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Abstract

Survival modeling is an important area of study, and has been used widely in many appli-
cations including clinical research, online advertising, manufacturing, etc. There are many
methods to consider when analyzing survival problems, however these techniques gener-
ally focus on either estimating the uncertainty of different risk factors (cox-proportional
hazards, etc), or predicting the time to event in a non-parametric way (e.g. tree based
methods), or forecasting the survival beyond an observed horizon (parametric techniques
such as exponential). In this work, we introduce efficient estimation methods for linear,
tree, and neural network versions of the Beta-Logistic model - a classical extension of the
logistic function into the discrete survival setting. The Beta-Logistic allows for recovery
of the underlying beta distribution as well as having the advantages of non-linear or tree
based techniques while still allowing for projecting beyond an observed horizon. Empirical
results using simulated data as well as large-scale data-sets across three use-cases (online
conversions, retention modeling in a subscription service, and survival of democracies and
dictatorships), demonstrate the competitiveness of the method at these tasks. The simplic-
ity of the method and its ability to capture skew in the data makes it a viable alternative
to standard techniques particularly when we are interested in forecasting time to event
beyond our observed horizon and when the underlying probabilities are heterogeneous.

1. Introduction

Survival modeling, customer lifetime value estimation (Gupta et al., 2006) and product
ranking (Rudin et al., 2012; Chang et al., 2012) are of practical interest when we want to
estimate time until a specific event occurs or rank items to estimate which will encounter
the event first. Traditionally leveraged in medical applications, today survival regression
is extensively used in large-scale business settings such as predicting time to conversion in
online advertising and predicting retention (or churn) in subscription services. Standard
survival regression involves a maximum likelihood estimation problem over a specified con-
tinuous distribution of the time until event (exponential for the Accelerated Failure Time
model Kalbfleisch and Prentice (2011)) or of the hazard function (in the case of Cox Pro-
portional Hazards Cox (1972)). In practice, time to event problems are often converted
to classification problems by choosing a fixed time horizon which is appropriate for the
application at hand. One then has to balance training the model on recent data against a
longer labeling horizon which might be more desirable. Survival models avoid this trade-off
by relying on right-censoring. This maps to a missing data problem where not all events
are observed due to the horizon over which the data is collected.
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Figure 1: Heterogeneity gives rise to different survival distributions and rankings.

There is evidence (which will be further demonstrated in this article) of the importance of
heterogeneity in a variety of real-world time to event data-sets. Heterogeneity indicates that
items in a data-set have different survival means and variances. For instance, heterogeneity
in a churn modeling context would be that as time increases the customers with the highest
probability to retain are the ones which still remain in the data-set. Without considering
this effect, it might appear that the baseline churn probability has decreased over time when
in fact the first order effect is that there is a mover/stayer bias. Thus methods which don’t
consider multiple decision points can fail to adequately account for this effect and thus fall
victim to the so called ruse of heterogeneity (W. Vaupel and Yashin, 1985).

Consider the following example inspired by Ben-Porath (1973) where we have 2 groups
of customers, one in which the customers have a retention probability of 0:5 and in the
other the customers are uniformly split between retention probabilities of either 1:0 or
0:0. In this case after having observed only one decision point we would find the retention
probabilities of the two groups to be identical. However, if we consider multiple decision
points it becomes clear that the latter population has a much higher long term retention
rate because some customers therein retain to infinity. In order to capture this unobserved
heterogeneity we need a distribution that is flexible enough to capture these dynamics and
ideally as simple as possible. To that end we posit a beta prior on our instantaneous event
probabilities. The beta has only 2 parameters, yet is flexible enough to capture right/left
skewed, U-shaped, or normal distributions. In Figure 1 we have an example data-set that
contains three heterogeneous items (green dots, orange plus and blue cross). These items
can each be characterized by beta distributions (left panel). At each time period, each item
samples a Bernoulli distributed coin from its beta distribution and flips it to determine if
the item will retain. In the middle panel, we see the retention of the items over time and
in the right-most panel we see the ranking of the items over time. Even though the items
are sampling from fixed beta distributions, the ranking of which item is most at risk over
time changes. Thus, a stationary set of beta distributions leads to non-stationary survival
and rankings. Such nuance cannot be captured by summarizing each item with only a
point-estimate of survival (as opposed to a 2-parameter beta distribution).

Due to the discrete and repeat nature of the decision problems over time, we leverage a
geometric hypothesis to recover survival distributions. We estimate the parameters of this
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model via an empirical Bayes method which can be efficiently implemented through the use
of analytical solutions to the underlying integrals. This model termed the beta-logistic was
first introduced by Heckman and Willis (1977), and was also studied by Fader and Hardie
(2007). We find that in practice this model fits the discrete decision data quite well, and
that it allows for accurate projections of future decision points.

