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Abstract

Survival modeling is an important area of study, and has been used widely in many appli-
cations including clinical research, online advertising, manufacturing, etc. There are many
methods to consider when analyzing survival problems, however these techniques gener-
ally focus on either estimating the uncertainty of different risk factors (cox-proportional
hazards, etc), or predicting the time to event in a non-parametric way (e.g. tree based
methods), or forecasting the survival beyond an observed horizon (parametric techniques
such as exponential). In this work, we introduce efficient estimation methods for linear,
tree, and neural network versions of the Beta-Logistic model - a classical extension of the
logistic function into the discrete survival setting. The Beta-Logistic allows for recovery
of the underlying beta distribution as well as having the advantages of non-linear or tree
based techniques while still allowing for projecting beyond an observed horizon. Empirical
results using simulated data as well as large-scale data-sets across three use-cases (online
conversions, retention modeling in a subscription service, and survival of democracies and
dictatorships), demonstrate the competitiveness of the method at these tasks. The simplic-
ity of the method and its ability to capture skew in the data makes it a viable alternative
to standard techniques particularly when we are interested in forecasting time to event
beyond our observed horizon and when the underlying probabilities are heterogeneous.

1. Introduction

Survival modeling, customer lifetime value estimation (Gupta et al., 2006) and product
ranking (Rudin et al., 2012; Chang et al., 2012) are of practical interest when we want to
estimate time until a specific event occurs or rank items to estimate which will encounter
the event first. Traditionally leveraged in medical applications, today survival regression
is extensively used in large-scale business settings such as predicting time to conversion in
online advertising and predicting retention (or churn) in subscription services. Standard
survival regression involves a maximum likelihood estimation problem over a specified con-
tinuous distribution of the time until event (exponential for the Accelerated Failure Time
model Kalbfleisch and Prentice (2011)) or of the hazard function (in the case of Cox Pro-
portional Hazards Cox (1972)). In practice, time to event problems are often converted
to classification problems by choosing a fixed time horizon which is appropriate for the
application at hand. One then has to balance training the model on recent data against a
longer labeling horizon which might be more desirable. Survival models avoid this trade-off
by relying on right-censoring. This maps to a missing data problem where not all events
are observed due to the horizon over which the data is collected.
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Figure 1: Heterogeneity gives rise to different survival distributions and rankings.

There is evidence (which will be further demonstrated in this article) of the importance of
heterogeneity in a variety of real-world time to event data-sets. Heterogeneity indicates that
items in a data-set have different survival means and variances. For instance, heterogeneity
in a churn modeling context would be that as time increases the customers with the highest
probability to retain are the ones which still remain in the data-set. Without considering
this effect, it might appear that the baseline churn probability has decreased over time when
in fact the first order effect is that there is a mover/stayer bias. Thus methods which don’t
consider multiple decision points can fail to adequately account for this effect and thus fall
victim to the so called ruse of heterogeneity (W. Vaupel and Yashin, 1985).

Consider the following example inspired by Ben-Porath (1973) where we have 2 groups
of customers, one in which the customers have a retention probability of 0.5 and in the
other the customers are uniformly split between retention probabilities of either 1.0 or
0.0. In this case after having observed only one decision point we would find the retention
probabilities of the two groups to be identical. However, if we consider multiple decision
points it becomes clear that the latter population has a much higher long term retention
rate because some customers therein retain to infinity. In order to capture this unobserved
heterogeneity we need a distribution that is flexible enough to capture these dynamics and
ideally as simple as possible. To that end we posit a beta prior on our instantaneous event
probabilities. The beta has only 2 parameters, yet is flexible enough to capture right/left
skewed, U-shaped, or normal distributions. In Figure 1 we have an example data-set that
contains three heterogeneous items (green dots, orange plus and blue cross). These items
can each be characterized by beta distributions (left panel). At each time period, each item
samples a Bernoulli distributed coin from its beta distribution and flips it to determine if
the item will retain. In the middle panel, we see the retention of the items over time and
in the right-most panel we see the ranking of the items over time. Even though the items
are sampling from fixed beta distributions, the ranking of which item is most at risk over
time changes. Thus, a stationary set of beta distributions leads to non-stationary survival
and rankings. Such nuance cannot be captured by summarizing each item with only a
point-estimate of survival (as opposed to a 2-parameter beta distribution).

