
Proceedings of Machine Learning Research vol 144:1–14, 2021

Self-Supervised Learning of Long-Horizon Manipulation Tasks with
Finite-State Task Machines

Junchi Liang JL2068@CS.RUTGERS.EDU
Robotics Lab, 1 Spring Street, New Brunswick, NJ 08901

Abdeslam Boularias AB1544@CS.RUTGERS.EDU

Robotics Lab, 1 Spring Street, New Brunswick, NJ 08901

Abstract
We consider the problem of a robot learning to manipulate unknown objects while using them

to perform a complex task that is composed of several sub-tasks. The robot receives 6D poses of
the objects along with their semantic labels, and executes nonprehensile actions on them. The robot
does not receive any feedback regarding the task until the end of an episode, where a binary reward
indicates success or failure in performing the task. Moreover, certain attributes of objects cannot
be always observed, so the robot needs to learn to remember pertinent past actions that it executed.
We propose to solve this problem by simultaneously learning a low-level control policy and a high-
level finite-state task machine that keeps track of the progress made by the robot in solving the
various sub-tasks and guides the low-level policy. Several experiments in simulation clearly show
that the proposed approach is efficient at solving complex robotic tasks without any supervision.

1. INTRODUCTION

The state of the art in robotic manipulation falls short of the capabilities that are needed for perform-
ing various tasks in open worlds. One of these critical capabilities is the use of tools in unstructured
and unknown environments such as those encountered in households and small manufacturing work-
shops. A major source of failure in robotic manipulation is the high variety of the objects and their
configurations and poses in such environments. Consequently, a robot needs to be autonomous and
to adapt to changes. However, developing the software necessary for performing every single new
task autonomously is costly and can be accomplished only by experienced robotics engineers. This
is an issue that is severely limiting the popularization of robots today.

Ideally, robots should be multi-purpose, polyvalent and able to learn new skills in a self-supervised
manner. For example, a robot in a factory setting should be able to learn on its own a new skill such
as replacing a tire, from trial and error. The robot explores various random manipulation actions
on different components of the tire, and receives a reward signal only when the tire is removed.
Eventually, the robot learns the causal link between loosening each lug nut of the wheel and the
long-term effect of receiving a reward at the end of the trial. The robot should not simply memorize
the successful sequence of controls, but it should learn a general policy that maps every possible
new image into a low-level action in a closed-loop control.

Model-based reinforcement learning, in conjunction with manipulation planning, has shown
promise in generalizing learned skills to new setups. However, most existing works in this area
assume that the state of the manipulated objects is fully observable. This is rarely the case in
robotics. In our previous example, for instance, the robot cannot easily observe if the lug nuts

© 2021 J. Liang & A. Boularias.

SELF-SUPERVISED LEARNING OF FINITE-STATE TASK MACHINES

have been loosened. The robot can however learn to remember pertinent past controls/feedbacks
to overcome the partial observability problem. For example, LSTM and GRU architectures are
general-purpose tools for solving problems of partial observability by discovering and remembering
pertinent information. They tend, however, to require exorbitant amounts of training data.

To address these issues, we propose in this work1 to structure the memory of the robot as a
Finite-State Machine (FSM). The finite states of the machine are auxiliary variables that are used in
conjunction with the observations as inputs to the control policy. Intuitively, each state corresponds
to a specific subtask, or stage. For example, state A corresponds to turning on a switch, state B
corresponds to loosening a lug nut, and so on. The FSM transitions from one state to another
whenever a subtask is successfully accomplished, and transitions to a terminal state when the full
task is correctly performed. The robot does not know in advance the number of the FSM states
nor their interpretation as subtasks. No prior information about the task is provided. The only
inputs given to the robot at each time-step are its joint angles, the 6D poses of the objects, and
their semantic labels, such as “lug nut”, “paint container”, “tire”, and so on. Semantic labels are
necessary to generalize across scenes. The robot applies changes to its joint angles at each time-
step. The robot does not receive any external signal except a binary reward at the end of the executed
trajectory that indicates if the full task was performed successfully or not. Based on that alone, the
robot learns the finite-state machine of the desired task and a policy for performing the task.

