied. Hence, item (i) of SA1 is ensured when we know a stabilizing, but not
necessarily optimal, input sequence that makes ` exponentially decrease along solutions of (1). We
do not need to know V∞ to guarantee the last inequality in item (i) of SA1. Indeed, it suffices to
find, for any x ∈ Rn, a sequence of inputs u(x), such the associated infinite-horizon costs verifies
J(x,u(x)) ≤ αV (σ(x)) for some αV ∈ K∞. Then, since V∞ is the optimal value function, for any
x ∈ Rn, V∞(x) ≤ J(x,u(x)) ≤ αV (σ(x)). On the other hand, item (ii) of SA1 is a detectability
property of the stage cost ` with respect to σ, as when `(x, u) is small, so is σ(x).

We are ready to explain how to design the stopping criterion in (7).
3. Stopping criterion design
3.1. Key observation

We start with the known observation (Granzotto, 2019; Bertsekas, 2005) that, given2 V−1 = 0, at
each iteration d ∈ Z≥0, VI generates the optimal value function for the finite-horizon cost

Jd(x,ud) :=

d∑
k=0

`(φ(k, x,ud|k), uk), (8)

where ud = [u0, u1, ..., ud] are admissible inputs. We assume below that the minimum of (8) exists
with relation to ud for any x ∈ Rn and d ∈ Z≥0.

Standing Assumption 2 (SA2) For every d ∈ Z≥0, x ∈ Rn, there exists u∗∗∗d(x) such that Vd(x) =
Jd(x,u

∗∗∗
d) = minud

Jd(x,ud). �

SA2 is for instance verified when f and ` are continuous and U(x) = U is a compact set. More
general conditions to verify SA2 can be found in e.g. (Keerthi and Gilbert, 1985). For the sake of
convenience, we employ the following notation for the technical aspects of this paper. For any k ∈
{0, 1, . . . , d} and x ∈ Rn, we denote `∗d(k, x) := `(φ(k, x,u∗∗∗d(x)|k), uk), where φ(k, x,u∗∗∗d(x)|k) is
the solution to system (1) with optimal inputs for cost Vd(x), so that Vd(x) =

∑d
k=0 `

∗
d(k, x).

Before we explain how to design cstop, we state the next property which plays a key role in the
forthcoming analysis.

2. The case where V−1 6= 0 will be investigated in further work.
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Proposition 1 For any x ∈ Rn and d ∈ Z≥0, `∗d(d, x) ≤ Vd(x)− Vd−1(x). �

When the stopping criterion (7) is verified, i.e. Vd(x) − Vd−1(x) ≤ cstop(ε, x), then `∗d(d, x) ≤
cstop(ε, x) in view of Proposition 1. Therefore, cstop(ε, x) is an upper-bound on the value of stage
cost `∗d(d, x). By item (ii) of SA1, this implies that we also have an upper-bound for d-horizon state
measure σ(φ(d, x,u∗∗∗d(x)|d)), namely σ(φ(d, x,u∗∗∗d(x)|d)) ≤ α−1W (cstop(ε, x)), which can be made as
small as desired by reducing cstop(ε, x), which, again, we design. We exploit this property to analyse
the near-optimality and the stability of the closed-loop system. Having said that, the challenges are:
(i) to show that condition (7) is indeed verified for any x ∈ Rn and some d ∈ Z≥0; (ii) to select cstop
to ensure stability properties when closing the loop of system (1) with inputs (5); (iii) to study the
impact of cstop on the performance, that is, the cost along solutions, of the closed-loop system.

3.2. Satisfaction of the stopping criterion

We design cstop to satisfy the next assumption; suitable examples are given afterwards.

Assumption 1 Out of the two next properties, one holds.

(i) For any ε ∈ Rnε , there is ε > 0 such that, for any x ∈ Rn, cstop(ε, x) ≥ ε.