Due to the discrete and repeat nature of the decision problems over time, we leverage a
geometric hypothesis to recover survival distributions. We estimate the parameters of this
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model via an empirical Bayes method which can be efficiently implemented through the use
of analytical solutions to the underlying integrals. This model termed the beta-logistic was
first introduced by Heckman and Willis (1977), and was also studied by Fader and Hardie
(2007). We find that in practice this model fits the discrete decision data quite well, and
that it allows for accurate projections of future decision points.

We extend the beta-logistic model to the case of large-scale trees or neural-network
models that adjust the beta distribution given input covariates. These leverage the use
of recurrence relationships to efficiently compute the gradient. Through the beta prior
underpinning the model, we show empirically that the beta-logistic is able to model a wide
range of heterogeneous behaviors that other survival or binary classification models fail
to capture, especially in the presence of skew. As we will see, the beta-logistic model
outperforms a typical binary logistic regression in real-world examples, and provides tighter
estimated posteriors compared to a typical Laplace approximation.

This paper is organized as follows. We first show the beta-logistic derivation as well
as reference the recursion formulas which make the computation efficient. We also make
brief remarks about convexity and observe that in practice we rarely encounter convergence
issues. We then present simulated examples to help motivate the discussion. This is followed
by an empirical performance evaluation of the various models across three large real-world
data-sets: a sparse online conversion data-set, a retention modeling data-set from a popular
subscription video service, and data on democracies and dictatorships. In many of the
examples, the beta-logistic outperforms other baseline methods.

2. The Beta-Logistic for Survival Regression

2.1. Model derivation

Denote by (xi, ti, ci) ∈ Rd × N× {0, 1} a data-set where xi are covariates, ti is the discrete
time to event for an observed (i.e. uncensored) datapoint (ci = 0) and ti is the right-
censoring time for a datapoint for which the event of interest hasn’t happened yet (ci = 1).
A traditional survival model would posit a parametric distribution p(T |x) and then try to
maximize the following empirical likelihood over a class of functions f :

L =
∏
∀i,ci=0

P (T = ti|f(xi))
∏
∀i,ci=1

P (T > ti|f(xi)) .

Unfortunately, unless constrained to a few popular distributions such as the exponential
one, the maximization of such a quantity is usually intractable for most classes of functions
f(x).

Let us instead assume that at each discrete decision point, a customer decides to retain
with some (point-estimate) probability 1 − θ where θ is some function of the covariates
x. Then we further assume that the instantaneous event probability at decision point t is
characterized by a shifted geometric distribution as follows:

P(T = t|θ) = θ(1− θ)t−1, where θ ∈ [0, 1] .

This then gives the following survival equation:

P(T > t|θ) = 1−
t∑
i=1

P(T = i|θ). (1)
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This geometric assumption follows from the discrete nature of the decisions customers need
to make in a subscription service, when continuing to next episodes of a show, etc. It admits
a simple and straightforward survival estimate that we can also use to project beyond our
observed time horizon. Now in order to capture the heterogeneity in the data, we can instead
assume that θ follows a conditional beta prior (B) as opposed to being a point-estimate as
follows:

f(θ|α(x), β(x)) =
θα(x)−1(1− θ)β(x)−1

B(α(x), β(x))

where α(x) and β(x) are some arbitrary positive functions of covariates (e.g. measurements
that characterize a specific customer or a specific item within the population).

Consider the Empirical Bayes method of Gelman et al. (2013) (also called Type-II
Maximum Likelihood Estimation in Berger (2013)) as an estimator for α(x) and β(x) (α
and β for brevity) given the data:

max
α,β

L(α, β)

where
L(α, β) =

∏
∀i,ci=0

P (T = ti|α, β)
∏
∀i,ci=1

P (T > ti|α, β) . (2)

Using the marginal likelihood function we obtain:

P(T |α, β) =

∫ 1

0
f(θ|α, β)P(T |θ)dθ.

As we will see in the next section, a key property of the beta-logistic model is that it makes
the maximization of Equation 2 tractable.