2. PRELIMINARIES

A Markov Decision Process (MDP) is a tuple (S;A; T;R;
), where S is a set of states and A is
a set of actions. T is a transition function with T (s0ja; s) = P (St+1 = s0jst = s;At = a) for
s; s0 2 S; a 2 A. R is a reward function where rt = R(st) 2 R is the reward received in st, and

 2 [0; 1[is a discount factor. A policy �� is a distribution on the action to be executed in each
state, defined as ��(s; a) = P (At = ajSt = s). The value V �� of a policy �� is the expected sum
of rewards that will be received if �� is followed, i.e., V ��(s) = E[

P1
t=0

trtjS0 = s; ��; T;R].
In several application domains, such as robotics, states are not fully observable in general. A

robot perceives partial observations ot, in the form of images for example. The resulting process is
a Partially Observable MDP (POMDP). Formally, a POMDP is a tuple (S;A;O; T; Z;R;
) where
(S;A; T;R;
) is an MDP, O is a set of observations, and Z is an observation likelihood function.

3. RELATED WORK

POMDPs are traditionally learned by using the expectation-maximization technique known as the
Baum-Welch algorithm (Rabiner, 1990; Kontorovich et al., 2013). This algorithm is however sen-
sitive to the initial values of transition and observation probabilities, it typically gets stuck in local
maxima, and requires the number of hidden variables to be known in advance. Predictive State
Representations (PSRs) (Singh et al., 2004; Boularias and Chaib-Draa, 2009) are an alternative rep-
resentation that can be learned from observations without reasoning about hidden variables. PSRs
are however sensitive to certain parameters, such as the number of core tests. The learning com-
plexity of PSRs is also exponential in the length of history that needs to be remembered to predict
future observations. This problem was later alleviated with spectral techniques (Boots et al., 2011)

1. This work is supported by NSF awards IIS-1734492 and IIS-1846043.

2

SELF-SUPERVISEDLEARNING OF FINITE-STATE TASK MACHINES

which generalize PSRs by including features of trajectories, instead of a stream of raw observa-
tions. In (Icarte et al., 2018), a type of �nite-state machine that supports the speci�cation of reward
functions was presented and used to accelerate reinforcement learning of structured policies. In
contrast to our proposed approach, the structure of the reward machine in (Icarte et al., 2018) was
assumed to be known. Several techniques for learning partially observable dynamical models are
based on recurrent neural networks (RNN), and LSTM in particular (Downey et al., 2017; Choro-
manski et al., 2018; Hafner et al., 2018; Finn and Levine, 2017; Finn et al., 2016). LSTM typically
requires large numbers of training data and often fails to capture time-delayed causal relations. To
solve this problem, long-term dependencies in temporal models were considered in some recent
works (Neitz et al., 2018; Trinh et al., 2018). Such dependencies are learned, for example, by using
the reconstruction loss in recurrent neural nets as an auxiliary objective (Trinh et al., 2018).

The problem of learning long-term dependencies is also addressed withattention mechanisms,
which are used for selecting speci�c features dynamically according to the speci�ed task. Attention
weights were de�ned in (Xu et al., 2015; Jiang et al., 2018; Anderson et al., 2018) as functions of
features of different parts of an image and memory units that allow the agent to focus on pertinent
regions of the image as it generates a corresponding caption. The same mechanism was adopted
in a more recent work (Jiang et al., 2018). Duan et al. (2017) employed an attention mechanism to
compress information from demonstrated trajectories in the context of imitation learning. LSTM
also employs attention mechanisms since the forget and input gate can be interpreted as attention
weights (Duan et al., 2017). We show in our experiments that LSTM's attention tends to forget old
events, unless colossal numbers of training trajectories are used.