(ii) There exist L, aV , aW > 0, such that SA1 holds with αV (s) ≤ aV s and αW (s) ≥ aW s
for any s ∈ [0, L]. Furthermore, for any ε ∈ Rnε , there is ε > 0 such that for any x ∈ Rn,
cstop(ε, x) ≥ εσ(x). �

Item (i) of Assumption 1 can be ensured by taking cstop(ε, x) = |ε|+c̃stop(x, ε) with c̃stop(x, ε) ≥ 0
for any x ∈ Rn, ε ∈ Rnε , which covers (6), to give an example. Item (ii) of Assumption 1 means that
the functions αV , αW in SA1 can be upper-bounded, respectively lower-bounded, by linear functions
on the interval [0, L]. These conditions allow to select cstop such that cstop(ε, x)→ 0 when σ(x)→ 0
with x ∈ Rn, contrary to item (i) of Assumption 1, that is, cstop may vanish on set {x : σ(x) = 0}.
This is important to provide stronger stability and performance properties for systems whose inputs
are given by our VI scheme as shown in Section 4. Under item (ii) of Assumption 1, we can design
cstop as, e.g., cstop(ε, x) = |ε|σ(x), cstop(ε, x) = min{|ε1|, |ε2||x|2} where (ε1, ε2) =: ε ∈ R2 or
cstop(ε, x) = x>S(ε)x for some positive definite matrix S(ε) as mentioned before.

The next theorem ensures the existence of d ∈ Z≥0 such that, for any x ∈ Rn, (7) holds based on
Assumption 1.

Theorem 2 Suppose Assumption 1 holds. Then, for any ∆ > 0 there exists d ∈ Z≥0 such that, for
any x ∈ {z ∈ Rn : σ(z) ≤ ∆}, (7) holds. Moreover, when item (ii) of Assumption 1 holds with
L =∞, there exists d ∈ Z≥0 such that, for any x ∈ Rn, (7) is satisfied. �

Theorem 2 guarantees the stopping condition in (7) is always satisfied by iterating the VI algorithm
sufficiently many times, and that the required number of iterations is uniform over sets of initial
conditions of the form {x : σ(x) ≤ ∆} for given ∆ > 0 in general, unless item (ii) of Assumption 1
holds with L =∞, in which case there exists a common, global, d for any x ∈ Rn. Note that, while
the proof of Theorem 2 provides a conservative estimate of d such that (7) is verified, see (Granzotto
et al., 2020c), this horizon estimate is not utilized in the stopping criterion, which in turn implies that
VI stops with smaller horizon, in general, as illustrated in Section 5.
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In the following, we denote the cost calculated at iteration d as Vε(x) := Vd(x), like in (Granzotto
et al., 2020b), to emphasize that the cost returned is parameterized by ε via cstop(ε, ·), and denote by
u∗∗∗ε(x) an associated optimal sequence of inputs, i.e.

Vε(x) = Jd(x,u
∗∗∗
ε(x)). (9)

We are ready to state the main results.

4. Main results

In this section, we analyze the near-optimality properties of VI with the stopping criterion in (7).
We then provide conditions under which system (1), whose inputs are generated by applying the
state-feedback u∗∗∗ε(x) in receding-horizon fashion, exhibits stability properties. Afterwards, the cost
function (8) along the solutions of the induced closed-loop system are analysed, which we refer to by
performance or running-cost (Grüne and Rantzer, 2008).
4.1. Relationship between Vε and V∞
A key question is how far is Vε from V∞ when we stop VI using (7). Since `(x, u) is not constrained
to take values in a given compact set, and we do not consider discounted costs, the tools found in the
dynamic programming literature to analyze this relationship are no longer applicable, see (Bertsekas,
2012). We overcome this issue by exploiting SA1, and adapting the results of (Granzotto et al.,
2020a) with the stopping criterion and Proposition 1 in the next theorem.

Theorem 3 Suppose Assumption 1 holds. For any ε ∈ Rnε , ∆ > 0 and x ∈ {z ∈ Rn, σ(z) ≤ ∆},

Vε(x) ≤ V∞(x) ≤ Vε(x) + vε(x), (10)

where vε(x) := αV ◦α−1W (cstop(ε, x)) with αV , αW from SA1. Moreover, when item (ii) of Assumption
holds with L =∞, we accept ∆ =∞ and vε(x) ≤ aV

aW
cstop(ε, x). �

The lower-bound in (10) trivially holds from the optimality of Vε(x) = Vd(x) for some d <∞,
and the fact that `(x, u) ≥ 0 for any x ∈ Rn and u ∈ U(x). The upper-bound, on the other hand,
implies that the infinite-horizon cost is at most vε(x) away from the finite-horizon Vε(x). The error
term vε(x) is small when cstop(ε, x) is small as αV ◦ α−1W ∈ K∞. Given that we know αV , α