Since α and β have to be positive to define valid beta-distributions, we use an exponential
reparameterization and aim to estimate functions a(x) and b(x) such that:

α = ea(x) and β = eb(x).

Throughout the paper, we will also assume that a and b are twice-differentiable.
The name beta-logistic for such a model has been coined by Heckman and Willis

(1977) and studied when the predictors a(x) = γa · x and b(x) = γb · x are linear functions.
In this case, at T = 1 observe that if we want to estimate the mean this reduces to an
over-parameterized logistic regression:

P(T = 1|α, β) =
α

α+ β
=

1

1 + e(γb−γa)>x
.

2.2. Algorithm

We will now consider the general case where a(x) and b(x) are nonlinear functions and could
be defined by the last layer of a neural network. Alternatively, they could be generated by
a vectored-output Gradient Boosted Regression Tree (GBRT) model. Using properties of
the beta function (see A.1), one can show that:

P(T = 1|α, β) =
α

α+ β
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and

P(T > 1|α, β) =
β

α+ β
.

Further, the following recursion formulas hold for t > 1:

P(T = t|α, β) =

(
β + t− 2

α+ β + t− 1

)
P(T = t− 1|α, β) (3)

and

P(T > t|α, β) =

(
β + t− 1

α+ β + t− 1

)
P(T > t− 1|α, β). (4)

If we denote ` = − logL as the function we wish to minimize, Equation 3 and Equation 4

allow us to derive (see Appendix A.2) recurrence relationships for individual terms of
∂`

∂·
and

∂2`

∂·2
. This makes it possible for example to implement a custom loss gradient and

Hessian callbacks in popular GBRT libraries such as XGBoost (Chen and Guestrin, 2016)
and lightGBM (Ke et al., 2017). In this case, the GBRT models have ”vector-output”
and predict for every row both a = log(α) and b = log(β) jointly from a set of covariates,
similarly to how the multinomial logit loss is implemented in these libraries. More precisely,
choosing a squared loss for the split criterion in each node as is customary, the model will
equally weight how well the boosting residuals (gradients) with respect to a and b are
regressed on.

Note that because of the inherent discrete nature of the beta-logistic model, the com-
putational complexity of evaluating its gradient on a given datapoint is proportional to
the average value of t. Therefore, a reasonable time step discretization value needs to be
chosen to properly capture the survival dynamics while allowing fast inference. One can
similarly implement this loss in deep learning frameworks. One would typically explicitly
pad the label vectors ti with zeros up to the max censoring horizon (which would bring
average computation per row to O(maxi ti) for the mini-batch) so that computation can
be expressed through vectorized operations, or via frameworks such as Vectorflow (Ros-
tykus and Raimond, 2018) or Tensorflow (Abadi et al., 2015) ragged tensors that allow for
variable-length inputs to bring the computational cost back to O(avgiti).

2.3. Convexity

For brevity, define αi = α(xi) and βi = β(xi). In the special case where a(x) = γa · x
and b(x) = γb · x are linear functions, their second derivative is null and the Hessian of the
log-likelihood of Equation 2 is diagonal:

∂2`

∂γ2a,j
= γ2a,jαi

∑
i

[
βi

(αi + βi)
2 +

ti∑
u=2

βi + u− 1

(αi + βi + u− 1)2

]

and
∂2`

∂γ2b,j
= γ2b,jβi

∑
i

[
αi

(αi + βi)
2 +

ti∑
u=2

ki

]
(5)
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Table 1: Prediction accuracy (C-index ) of linear and GBRT versions of the Beta-Logistic
compared to common baselines on 3 different data-sets: Criteo Online Conversions,
Subscriptions, and Democracies and Dictatorships. For each data-set we created
10 bootstrap samples of 80% of train and test data to estimate the standard errors
of .002, .002, and .02 respectively with 95% confidence.

models Conversions Subscriptions Democracies

(1) Logistic Short Window 0.610 0.785 0.67
(2) Logistic Long Window 0.842 0.849 0.61
(3) Weibull 0.744 0.818 0.74
(4) Exponential 0.773 0.847 0.69
(5) Deep Survival Machines 0.860 0.862 0.72
(6) Beta-Logistic 0.843 0.849 0.73
(7) Beta-Logistic GBRT 0.898 0.876 0.77

data-set properties # examples 1 mil 4 mil 1.8k
# observations 220k 1.88 mil 1.4k
# dimensionality 102k 257k 3.8k

where

ki =

(αi + 1)
β2
i−(u−2)(αi+u−1)

(βi+u−2)2(αi+βi+u−1)2
if ci = 0

αi
β2
i−(u−1)(αi+u−1)

(βi+u−1)2(αi+βi+u−1)2
otherwise.