We extend the beta-logistic model to the case of large-scale trees or neural-network
models that adjust the beta distribution given input covariates. These leverage the use
of recurrence relationships to efficiently compute the gradient. Through the beta prior
underpinning the model, we show empirically that the beta-logistic is able to model a wide
range of heterogeneous behaviors that other survival or binary classification models fail
to capture, especially in the presence of skew. As we will see, the beta-logistic model
outperforms a typical binary logistic regression in real-world examples, and provides tighter
estimated posteriors compared to a typical Laplace approximation.

This paper is organized as follows. We first show the beta-logistic derivation as well
as reference the recursion formulas which make the computation efficient. We also make
brief remarks about convexity and observe that in practice we rarely encounter convergence
issues. We then present simulated examples to help motivate the discussion. This is followed
by an empirical performance evaluation of the various models across three large real-world
data-sets: a sparse online conversion data-set, a retention modeling data-set from a popular
subscription video service, and data on democracies and dictatorships. In many of the
examples, the beta-logistic outperforms other baseline methods.

2. The Beta-Logistic for Survival Regression

2.1. Model derivation

Denote by (xi; ti; ci) 2 Rd � N� f0; 1g a data-set where xi are covariates, ti is the discrete
time to event for an observed (i.e. uncensored) datapoint (ci = 0) and ti is the right-
censoring time for a datapoint for which the event of interest hasn’t happened yet (ci = 1).
A traditional survival model would posit a parametric distribution p(T jx) and then try to
maximize the following empirical likelihood over a class of functions f :

L =
Y
8i;ci=0

P (T = tijf(xi))
Y
8i;ci=1

P (T > tijf(xi)) :

Unfortunately, unless constrained to a few popular distributions such as the exponential
one, the maximization of such a quantity is usually intractable for most classes of functions
f(x).

Let us instead assume that at each discrete decision point, a customer decides to retain
with some (point-estimate) probability 1 � � where � is some function of the covariates
x. Then we further assume that the instantaneous event probability at decision point t is
characterized by a shifted geometric distribution as follows:

P(T = tj�) = �(1� �)t�1; where � 2 [0; 1] :

This then gives the following survival equation:

P(T > tj�) = 1�
tX
i=1

P(T = ij�): (1)
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This geometric assumption follows from the discrete nature of the decisions customers need
to make in a subscription service, when continuing to next episodes of a show, etc. It admits
a simple and straightforward survival estimate that we can also use to project beyond our
observed time horizon. Now in order to capture the heterogeneity in the data, we can instead
assume that � follows a conditional beta prior (B) as opposed to being a point-estimate as
follows:

f (� j� (x); � (x)) =
� � (x)� 1(1 � � ) � (x)� 1

B (� (x); � (x))

where � (x) and � (x) are some arbitrary positive functions of covariates (e.g. measurements
that characterize a speci�c customer or a speci�c item within the population).

Consider the Empirical Bayes method of Gelman et al. (2013) (also called Type-II
Maximum Likelihood Estimation in Berger (2013)) as an estimator for � (x) and � (x) ( �
and � for brevity) given the data:

max
�;�

L(�; � )

where
L(�; � ) =

Y

8i;c i =0

P(T = t i j�; � )
Y

8i;c i =1

P(T > t i j�; � ) : (2)

Using the marginal likelihood function we obtain:

P(T j�; � ) =
Z 1

0
f (� j�; � )P(T j� )d�:

As we will see in the next section, a key property of the beta-logistic model is that it makes
the maximization of Equation 2 tractable.

Since� and � have to be positive to de�ne valid beta-distributions, we use an exponential
reparameterization and aim to estimate functionsa(x) and b(x) such that:

� = ea(x) and � = eb(x) :

Throughout the paper, we will also assume thata and b are twice-di�erentiable.
The name beta-logistic for such a model has been coined by Heckman and Willis

(1977) and studied when the predictorsa(x) = 
 a � x and b(x) = 
 b � x are linear functions.
In this case, at T = 1 observe that if we want to estimate the mean this reduces to an
over-parameterized logistic regression:

P(T = 1 j�; � ) =
�

� + �
=

1

1 + e(
 b� 
 a )> x
:

2.2. Algorithm

We will now consider the general case wherea(x) and b(x) are nonlinear functions and could
be de�ned by the last layer of a neural network. Alternatively, they could be generated by
a vectored-output Gradient Boosted Regression Tree (GBRT) model. Using properties of
the beta function (see A.1), one can show that:

P(T = 1 j�; � ) =
�

� + �
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and

P(T > 1j�; � ) =
�

� + �
:

Further, the following recursion formulas hold for t > 1:

P(T = tj�; � ) =
�

� + t � 2
� + � + t � 1

�
P(T = t � 1j�; � ) (3)

and

P(T > t j�; � ) =
�

� + t � 1
� + � + t � 1

�
P(T > t � 1j�; � ): (4)

If we denote` = � logL as the function we wish to minimize, Equation 3 and Equation 4

allow us to derive (see Appendix A.2) recurrence relationships for individual terms of
@`
@�

and
@2`
@�2

. This makes it possible for example to implement a custom loss gradient and

Hessian callbacks in popular GBRT libraries such as XGBoost (Chen and Guestrin, 2016)
and lightGBM (Ke et al., 2017). In this case, the GBRT models have "vector-output"
and predict for every row both a = log( � ) and b = log( � ) jointly from a set of covariates,
similarly to how the multinomial logit loss is implemented in these libraries. More precisely,
choosing a squared loss for the split criterion in each node as is customary, the model will
equally weight how well the boosting residuals (gradients) with respect toa and b are
regressed on.

Note that because of the inherent discrete nature of the beta-logistic model, the com-
putational complexity of evaluating its gradient on a given datapoint is proportional to
the average value oft. Therefore, a reasonable time step discretization value needs to be
chosen to properly capture the survival dynamics while allowing fast inference. One can
similarly implement this loss in deep learning frameworks. One would typically explicitly
pad the label vectors t i with zeros up to the max censoring horizon (which would bring
average computation per row to O(maxi t i ) for the mini-batch) so that computation can
be expressed through vectorized operations, or via frameworks such as Vector
ow (Ros-
tykus and Raimond, 2018) or Tensor
ow (Abadi et al., 2015) ragged tensors that allow for
variable-length inputs to bring the computational cost back to O(avgi t i ).

2.3. Convexity

For brevity, de�ne � i = � (x i ) and � i = � (x i ). In the special case wherea(x) = 
 a � x
and b(x) = 
 b � x are linear functions, their second derivative is null and the Hessian of the
log-likelihood of Equation 2 is diagonal:

@2`
@
2a;j

= 
 2
a;j � i

X

i

"
� i

(� i + � i )
2 +

t iX

u=2

� i + u � 1

(� i + � i + u � 1)2

#

and
@2`

@
2b;j
= 
 2

b;j � i

X

i

"
� i

(� i + � i )
2 +

t iX

u=2

ki

#

(5)
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Table 1: Prediction accuracy (C-index) of linear and GBRT versions of the Beta-Logistic
compared to common baselines on 3 di�erent data-sets: Criteo Online Conversions,
Subscriptions, and Democracies and Dictatorships. For each data-set we created
10 bootstrap samples of 80% of train and test data to estimate the standard errors
of .002, .002, and .02 respectively with 95% con�dence.

models Conversions Subscriptions Democracies

(1) Logistic Short Window 0.610 0.785 0.67
(2) Logistic Long Window 0.842 0.849 0.61
(3) Weibull 0.744 0.818 0.74
(4) Exponential 0.773 0.847 0.69
(5) Deep Survival Machines 0.860 0.862 0.72
(6) Beta-Logistic 0.843 0.849 0.73
(7) Beta-Logistic GBRT 0.898 0.876 0.77

data-set properties # examples 1 mil 4 mil 1.8k
# observations 220k 1.88 mil 1.4k
# dimensionality 102k 257k 3.8k

where

ki =

8
<

:

(� i + 1) � 2
i � (u� 2)( � i + u� 1)

(� i + u� 2)2 (� i + � i + u� 1)2 if ci = 0

� i
� 2

i � (u� 1)( � i + u� 1)
(� i + u� 1)2 (� i + � i + u� 1)2 otherwise.

We see that the log-likelihood of the shifted-beta geometric model is always convex in
� when a is linear. Further we can see that when all points are observed (no censoring),
and the maximum horizon is T = 2 then Equation 5 is also convex inb.

Subsequent terms are not convex, however, but despite that in practice we do not
encounter signi�cant convexity issues (e.g. local minima and saddle points). It seems likely
that in practice the convex terms of the likelihood dominate the non-convex terms. Note
once again that there is generally no global convexity of the objective function.