−1
W a

priori, and we are free to design cstop as wanted, we can therefore directly make Vε(x) as close as
desired to V∞(x) by adjusting cstop; the price to pay will be more computations. Moreover, when
item (ii) of Assumption holds with L =∞, inequality (10) is verified for every x ∈ Rn.
4.2. Stability

We now consider the scenario where system (1) is controlled in a receding-horizon fashion by inputs
that calculate cost (9). That is, at each time instant k ∈ Z≥0, the first element of optimal sequence
u∗∗∗ε(xk), calculated by VI, is then applied to system (1). This leads to the closed-loop system

x+ ∈ f(x,U∗ε (x)) =: F ∗ε (x), (11)

where f(x,U∗ε (x)) is the set {f(x, u) : u ∈ U∗ε (x)} and U∗ε (x) :=
{
u0 : ∃u1, . . . , ud ∈

U(x) such that Vε(x) = Jd(x, [u0, . . . , ud])
}

is the set of the first input of d-horizon optimal input
sequences at x, with d as defined in (7). We denote by φ(k, x) a solution to (11) at time k ∈ Z≥0
with initial condition x ∈ Rn, with some abuse of notation.

We assume next that cstop can be made as small as desirable by taking |ε| sufficiently small. As we
are free to design cstop as wanted, this is without loss of generality.
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Assumption 2 There exists θ : R≥0 × R≥0 → R≥0, with θ(·, s) ∈ K and θ(s, ·) non-decreasing
for any s > 0, such that cstop(ε, x) ≤ θ(|ε|, σ(x)) for any x ∈ Rn and ε ∈ Rnε . �

Example of functions cstop which satisfy Assumption 2 are cstop(ε, x) = |ε|σ(x), cstop(ε, x) =
max{|ε1|α(σ(x)), |ε2|} for ε = (ε1, ε2) ∈ R2, α ∈ K and x ∈ Rn to give a few.

The next theorem provides stability guarantees for system (11).

Theorem 4 Consider system (11) and suppose cstop verifies Assumptions 1 and 2. There exists
β ∈ KL such that, for any δ,∆ > 0, there exists ε∗ > 0 such that for any x ∈ {z ∈ Rn : σ(z) ≤
∆} and ε ∈ Rnε with |ε| < ε∗, any solution φ(·, x) to system (11) satisfies, for all k ∈ Z≥0,
σ(φ(k, x)) ≤ max{β(σ(x), k), δ}. �

Theorem 4 provides a uniform semiglobal practical stability property for the set {z : σ(z) = 0}.
This implies that solutions to (11), with initial state x such that σ(x) ≤ ∆, where ∆ is any given
(arbitrarily large) strictly positive constant, will converge to the set {z : σ(z) ≤ δ}, where δ is
any given (arbitrarily small) strictly positive constant, by taking ε∗ sufficiently close to 0, thereby
making cstop sufficiently small. An explicit formula for ε∗ is given in the proof of Theorem 4 in
(Granzotto et al., 2020c), which is nevertheless subject to some conservatism. The result should
rather be appreciated qualitatively, in the sense that Theorem 4 holds for small enough ε∗.

Under stronger assumptions, global exponential stability is ensured as shown in the next corollary.

Corollary 5 Suppose item (ii) of Assumption 1 holds and that cstop(ε, x) ≤ |ε|σ(x) for any x ∈ Rn

and ε ∈ Rnε . Let ε∗ > 0 be such that ε∗ < a2W
aV

. Then, for any x ∈ Rn and ε ∈ Rnε such that

|ε| ≤ ε∗, any solution φ(·, x) to system (11) satisfies σ(φ(k, x)) ≤ aV
aW

(
1− a2W−|ε|aV

aV aW

)k
σ(x) for

all k ∈ Z≥0. �

Corollary 5 ensures a uniform global exponential stability property of set {x : σ(x) = 0} for

system (11). Indeed, in Corollary 5, the decay rate is given by 1− a2W−|ε|aV
aV aW

and take values in (0, 1)

as |ε| ≤ ε∗ < a2W
aV

as required by Corollary 5, hence
(

1− a2W−|ε|
aV aW

)k
→ 0 as k →∞. Furthermore,

the estimated decay rate can be tuned via ε from 1 to 1 − aW
aV

as |ε| decreases to zero. We can
therefore make the decay smaller by adjusting cstop, as in Theorem 3. Hence, by tuning ε, we can
tune how fast the closed-loop converges to the attractor {x : σ(x) = 0}, and the price to pay is more
computations in general.