We see that the log-likelihood of the shifted-beta geometric model is always convex in
α when a is linear. Further we can see that when all points are observed (no censoring),
and the maximum horizon is T = 2 then Equation 5 is also convex in b.

Subsequent terms are not convex, however, but despite that in practice we do not
encounter significant convexity issues (e.g. local minima and saddle points). It seems likely
that in practice the convex terms of the likelihood dominate the non-convex terms. Note
once again that there is generally no global convexity of the objective function.

3. Experiments

3.1. Model Details

All conditional linear models are implemented as sparse linear models in Vectorflow (Ros-
tykus and Raimond, 2018) and trained through stochastic gradient descent. We compare
our model with 2 other survival models: Exponential and Weibull. Both are parametric
models where the parameters of the distributions are estimated through an exponential
reparametrization (since they require positivity in their parameters). We also add as base-
lines 2 logistic models: one trained at a short horizon (Logistic Short Window), and
one trained at a long horizon (Logistic Long Window) using the maximum window or
point of right censoring as these represent windows used with classification models found
commonly in industry. For completeness we also baselined against Deep Survival Ma-
chines (Nagpal et al., 2021) where we tuned learning rate and number of iterations as well
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as running a brute force sweep of distribution, number of mixtures in {4,6,8}, and hidden
layers of size {50,100,200}.

We also include the beta-logistic trained via lightGBM (Ke et al., 2017) (Beta-Logistic
GBRT) for comparison to the above sparse linear models. It is worth noting that with
a small amount of modification this model can be implemented through lightGBM with a
custom loss in python, however it is several orders of magnitude faster to program it directly
within the lightGBM package. We have added python implementations for the likelihood,
gradient, and Hessian in the reproducibility portion of the appendix, and will provide the
code1 for this project as well to further facilitate reproducibility.

For each data-set shown in the sections to follow, 10 bootstrap samples of 80% of the
data are created to train and test the models where half of the sample is used in training
and the other half used for evaluation. We then use these samples to compute the mean
C-index and the standard errors shown in Table 1.

3.2. Synthetic Data

We present simulation results for the beta-logistic, and compare them to the logistic model.
We also show that the beta-logistic successfully recovers the posterior for skewed distribu-
tions. In our first simulation we have 3 beta distributions which have very different shapes
(see table 2 below), but with the same mean (this example is inspired by Fader et al.
(2018)). Here, each simulated customer draws a coin from one of these distributions, and
then flips that coin repeatedly until they have an event or we reach a censoring horizon (in
this particular case we considered 4 decision points).

shape α β µ

normal 4.75 14.25 0.25
right skewed 0.5 1.50 0.25
u shaped 0.083̄ 0.25 0.25

Table 2: Heterogeneous beta distributions with identical means.

It is trivial to show that the logistic model will do no better than random in this
case, because it is not observing the dynamics of the survival distribution which reveal the
differing levels of heterogeneity underlying the 3 populations. If we allow the beta-logistic
model to have a dummy variable for each of these cases then it can recover the posterior of
each (see Figure 2). This illustrates an important property of the beta-logistic: it recovers
posterior estimates even when the data is very heterogeneous and allows us to fit survival
distributions well.