3. Experiments

3.1. Model Details

All conditional linear models are implemented as sparse linear models in Vector
ow (Ros-
tykus and Raimond, 2018) and trained through stochastic gradient descent. We compare
our model with 2 other survival models: Exponential and Weibull . Both are parametric
models where the parameters of the distributions are estimated through an exponential
reparametrization (since they require positivity in their parameters). We also add as base-
lines 2 logistic models: one trained at a short horizon (Logistic Short Window ), and
one trained at a long horizon (Logistic Long Window ) using the maximum window or
point of right censoring as these represent windows used with classi�cation models found
commonly in industry. For completeness we also baselined againstDeep Survival Ma-
chines (Nagpal et al., 2021) where we tuned learning rate and number of iterations as well
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as running a brute force sweep of distribution, number of mixtures inf 4,6,8g, and hidden
layers of sizef 50,100,200g.

We also include the beta-logistic trained via lightGBM (Ke et al., 2017) (Beta-Logistic
GBRT ) for comparison to the above sparse linear models. It is worth noting that with
a small amount of modi�cation this model can be implemented through lightGBM with a
custom loss in python, however it is several orders of magnitude faster to program it directly
within the lightGBM package. We have added python implementations for the likelihood,
gradient, and Hessian in the reproducibility portion of the appendix, and will provide the
code1 for this project as well to further facilitate reproducibility.

For each data-set shown in the sections to follow, 10 bootstrap samples of 80% of the
data are created to train and test the models where half of the sample is used in training
and the other half used for evaluation. We then use these samples to compute the mean
C-index and the standard errors shown in Table 1.

3.2. Synthetic Data

We present simulation results for the beta-logistic, and compare them to the logistic model.
We also show that the beta-logistic successfully recovers the posterior for skewed distribu-
tions. In our �rst simulation we have 3 beta distributions which have very di�erent shapes
(see table 2 below), but with the same mean (this example is inspired by Fader et al.
(2018)). Here, each simulated customer draws a coin from one of these distributions, and
then 
ips that coin repeatedly until they have an event or we reach a censoring horizon (in
this particular case we considered 4 decision points).

shape � � �
normal 4.75 14.25 0.25
right skewed 0.5 1.50 0.25
u shaped 0:08�3 0.25 0.25

Table 2: Heterogeneous beta distributions with identical means.

It is trivial to show that the logistic model will do no better than random in this
case, because it is not observing the dynamics of the survival distribution which reveal the
di�ering levels of heterogeneity underlying the 3 populations. If we allow the beta-logistic
model to have a dummy variable for each of these cases then it can recover the posterior of
each (see Figure 2). This illustrates an important property of the beta-logistic: it recovers
posterior estimates even when the data is very heterogeneous and allows us to �t survival
distributions well.

3.3. Online Conversions Data

Survival modeling

We now evaluate the performance of the beta-logistic model on a large-scale sparse data-
set. We use the Criteo online conversions data-set published alongside Chapelle (2014) and

1. Scripts available upon request from the authors

7



Beta Survival Models

Figure 2: Survival distributions as a function of time as well as an estimate ofŜ(t) from
the beta-logistic. Using a point-estimate of the mean�� (as in the logistic model)
fails to recover the heterogeneity.

publicly available for download2. We consider the problem of modeling the distribution of
the time between a click event and a conversion event. We will consider a censoring window
of 24 hours. As noted in Chapelle (2014), the exponential distribution �ts the data reason-
ably well so we will compare the beta-logistic model against the exponential distribution (1
parameter) and the Weibull distribution (2 parameters). Since the temporal integration of
the beta-logistic model is intrinsically discrete, we consider a time-discretization of 5 minute
steps. We also add as baselines 2 logistic models: one trained at a horizon of 5 minutes (the
shortest interval), and one trained at a horizon of 24 hours (the largest window). Censored
events are down-sampled by a factor of 10x. We use 1M rows where we hold out 50%
for training and 50% for testing. The total (covariate) dimensionality of the problem is
102K after one-hot-encoding. Note that covariates are sparse and the overall sparsity of the
problem is over 99.98%. Results are presented in Table 1.

The beta-logistic survival model outperforms other baselines at all horizons considered
in this example. Deep Survival Machines do perform quite well here also, and we suspect
that there are rich interactions in the data which these models can exploit. Even though it
is a 2-parameter distribution, the Weibull model is interestingly performing worse than the
exponential survival model and the binary logistic classi�er. We hypothesize that this is
due to the poor conditioning of its loss function as well as the numerical instabilities during
gradient and expectation computation (the latter requires function calls to the gamma
function which is numerically di�cult to estimate for moderately small values and for large
values).

Posterior size comparison

We next consider the problem as a binary classi�cation task (did a conversion happen
within the speci�ed time window?). It is interesting to compare the con�dence interval
sizes of various models. For the conditional beta-logistic model, the prediction variance on

2. http://labs.criteo.com/2013/12/conversion-logs-dataset/
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