While we assume in the current work that 6D poses and labels of objects are provided from a
vision module, other recent works have shown that complex tasks can be completed by learning
directly from pixels (Kalashnikov et al., 2018; Fox et al., 2018; Xu et al., 2017; Huang et al., 2018;
Nair et al., 2020; Andrychowicz et al., 2017; Nair and Finn, 2019). This objective is typically
accomplished by using compositional policy structures that are learned by imitation (Kalashnikov
et al., 2018; Fox et al., 2018), or that are manually speci�ed (Xu et al., 2017; Huang et al., 2018).
Some of these methods have been used for simulated control tasks (Bacon et al., 2017; Nachum
et al., 2018; Eysenbach et al., 2019). These promising end-to-end techniques still require orders
of magnitude more training trajectories compared to methods like ours that separate the object
detection and planning problems. Long-horizon manipulation tasks have also been solved by using
symbolic representations and Task and Motion Planning (TAMP) (Toussaint et al., 2019; Kaelbling,
1993; Kaelbling and Lozano-Pérez, 2010). However, all the variables of the reward function in
these works are assumed to be known and fully observable. In contrast, our method isfully self-
supervised, with no intermediate rewards and signals besides the con�guration of the robot, the 6D
poses of the objects, and a binary reward at the end of a trajectory that indicates success or failure.

4. APPROACH

4.1. Finite-State Task Machines

We focus in this work on a special type of object-oriented POMDPs that is appropriate to robotic
manipulation tasks. A stateS is described by visible attributes of the objects in the scene and the
robot, in addition to task states that are hidden and unknown a priori. Speci�cally, we denote the
con�guration of the robot in a given world coordinate frame at timet by ct 2

�
R3 � SO(3)

� J ,
whereJ is the number of joints of the robotic manipulator and end-effector. We assume that the

3

SELF-SUPERVISEDLEARNING OF FINITE-STATE TASK MACHINES

manipulated objects are rigid, the 6D pose (position and orientation) of the end-effector at timet
in the reference frame of objecti is denoted bypi

t 2 R3 � SO(3), and a semantic labell it 2 L
for objecti is obtained from a vision module. At each time-step, the robot receives an observation
ot = (ct ; hp1

t ; l1t i ; : : : ; hpn
t ; lnt i) whereinn is the total number of objects that are present in the scene.

For the sake of simplicity and without loss of generality, we assume that the end-effector is a
tool (e.g., painting brush, wrench, suction cup, etc.) that is already grasped by the robot. Therefore,
manipulation actions are nonprehensile and can be performed by controlling the 6D pose of the end-
effector relative to the objects in the scene. A manipulation action is de�ned asat = hi; � pi

t i , where
i 2 f 1; : : : ; ng is a manipulated object, and� pi

t 2 R3 � SO(3) is a desired change in the posepi
t of

the end-effector in objecti 's coordinates system. Each objecti has a �xed anchor (home) 6D pose
ci 2 R3 � SO(3) that the robot's end-effector moves to before starting to manipulate it. Anchor
points are chosen arbitrarily, and slightly away from the corresponding objects to avoid collisions
before manipulation starts.

When two consecutive actionsat � 1 = hi; � pi
t � 1i andat = hj; � pj

t i aim to manipulate two
different objects, i.e.i 6= j , the RRT motion planner (Kuffner and Lavalle, 2000) is used to move
the robot from its last con�gurationct � 1 to a con�gurationct that places the end-effector at the
anchor posecj of objectj , while avoiding collisions. Once the end-effector is in the anchor pose,
subsequent movesf � pj

t+ kgK
k=0 of the end-effector relative to the object's frame of reference are

executed by using a PID controller that connects way-pointsf cj +
P K

k=0 � pj
t+ kgK

k=0 . Note that the
number of movesK is not constant. This process is repeated until the robot switches to manipulating
a different object. The accuracy of the PID controller is re�ected by the transition model of the
observed part of the state, denoted byTo(ot ; at ; ot+1). Transition functionTo(ot ; at ; ot+1) is the
probability of observingot+1 at timet + 1 after observingot at timet and executing actionat . We
de�ne this probability as a Gaussian distribution, wherepi

t+1 = pi
t +� pi

t + � for actionat = hi; � pi
t i ,

with � � N (0; �) . The other attributes ofot+1 are computed based onpi
t+1 . The semantic labels of

the objects remain constant. Noise covariance� is estimated from a small number of data points.
Unlike the poses of the robot and the objects, task states are not observable, and their number is