3.3. Online Conversions Data

Survival modeling

We now evaluate the performance of the beta-logistic model on a large-scale sparse data-
set. We use the Criteo online conversions data-set published alongside Chapelle (2014) and

1. Scripts available upon request from the authors
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Figure 2: Survival distributions as a function of time as well as an estimate of Ŝ(t) from
the beta-logistic. Using a point-estimate of the mean θ̄ (as in the logistic model)
fails to recover the heterogeneity.

publicly available for download2. We consider the problem of modeling the distribution of
the time between a click event and a conversion event. We will consider a censoring window
of 24 hours. As noted in Chapelle (2014), the exponential distribution fits the data reason-
ably well so we will compare the beta-logistic model against the exponential distribution (1
parameter) and the Weibull distribution (2 parameters). Since the temporal integration of
the beta-logistic model is intrinsically discrete, we consider a time-discretization of 5 minute
steps. We also add as baselines 2 logistic models: one trained at a horizon of 5 minutes (the
shortest interval), and one trained at a horizon of 24 hours (the largest window). Censored
events are down-sampled by a factor of 10x. We use 1M rows where we hold out 50%
for training and 50% for testing. The total (covariate) dimensionality of the problem is
102K after one-hot-encoding. Note that covariates are sparse and the overall sparsity of the
problem is over 99.98%. Results are presented in Table 1.

The beta-logistic survival model outperforms other baselines at all horizons considered
in this example. Deep Survival Machines do perform quite well here also, and we suspect
that there are rich interactions in the data which these models can exploit. Even though it
is a 2-parameter distribution, the Weibull model is interestingly performing worse than the
exponential survival model and the binary logistic classifier. We hypothesize that this is
due to the poor conditioning of its loss function as well as the numerical instabilities during
gradient and expectation computation (the latter requires function calls to the gamma
function which is numerically difficult to estimate for moderately small values and for large
values).

Posterior size comparison

We next consider the problem as a binary classification task (did a conversion happen
within the specified time window?). It is interesting to compare the confidence interval
sizes of various models. For the conditional beta-logistic model, the prediction variance on

2. http://labs.criteo.com/2013/12/conversion-logs-dataset/
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datapoint x is given by:

Var(x) =
α(x)β(x)

(α(x) + β(x))2 (α(x) + β(x) + 1)
.

For a logistic model parameterized by θ ∈ Rd, a standard way to estimate the confidence
of a prediction is through the Laplace approximation of its posterior (MacKay, 2003). In
the high-dimensional setting, estimating the Hessian or its inverse become impractical tasks
(storage cost is O(d2) and matrix inversion requires O(d3) computation). In this scenario, it
is customary to assume independence of the posterior coordinates and restrict the estimation

to the diagonal of the Hessian h =
1

σ2
∈ Rd, which reduces both storage and computation

costs to O(d). Hence under this assumption, for a given datapoint x the distribution of
possible values for the random variable Y = θTx is also Gaussian with parameters:

N

(∑
i

θixi,
∑
i

σ2i x
2
i

)
.

If the full Hessian inverse H−1 is estimated, then Y is Gaussian with parameters:

N
(
θ · x, xT ·H−1x)

)
.

When Y is Gaussian, the logistic model prediction

P(T = 1|x, θ) =
1

1 + exp(−Y )

has a distribution for which the variance v can be conveniently approximated. See Li et al.
(2012) for various suggested approximations schemes. We chose to apply the following
approximation

v = Φ

(
πµ/
√

8− 1√
π − 1 + π2σ2/8

)
−
(

1 + exp(−µ/
√

1 + πσ2/8)
)−2

.

Armed with this estimate for the logistic regression posterior variance, we run the follow-
ing experiment: we random-project (using Gaussian vectors) the original high-dimensional
data into a 50-dimensional space, in which we train beta-logistic classifiers and logistic
classifiers at various horizons, using 50k training samples every time. We then compare
the average posterior size variance on a held-out data-set containing 50k samples. Holdout
AUCs were comparable in this case for both models at all horizons. Two posterior approxi-
mations are reported for the logistic model: one using the full Hessian inverse and the other
one using only the diagonalized Hessian. Results are reported in Figure 3.

Note that the beta-logistic model produces much smaller uncertainty estimates (between
20% and 45% smaller) than the logistic model with Laplace approximation. Furthermore,
the growth rate as a function of the horizon of the binary classifier is also smaller for the
beta-logistic approach. Also note that the Laplace posterior with diagonal Hessian approx-
imation underestimates the posterior obtained using the full Hessian. Gaussian posteriors
are obviously unable to appropriately model data skew.
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Figure 3: The posterior variance of beta-logistic binary classifiers as well as logistic regres-
sions trained on binary labels data-sets with increasing censoring windows.