4.3. Policy performance guarantees

In Section 4.1, we have provided relationships between the finite-horizon cost Vε and the infinite-
horizon cost V∞. This is an important feature of VI, but this does not directly provide us with
information on the actual value of the cost function (2) along solutions to (11). Therefore, we analyse
the running cost (Grüne and Rantzer, 2008) defined as

V run
ε (x) :=

{ ∞∑
k=0

`U∗ε (φ(k,x))(φ(k, x)) : φ(·, x) is a solution to (11)

}
, (12)

where `U∗ε (φ(k,x))(φ(k, x)) is the actual stage cost incurred at time step k. It has to be noted that
V run
ε (x) is a set, since solutions of (11) are not necessarily unique. Each element V run

ε (x) ∈ V run
ε (x)

8
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corresponds then to the cost of a solution of (11). Clearly, V run
ε (x) is not necessarily bounded, as

the stage costs may not decrease to 0 in view of Theorem 4. Indeed, only practical convergence is
ensured in Theorem 4 in general. On the other hand, when the set {x ∈ Rn : σ(x) = 0} is globally
exponentially stable as in Corollary 5, the elements of V run

ε (x) in (12) are bounded and satisfy the
next property.

Theorem 6 Consider system (11) and suppose the conditions of Corollary 5 hold. For any ε such
that |ε| < ε∗, x ∈ Rn, and V run

ε (x) ∈ Vrun
ε (x), it follows that V∞(x) ≤ V run

ε (x) ≤ V∞(x)+wεσ(x),

with wε :=
a3V
aW

|ε|
a2W − aV |ε|

, where the constants come from Corollary 5. �

The inequality V∞(x) ≤ V run
ε (x) of Theorem 6 directly follows from the optimality of V∞. The

inequality V run
ε (x) ≤ V∞(x) + wεσ(x) provides a relationship between the running cost V run

ε (x)
and the infinite-horizon cost at state x, V∞(x). The inequality V run

ε (x) ≤ V∞(x) +wεσ(x) confirms
the intuition coming from Theorem 3 that a smaller stopping criterion leads to tighter near-optimality
guarantees. That is, when |ε| → 0, wε → 0 and V run

ε (x) → V∞(x) for any x ∈ Rn, provided that
Corollary 5 holds. However, this comes at the price of more iterations and thus more computations
to satisfy a tighter stopping criterion in (7). In contrast with Theorem 3, stability of system (11) is
essential in Theorem 6. Indeed, the term 1

a2
W
−aV |ε|

in the expression of wε shows that the running

cost is large when |ε| is close to a2W /aV , hence, when stability is not guaranteed, the running cost
might be unbounded.

5. Illustrative Example

We consider the discrete cubic integrator, also seen in (Grimm et al., 2005; Granzotto et al., 2020a),
which is given by (x+1 , x

+
2 ) = (x1 + u, x2 + u3) where (x1, x2) := x ∈ R2 and u ∈ R. Let

σ(x) = |x1|3 + |x2| and consider cost (8) with `(x, u) = |x1|3 + |x2|+ |u|3 for any (x, u) ∈ R2×R.
It is shown in (Granzotto et al., 2020a) that SA1 holds with αV = 14I and αW := I.

Because it is notoriously difficult to exactly compute Vd(x) and associated sequence of optimal
inputs for every x ∈ R2, we use an approximate scheme. In particular, we rely on a simple finite
difference approximation, with N = 3402 points equally distributed in [−10, 10]× [−103, 103] for
the state space or, equivalently, {x ∈ Rn : σ(x) ≤ 2000}, and 909 equally distributed quantized
inputs in [−20, 20] centered at 0. We consider three types of stopping criteria for which ε is a scalar.
For each stopping criterion, we discuss the type of guaranteed stability and we provide in Table 1 the
corresponding horizon for different values of ε, which is related to the computation cost. Then, for
each horizon, we give in Table 2 estimates of the running cost for initial condition x = (10,−103),
by computing the sum in (12) up to k = 40 instead of k =∞, as well as the value of σ(φ(40, x)) to
evaluate the convergence accuracy of the corresponding policy.