unknown in advance. The robot should infer these abstract states from raw trajectories of actions,
observed poses of objects and terminal binary rewards. Task states areinternal, and thus do not play
any role in the transition functionTo of the poses. We denote the set of task states byG. Transition
functionTg(gt ; ot ; gt+1) is the probability of transiting from task stategt to task stategt+1 at time
t + 1 after observingot at timet. A terminal task stateg� is reached when the task is successfully
accomplished, whereTg(g� ; o; g�) = 1 ; 8o andTg(g� ; o; g) = 0 ; 8o; g 6= g� .

The state of the system at timet is de�ned asst = hot ; gt i 2 O � G . Only ot is observed
by the robot. The transition function is given asT(st ; at ; st+1) = To(ot ; at ; ot+1)Tg(gt ; ot ; gt+1).
Finally, we assume that the rewards for manipulation tasks are binary. Reward functionR is de�ned
asR(hot ; gt i) = 1 if gt = g� andR(hot ; gt i) = 0 if gt 6= g� . Consequently, rewards indicate only
success or failure of a manipulation task. Discount factor
 2 [0; 1[ensures that shorter trajectories
are preferred over longer ones. Therefore, the manipulation problem consists in �nding a policy� �

�
that satis�es� �

� = arg max � � 2 � V � � (s); 8s 2 S, given a setD = f � m gM
m=1 of data trajectories

� m = (om
0 ; am

0 ; r m
0 ; : : : ; om

h ; am
h ; r m

h).

4

SELF-SUPERVISEDLEARNING OF FINITE-STATE TASK MACHINES

4.2. Model

Policy Network. We present here a probabilistic model for simultaneously learning a �nite-state
task machine and a policy� � that maximizeV � � with self-supervision and no human input be-
yond terminal rewards. The policy model� � is implemented as a neural network that estimates
the probability of selecting an actionat = hi; � pi

t i for any statest = hot ; gt i . Speci�cally, the
network returns a distribution oni 2 f 1; : : : ; ng that indicates which object needs to be manipu-
lated next, based on the current statest = hot ; gt i . The network also returns the mean and variance
of a Gaussian distribution based on the currentst and the previous onest � 1, such that� pi

t �
N

�
� i (st � 1; st ; �); � i (st � 1; st ; �)

�
where� is the set of weights of the neural network. We found

from our empirical investigation that the addition of history, in the form ofst � 1, helps capturing the
direction of the motion of the end-effector and yields better results, despite the fact that the task-state
gt part of state st is already a memory of past actions and observations.

Figure 1: Proposed model

Temporal Modulation. Temporal modulation is needed for
controlling the velocities of the movements. We utilize a
phase variable� t to provide a time signal to policy� � . There-
fore, we rede�ne policy� � as� � (s; a; �) = P(at = ajst =
s; � = � t). But for ease of notation, we drop� from the in-
puts of � � in this article. Policy� � is then a time-dependent
function where time is given as an input implicitly through
phase signal� . Phase variables are typically used in dy-
namic motor primitive in order to generate faster or slower mo-
tions (Paraschos et al., 2013). They are also used to generate
rhythmic and stroke-based movements. In this work, we de-

�ne phase variables as� t =
P n

i =1 ! i exp
�

�
t � t̂ (gt ;0) � t̂ (gt ;i)

� 2

h

�
,

where(t̂ (gt ;0) ; t̂ (gt ;1) ; : : :) is a sequence of time-steps that is
speci�c to the movement associated with the current task state
gt , andf ! i g are their corresponding weights. Both time-steps
f t̂ (gt ;i)gn

i =1 and weightsf ! i gn
i =1 are variables, and learned along the other weights in� of the policy

network� � . Starting timêt (gt ;0) is obtained during the execution as the time when the movement
associated with the current task stategt has started.