This empirical result is arguably clear evidence of the superiority of the posteriors gen-
erated by the beta-logistic model over a standard Laplace approximation estimate layered
onto a logistic regression model posterior. The beta-logistic posterior is also much cheaper
to recover in terms of computational and storage costs. This also suggests that the beta-
logistic model could be a viable alternative to standard techniques of explore-exploit models
in binary classification settings.

3.4. Subscription Video Streaming Data

We now study the problem of modeling customer retention for a subscription business. We
leverage a proprietary data-set from a popular video streaming service. In a subscription
setting when a customer chooses not to renew the service, the outcome is explicitly observed
and logged. From a practical perspective, it is obviously preferable and meaningful when
a customer’s tenure with the service is longer rather than shorter. It is also valuable to be
able to estimate and project that tenure accurately across different cohorts of customers in
order to estimate future revenue, or as input to other estimations where retention is the
outcome.

In this particular data-set the cohorts are highly heterogeneous. In Figure 4 we demon-
strate this by examining the fitted posterior for 3 different cohorts where you can see that
we find large differences in the underlying distributions.

In this example the data set has more than 4M rows with a total dimensionality of
around 208k. The data contains a mix of continuous and categorical features and is rich
representation of the customer experience. We used 4 discrete decision points to fit the
models and samples were taken from multiple points of time so that there is a varying
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Figure 4: Estimated churn probabilities for 3 different cohorts. The large variations in the
shape of the fitted distributions motivate the use of a beta prior on the conditional
churn probability.

amount of right censoring as you would find in a typical production setting where models
are recomputed over time and data is added into the data set as it is updated. Evaluation
was done on a subset of 2M rows which was held out from the model training. In Table
1, we show that the beta-logistic performs quite well as a baseline, but not significantly
better than the logistic for ranking when using the longest window as the binary outcome.
Both Deep Survival Machines, and the Beta-Logistic GBRT outperform the linear baselines,
so we suspect as in the conversion data that there are rich interactions that these models
can exploit. It can also easily be shown that although the ranking is quite good for the
logistic with long window, the model does not generalize well outside of the sampled time
windows e.g. if one were tempted to use the output probabilities and extend to survival
using a geometric hypothesis. Using only 1 month as an outcome as in the logistic short
window leads to much poorer results as demonstrated here as well as in our simulations, as
the model can do no more than compute the mean within local neighborhoods of different
cohorts. This illustrates that there is a high level of heterogeneity within even our richest
data-sets where one might be tempted to assume that there is enough information to find
homogeneous subgroups.

3.5. Democracies and Dictatorships Data

Here we explore the performance of the beta-logistic on the democracies and dictatorships
data-set published by Cheibub and Vreeland (2010) and as processed and provided by the
lifelines package (Davidson-Pilon, 2019). This data contains country, region, continent,
and leader names as well as the type of regime, the start year, and finally classification of
democracies as parliamentary, semi-presidential (mixed) and presidential and classification
of dictatorships as military, civilian and royal. There is coverage of 202 countries from
1946 until 2008 and the outcome is the duration of these political regimes. Here again we
have sampled half of the data for training and the other for testing. From Table 1 we can
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see that in this case the Weibull is our best performing sparse linear model. Because the
Weibull did so well, we expected that the Deep Survival Machines would do even better,
but we think perhaps the limited size of this dataset does not allow DSM to perform as well
as we would expect. Again in this example the non-linear beta-logistic does significantly
better than all the other baselines.

4. Conclusion

We extended the beta-logistic and its maximum likelihood estimation to linear, tree, and
neural models as well as characterized the convexity and properties of the learning problem.
Empirical results demonstrate that the beta-logistic is an effective model in discrete time
to event problems, and improves over common baselines in the examples given. It seems
that in practice regardless of how many attributes are considered there are still unobserved
variations between individuals that influence the time to event. Further we demonstrated
that we can recover posteriors effectively even when the data is very heterogeneous, and
due to the speed and ease of implementation we argue that the beta-logistic is a baseline
that should be considered in time to event problems in practice.