We first take the uniform stopping criterion uniform stopping criterion as in (6), like in,
e.g.,(Bertsekas, 2012; Sutton and Barto, 2017; Pang et al., 2019; Kiumarsi et al., 2017; Liu et al.,
2015), i.e. cstop(ε, x) := |ε|, with different values of ε. In this case, we have no global exponential
stability or performance guarantees like in Corollary 5 and Theorem 6 a priori. Only near-optimal
guarantees as in Theorem 3 and semiglobal practical stability as in Theorem 4 hold. For instance, by
taking ε = 0.01, Theorem 3 holds with vε(x) = 14 · 0.01 = 0.14 for any x ∈ Rn.

We also consider the following relative stopping criterion, for any x ∈ Rn and ε ∈ R, cstop(ε, x) :=

|ε|σ(x). The exponential stability of Corollary 5 holds for any ε ∈ R such that |ε| < a2W
aV

= 1
14 in this

9
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ε
10 0.75 0.1 0.075 0.05 0.025 0.005

cstop(ε, x) :
|ε| d = 6 d = 7 d = 8 d = 8 d = 8 d = 8 d = 9
|ε|σ(x) d = 0 d = 1 d = 3 d = 4 d = 5 d = 6 d = 7
|ε|min{σ(x),1} d = 6 d = 7 d = 8 d = 8 d = 8 d = 8 d = 9

Table 1: Required iterations to fulfill each stopping criteria for N = 3402 points equally distributed
in {z ∈ Rn : σ(z) ≤ 2000}.

d
0 1 3 4 5 6 7 8 9

V run
d (x) 77313 45497 19931 19965 19802 20090 20359 20261 20261

σ(φ(40, x)) 1982 1138 2.56 2.84 1.71 2.25 1.84 1.62 1.62

Table 2: Estimation of the running cost V run
d (x) for x = (10,−103) and the value of σ(φ(40, x)).

case. Moreover, we have near-optimality and performance properties as in Theorems 3 and 6, which
were not available for the previous stopping criterion cstop(ε, x) = |ε|. Moreover, for ε = 0.01 < 1

14 ,
Theorem 3 holds with vε(x) = 14 · 0.01 · σ(x) = 0.14σ(x) for any x ∈ Rn, which is small when
σ(x) is small, and vice versa. Compared to the previous stopping criterion, which leads to constant
guaranteed near-optimality bound, here we have better guarantees when σ(x) is small (and worse
ones when σ(x) is large). We observe less computations for better a priori near-optimality properties
for states near the attractor, i.e. when σ(x) < 1, when compared to the previous stopping criterion.
We finally consider the mixed stopping criterion cstop(ε, x) := |ε|min{σ(x), 1}, which provides
better near-optimality guarantees than both considered stopping criteria. We see from Table 1, and
Table 2, that by increasing iterations, we usually obtain smaller and thus better running costs as well
as tighter convergence properties.

Compared to previous work (Granzotto et al., 2020a), where stability properties to (approximate)
value iteration are given, we require a smaller number of iterations. Indeed, in view of (Granzotto
et al., 2020a, Corollary 2), d ≥ d̄ =

⌊
0−ln 142

ln 13−ln 14

⌋
= 71. Of course, this analysis is conservative

and a different derivation of αV might provide different bounds on d̄. Here, as the algorithm is
free to choose the required number of iterations via the stopping criterion, we significantly reduce
its conservatism. This induces smaller computational complexity, as, e.g. for ε = 0.01 < 1

14 ,
exponential stability is ensured with the stoping criterion verified at d = 6, that is, 8.5% of iterations
required by the lower bound d̄ = 71 of (Granzotto et al., 2020a).

6. Concluding remarks

Future work includes relaxing the initial condition for VI and the main assumptions. Another
direction is extending the work towards stochastic problems and online algorithms, towards the final
goal of stability-based computational-performance tradeoffs in reinforcement learning.
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