Finite-state Machine Network. A second neural network is used to predict transitions between
task states. Since task states are discrete and �nite, the neural network returns a transitions matrix
T̂g

� , whereT̂g
� (gt ; ot ; gt+1 ; zt) is the probability of switching fromgt to gt+1 and � is the set of

weights of the neural network.zt = [log � � (st ; at); log � � (st � 1; at � 1); : : : ; log � � (st � N +1 ; at � N +1)]
is a vector that contains the log-probabilities of the lastN executed actions according to the policy
model� � explained above. These probabilities are computed based on the means and variances re-
turned by the policy network at the corresponding time-steps.zt can be interpreted as an indicator of
the progress in executing a speci�c sub-task associated with task stategt . For example,zt tracks the
actions executed by the robot as it dips a brush in a paint bucket, andgt is interpreted as the dipping
sub-task. Note that the number of task states as well as their interpretation as sub-tasks, or primitive
skills such as dipping or painting, is unknown to the robot. Progress vectorszt are introduced to
reduce the size of the set of task statesG, so that the system can remain in a self-loop at a task state
gt 2 G for a few time-steps untilzt indicates that the underlying sub-task has been successfully
accomplished and the system then switches to a different task state. If we only providegt andot to

5

SELF-SUPERVISEDLEARNING OF FINITE-STATE TASK MACHINES

Input: A POMDP(S ; A ; O ; T; Z;
) formulation of the manipulation task, setG of task states, a learned task transition functionT̂ g
� , and a learned policy� � ;

Output: A sequence of actions(a0 ; a 1 ; : : : ; a t) to be executed by the robot;
for i := 1; i � max nb trajectories ; i i + 1 do

Seto0 to the initial con�guration of the robot andg0 to initial task stateg0 ; w [i] 1; r 0 0 ; // w [i] is the probability of sampled

trajectory i , and r t is the reward received at time-step t .
for t := 0;

�
t < max horizon ^ r t < 1

�
; t t + 1 do

s t h ot ; g t i ; Samplea t = (j; � p j) � � � (s t ; :) ; // Sample an action a t with probability � � (s t ; a t) .

z t [t mod N] = log � � (s t ; a t) ; // Insert the log-probability of the sampled action into memory vector z t .

Samplegt +1 � T̂ g
� (gt ; o t ; z t ; :) ; // Sample next task state with probability T̂ g

� (gt ; o t ; z t ; g t +1) .

Sampleot +1 � T̂ o (ot ; a t ; :) ; // Sample the next observation conditioned on the simulated action a t and previous

observation ot , and using transition function T̂ o (ot ; a t ; o t +1) .

w [i] w [i]� � (a t ; s t) T̂ g
� (gt ; o t ; z t ; g t +1) T̂ o (ot ; a t ; o t +1) ; // Update the probability of the trajectory.

if gt +1 6= g � then r t +1 0; elser t +1 1 ; // Successful trajectory obtained.

end

T [i] (a0 ; a 1 ; : : : ; a t) ; h [i] t ; // Save the length of trajectory i .

end

Select� T [i] by sampling indexi from distributionP (i) =
 h [i] w [i]
P

j
 h [j] w [j]
wherei 2 f 1; : : : ; max nb trajectories g;

Algorithm 1: Inference
the transition model without memoryzt , then the number of task states needed to explain the binary
reward received at the end of a trajectory increases signi�cantly.

We will show in Section 4.4 a simple algorithm that learns the number of task states, a transition
model T̂g

� and a policy� � . The proposed algorithm iterates between learning these models and
planning to actively sample new trajectories from the learned models. Therefore, we start by �rst
explaining in the following section the planning procedure.

4.3. Inference

Algorithm 1 receives as inputs a POMDP model(S; A ; O; T; Z;
) without a reward function, a
�nite-state task machine, de�ned by a setG and learned transition function̂Tg

� , in addition to a
learned policy� � . The algorithm returns a sequence of actions to be executed on the robot.

The algorithm samples in simulation a large number of trajectories of statesst and actions
at . It then computes a probability distribution on the sampled trajectories that are predicted to be
successful at solving the task according to the learned task machine. The probability of a sampled
trajectory that is predicted to be successful is proportional to its length, so that shorter trajectories
are preferred. At the end, the algorithm returns one trajectory sampled from this distribution.