In future work, we plan to study the potential use of the beta-logistic in explore-exploit
scenarios and as a viable option in reinforcement learning to model long-term consequences
from near-term decisions and observations. We would also like to add additional evaluation
datasets, and to evaluate outcomes that are outside of the observation window to show the
power of the models in extrapolating beyond their observed horizon.
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Appendix A. Beta Logistic Formulas

A.1. Recurrence derivation

This derivation is taken from Fader and Hardie (2007) where they use it as a cohort model
(also called the shifted beta geometric model) that is not conditional on a covariate vector
x.

We do not observe θ, but its expectation given the beta prior (also called marginal
likelihood) is given by:

P(T = t|α, β) =

∫ 1

0
θ(1− θ)t−1 θ

α−1(1− θ)β−1

B(α, β)
dθ

=
B(α+ 1, β + t− 1)

B(α, β)

We can write the above as:

P(T = t|α, β) =
Γ(α+ β) ∗ Γ(α+ 1) ∗ Γ(β + t− 1)

Γ(α) ∗ Γ(β) ∗ Γ(α+ β + t)
.

Using the property Γ(z + 1) = zΓ(z) leads to equations (3) and (4), and at t = 1 we have

P(T = 1|α, β) =
Γ(α+ β) ∗ Γ(α+ 1) ∗ Γ(β)

Γ(α) ∗ Γ(β) ∗ Γ(α+ β + 1)

P(T = 1|α, β) =
α

α+ β
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A.2. Gradients

Note that for machine learning libraries that do not offer symbolic computation and auto-
differentiation, taking the −log of equations (3) and (4) and differentiating leads to the
following recurrence formulas for the gradient of the loss function on a given data point
with respect to the output parameters ai and bi of the model considered. Let γ = α + β,
then we have:

∂ log(P(T = 1))

∂ai
=

∂a

∂ai

(
β

γ

)
∂ log(P(T = 1))

∂bi
= − ∂b

∂bi

(
β

γ

)
These derivatives expand as follows:

∂ log(P(T = t))

∂ai
=
∂ log(P(T = t− 1))

∂ai

− ∂a

∂ai

(
α

γ + t− 1

)
∂ log(P(T = t))

∂bi
=
∂ log(P(T = t− 1))

∂bi

+
∂b

∂bi

(
(α+ 1)β

(β + t− 2)(γ + t− 1)

)
We can get a similar recursion for the survival function:

∂ log(P(T > 1))

∂ai
= − ∂a

∂ai

(
α

γ

)
∂ log(P(T > 1))

∂bi
=

∂b

∂bi

(
α

γ

)
∂ log(P(T > t))

∂ai
=
∂ log(P(T > t− 1))

∂ai

− ∂a
∂ai

(
α

γ + t− 1

)
∂ log(P(T > t))

∂bi
=
∂ log(P(T > t− 1))

∂bi

+
∂b

∂bi

(
αβ

(β + t− 1)(γ + t− 1)

)
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Appendix B. Alternative Derivation

Another intuitive derivation of the single-step beta-logistic is obtained by starting from the
likelihood for a logistic model and modeling the probabilities with a beta distribution:

L =
∏
i

P(yi = 1|α, β)yi(1− P(yi = 1|α, β))yi−1

=
∏
∀yi=1

P(yi = 1|α, β)
∏
∀yi=0

(1− P(yi = 1|α, β))

=
∏

uncensored

P(T = 1|α, β)
∏

censored

P(t >= 1|α, β).