Speci�cally, we start by sampling an actionat = (i; � pi
t) for time-stept from distribution

� � (st ; :). The log-probability of the sampled action is inserted into theN -sized memory vectorzt ,
which keeps track of the lastN selected actions. To simulate next statest+1 , which is de�ned as
st+1 = hot+1 ; gt+1 i , we �rst sample a next task stategt+1 with probabilityT̂g

� (gt ; ot ; zt ; gt+1). We
then sample next physical stateot+1 , which is de�ned asot+1 = (ct+1 ; hp1

t+1 ; l1t+1 i ; : : : ; hpn
t+1 ; lnt+1 i)

whereinn is the total number of objects that are present in the scene. Semantic labels do not change
over time, i.el it+1 = l it . To obtainot+1 , we �rst sample a new 6D posepi

t+1 � N (pi
t + � pi

t ; �)
wherei is the index of the manipulated object. The new con�gurationct+1 of the robot and the 6D
poses of the other objects relative to the end-effector are all computed frompi

t+1 . The rewardr t+1

is de�ned as1 if the task stategt+1 is the terminal success stateg� , and0 otherwise.

4.4. Learning

Algorithm 2 provides detailed steps of the proposed approach for learning the �nite-state task ma-
chine(G; T̂g

�) and policy� � used by the planning algorithm explained above. In a nutshell, the robot

6

SELF-SUPERVISEDLEARNING OF FINITE-STATE TASK MACHINES

explores its environment by manipulating randomly selected objects with random movements. The
process is fully self-supervised, but the robot receives a reward of1 when a trajectory of states and
actions ends up with successfully performing the required task. The robot receives a reward of0
for all other time-steps. The extreme sparsity of the reward signal makes this process particularly
long. After accidentally discovering a successful sequence� of actions that solve the task, the robot
enters a second phase of learning. In the second phase, the robot tries to locally improve trajectory
� by exploring new actions that are not too distant from the actions in� . At the same time, the
algorithm searches for the most compact task machine(G; T̂g

�). Initially, jGj is set to be equal to the
number of objects that were manipulated in the �rst successful trajectory� , wherein each task state
gi corresponds to manipulating a speci�c objecti . The robot then experiments with skipping various
objects, and eliminating their corresponding task states fromG. Since the outcome of executing a
trajectory is not deterministic, we formulate the problem of learning the states ofGas a multi-armed
bandit problem and utilize theUpper Con�dence Bound(UCB) (Auer, 2003) technique to solve it
ef�ciently. This process is explained in the following.

Set of task statesGis initially set asf g0; g1; : : : ; gn ; g� g, whereinn is the maximum number of
objects, andg� is an abstract terminal state. Initial policy� � is set such that only objecti can be
manipulated in task stategi . When the task machine transitions into stategi , it remains there with a
large probability1� � , and switches to any other state (including the terminal state) with probability
� . These probabilities, used for initial exploration, are updated later in the learning process. The
robot executes initial policy� � using initial task transition function̂Tg

� until a successful trajectory
� is encountered. Before starting the improvement phase, policy� � and transitionT̂g

� are trained to
“imitate” trajectory� . To this end, the neural networks corresponding to� � andT̂g

� are trained to
maximize the likelihood of trajectory� .

The second phase consists in improving successful trajectory� by exploring new actions that
reduce the size of task statesG, and also shorten the overall length of the trajectory. The robot
performs experiments of the type “what if I re-execute all the actions of trajectory� except those
related to objecti?”. Since the outcome of the open-loop execution of the actions is stochastic, one
cannot immediately conclude that a task state cannot be skipped based on a single failed outcome.
At a high-level, this is an(n + 1) -armed bandit problem, where the(n + 1) arms correspond to
the options of skipping one of then current states of the task machine, or not skipping any state
(i = 0). We use the UCB technique in Algorithm 2 whereV [i] is the empirical average reward
of the experiments that skip task stategi , andC[i] is the number of such experiments. Before
experimenting with skipping a task stategj , the task-machine is temporarily modi�ed by changing
its transition probabilities. Probabilities of transitioning to skipped stategj from any state are all
set to0. Probabilities of transitioning from skipped stategj to any other stategk are re-distributed
among all other statesgi after multiplying them with the probabilities of transitioning fromgi to
skipped stategj . Using the modi�ed task machineTg, and current policy� � , the robot samples and
executes a new sequence of actions and obtains a new trajectory� = (o0; a0; r0; : : : ; oh ; ah ; rh).
The empirical value of the option of skipping task stategj is updated based on the received terminal
rewardrh . If the new trajectory is unsuccessful (i.e.,rh = 0), then one cannot yet conclude that
task stategj is unnecessary because the failure could be due to a small noise in the execution or
perception. The con�dence in the utility of task stategj , given by the empirical averageV [j] and
counterC[j], is however decreased in this case. If the new trajectory is successful (i.e.,rh = 1),
then one can conclude immediately that task stategj can be eliminated from setG. In this case, the
neural network that corresponds to transition functionT̂g

� is re-trained to maximize the likelihood of

7

SELF-SUPERVISEDLEARNING OF FINITE-STATE TASK MACHINES

Input: List of objectsi 2 f 1; : : : ; n g;
Output: SetG of task states, task transition function̂T g

� , and policy� � ;

Initialize policy network� � with random weights� ; // Uniform initial exploration policy

G f g0 ; g 1 ; : : : ; g n ; g � g ; // Initial task states: one state per object, an initial sate g0 , and a terminal state g �

For all i 2 f 1; : : : ; n g, set� � (h:; g j i ; hi; : i) 0 for all j 6= i ; // Only object i can be manipulated in task state g i

For all i 2 f 1; : : : ; n g, setT̂ g
� (g i ; :; :; g i) 1 � � andT̂ g

� (g i ; :; :; g j) �
n for all j 6= i ; // Initial task state transition probabilities

do not depend on observations or memory variables.
repeat

Seto0 to the initial con�guration of the robot andg0 to initial task stateg0 ;
Sample a trajectory� = (o0 ; a 0 ; o 1 ; a 1 : : : ; o h ; a h ; r h) by executing policy� � with task transition function̂T g

� ;

/ * Stop when the first successful trajectory is obtained * /

until r h = 1 ;

� arg max �
P h

t =0 log � � (s t ; a t) ; // Train the policy network by maximizing the likelihood of the actions a t in the first

successful trajectory �

� arg max �
P h

t =0 log T̂ g
� (gt ; o t ; z t ; g t +1) ; // Train the task transition function by maximizing the likelihood of the task

states gt in the first successful trajectory �

For all i 2 f 0; : : : ; n g, initialize V [i] 0 andC [i] 0; / * V [i] is the expected return of policies that skip task state g i , C [i]

counts trajectories sampled from such policies. i = 0 indicates that no task state is skipped. * /
repeat

T g T̂ g
� ; // Copying the transition function of the current task-state machine

j arg max i 2f 0 ;:::;n g V [i] + c

r
ln(

P n
k =0 C [k])

C [i]+1 ; C [j] C [j] + 1 ; // UCB for selecting a task state to skip

if j 6= 0 then
for i := 1; i � n ; i i + 1 do

T g (g i ; :; :; g j) = 0 ; // To skip task state g j in the current experiment

For all gk 2 G � f g j g: T g (g i ; :; :; g k) T g (g i ; :; :; g k) + T g (g i ; :; :; g j) T g (g j ; :; :; g k) ; // Transitions into state g j

are rerouted toward following states gk (including the terminal state g �).
end

end

Seto0 to the initial con�guration of the robot andg0 to initial task stateg0 ;

Sample a trajectory� = (o0 ; a 0 ; o 1 ; a 1 : : : ; o h ; a h ; r h) using� � andT g ; // A trajectory that skips state g j .