This is exactly the survival likelihood for a 1 step beta logistic model.
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3. Reproducibility

We include simple python implementations of the gradient callbacks that can be passed to
XgBoost or lightGBM. Note that efficient implementations of these callbacks in C++ are
possible and yield orders of magnitude speedups.

def grad BL ( alpha , beta , t , i s c e n s o r e d ) :
”””
This f unc t i on computes the g rad i en t o f the be ta l o g i s t i c o b j e c t i v e .
Since i t i s v e c t o r i z e d in p r a c t i c e f o r performance reasons , here we wr i t e
the non−v e c t o r i z e d ve r s i on f o r r e a d a b i l i t y :
”””
N = len ( alpha )
g = np . z e ro s ( (N, 2 ) )
for j in range (0 ,N) :

i f (not i s c e n s o r e d [ j ] ) :
#f a i l e d
g [ j , 0 ] = beta [ j ] / ( alpha [ j ] + beta [ j ] )
g [ j , 1 ] = −g [ j , 0 ]
for i in range (2 , int ( t [ j ] + 1 ) ) :

g [ j , 0 ] += −(alpha [ j ] / ( alpha [ j ] + beta [ j ] + i − 1) )
g [ j , 1 ] += beta [ j ] / ( beta [ j ] + i − 2) − beta [ j ] / ( alpha [ j ] + beta [ j ] + i − 1)

else :
#surv i v ed
g [ j , : ] = −alpha [ j ] / ( beta [ j ] + alpha [ j ] )
g [ j , 1 ] = −g [ j , 0 ]
for i in range (2 , int ( t [ j ] + 1 ) ) :

g [ j , 0 ] += −(alpha [ j ] / ( alpha [ j ] + beta [ j ] + i − 1) )
g [ j , 1 ] += beta [ j ] / ( beta [ j ] + i − 1) − beta [ j ] / ( alpha [ j ] + beta [ j ] + i − 1)

return g

def hess BL ( alpha , beta , t , i s c e n s o r e d ) :
”””
This f unc t i on computes the d iagona l o f the Hessian o f the be ta l o g i s t i c o b j e c t i v e .
”””
N = len ( alpha )
h = np . z e ro s ( (N, 2 ) )
for j in range (0 ,N) :

h [ j : ] = −alpha [ j ]∗ beta [ j ] / ( ( alpha [ j ] + beta [ j ] ) ∗ ∗ 2 )
i f (not i s c e n s o r e d [ j ] ) :

#f a i l e d
for i in range (2 , int ( t [ j ] + 1 ) ) :

h [ j , 0 ] += −alpha [ j ] ∗ ( ( beta [ j ] + i − 1)/( alpha [ j ] + beta [ j ] + i − 1)∗∗2)
d = ( beta [ j ] + i − 2)∗∗2)∗ ( alpha [ j ] + beta [ j ] + i − 1)∗∗2)
h [ j , 1 ] += beta [ j ] ∗ ( ( alpha [ j ]+1)∗( beta [ j ]∗∗2 −( i −2)∗( alpha [ j ]+ i −1)/d

else :
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#surv i v ed
for i in range (2 , int ( t [ j ] + 1 ) ) :

h [ j , 0 ] += −alpha [ j ] ∗ ( ( beta [ j ] + i − 1)/( alpha [ j ] + beta [ j ] + i − 1)∗∗2)
d = ( beta [ j ] + i − 2)∗∗2)∗ ( alpha [ j ] + beta [ j ] + i − 1)∗∗2)
h [ j , 1 ] += beta [ j ] ∗ ( ( alpha [ j ] ) ∗ ( beta [ j ]∗∗2 −( i −1)∗( alpha [ j ]+ i −1)/d

h . shape = (N∗2)
return h

def l i k e l i hood BL ( alpha , beta , t , i s c e n s o r e d ) :
”””
This f unc t i on computes be ta l o g i s t i c o b j e c t i v e ( l i k e l i h o o d : h i ghe r = b e t t e r )
Since i t i s h e a v i l y v e c t o r i z e d in p r a c t i c e f o r performance reasons , we wr i t e
here the non−v e c t o r i z e d ve r s i on f o r r e a d a b i l i t y :
”””
p = alpha / ( alpha + beta )
s = 1 − p
for j in range (0 , len ( alpha ) ) :

for i in range (2 , int ( t [ j ] + 1 ) ) :
p [ j ] = p [ j ] ∗ ( beta [ j ] + i − 2)/( alpha [ j ] + beta [ j ] + i − 1)
s [ j ] = s [ j ] − p [ j ]

return p ∗ ( 1 . 0 − i s c e n s o r e d ) + s ∗ i s c e n s o r e d
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