V [j]
(C [j] � 1) V [j]+ r h

C [j] ;

if r h = 1 then

G G � f g j g ; // The trajectory was successful, so g j is unnecessary and can be removed

� arg max �
P h

t =0 log T̂ g
� (gt ; o t ; z t ; g t +1) ; // Train the task transition function by maximizing the likelihood of

the task states gt in the latest successful trajectory �

� � + �
P h

t =0
 h � t r h r � log � � (s t ; a t) ; // Policy gradient using the actions a t of trajectory � .

end
until timeout ;

Algorithm 2: Learning
the task states in the new trajectory� . Parameters� of the policy network� � are also updated based
on the reward received at the end of� and the lengthh of � , by using the policy gradient approach.
This process is repeated. The task machine converges to a compact set of states after cutting off all
unnecessary intermediate states. The policy, steered by the task machine, also converges to choosing
the shortest sequence of moves for manipulating each object thanks to the policy gradient updates.

5. EXPERIMENTS

More details and videos of the experiments are available athttps://rb.gy/z5a3hc .
Tasks. We thoroughly evaluated the proposed framework and algorithm on two long-horizon

manipulation tasks illustrated in Figure 2, using the realisticPybullet simulator of aKuka LBR
robot. The �rst one is a painting experiment. A reward is received at the end of a trajectory if
the robot �rst successfully dips a brush attached to its end-effector in an object labeled as “paint
bucket”, and then successfully paints a straight stroke on another object labeled as “canvas”. The
entire simulation is physically realistic, except for the �uid (paint liquid) simulation which is sim-
pli�ed. The robot needs to avoid collisions while manipulating the objects. The dipping maneuver
is considered as effective if and only if the brush touches the bottom of the paint bucket for more

8

SELF-SUPERVISEDLEARNING OF FINITE-STATE TASK MACHINES

(a) (b)

Figure 2: Tasks considered in the experiments. (a)Learning to paint. (b) Learning to remove a tire.

than three time-steps, which results in loading the paintbrush with suf�cient paint. The painting is
successful if the loaded brush is moved along the surface of the canvas in a straight line. In addition
to the objects labeled as “paint bucket” and “canvas”, there are four otherirrelevantobjects on the
table that have other labels. The robot does not know anything about the task, and does not know
which types of objects should be manipulated, in which order or how to manipulate them. The four
distractingobjects make the learning more challenging because the robot will explore all of them
before eventually learning a task state machine that indicates the types of objects that are relevant
and the manipulation order, in addition to a policy for the low-level motor primitives.

The painting task involves only two sub-tasks (loading the brush, and stroking). To test the
proposed algorithm on problems with more sub-tasks, we designed a second task where the robot
learns to remove a wheel. A wrench is already attached to the end-effector. The task consists in
placing the wrench on every lug nut to loosen it before moving to the center of the wheel to pull
it. The robot transits to the next sub-task by loosening a lug nut: the end-effector should rotate
counterclockwise more than30� along the z-axis on a lug nut. The wheel can be taken off only after
all lug nuts are loose and the end-effector is placed no more than1cm from the center of the wheel.
Here again, a reward of+1 is given when the task is successfully �nished, all other states have a
reward of0. Results are averaged over �ve different positions of the nut lugs. We consider two types
of wheels, those with two lug nuts (three sub-tasks in total) and three distracting objects (rubber and
two �xed pieces), and those with four lug nuts (�ve sub-tasks) and one distracting object (rubber).

Compared Methods. We compare the proposed algorithm with the model-free RL algorithms
Proximal Policy Optimization (PPO) (Schulman et al., 2017) and Advantage Actor Critic (A2C) (Mnih
et al., 2016), both with an LSTM unit. We also compare with the model-based approach of (Oh et al.,
2015) where a neural network is trained to predict terminal rewards from full trajectories of data,
using LSTM in one variant and GRU (Wahlström et al., 2015) in another. We also test PPO and A2C
in anassisted setup, where extra intermediate rewards of+1 are given to the robot after �nishing
each sub-task. All compared methods use the same actions and observations de�ned in Section 4.1.

Results. The results of the experiments are averaged over50 independent test episodes and �ve
different initial positions of the objects in the scene. Figure 3 (top) shows the task success rates in

9

	INTRODUCTION
	PRELIMINARIES
	RELATED WORK
	APPROACH
	Finite-State Task Machines
	Model
	Inference
	Learning

	EXPERIMENTS
	CONCLUSION

