Proceedings of Machine Learning Research 1:1-10, 2021 AAAT Spring Symposium 2021 (SP-ACA)

Theory and software for boosted nonparametric hazard
estimation

Donald K. K. Lee DONALD.LEE@QEMORY.EDU
Goizueta Business School and Department of Biostatistics € Bioinformatics, Emory University

Ningyuan Chen NINGYUAN.CHEN@QUTORONTO.CA
Rotman School of Management, University of Toronto

Hemant Ishwaran HEMANT.ISHWARAN@QGMAIL.COM
Division of Biostatistics, University of Miami

Xiaochen Wang xcwancll@aMmalL.coM and Hongyu Zhao HONGYU.ZHAOQYALE.EDU
Department of Biostatistics, Yale University

Arash Pakbin a.pakBIN@TAMU.EDU and Bobak J. Mortazavi BOBAKM@QTAMU.EDU
Department of Computer Science & Engineering, Texas AEM University

Abstract

Nonparametric approaches for analyzing survival data in the presence of time-dependent
covariates is a timely topic, given the availability of high frequency data capture systems in
healthcare and beyond. We present a theoretically justified gradient boosted hazard esti-
mator for this setting, and describe a tree-based implementation called BoXHED (pronounced
‘box-head’) that is available from GitHub: www.github.com/BoXHED. Our numerical study
demonstrates that there is a place in the machine learning toolbox for a nonparametric
method like BoXHED that can flexibly handle time-dependent covariates. The results pre-
sented here are distilled from the recent works of Lee et al. (2021) and Wang et al. (2020).

Keywords: Survival Analysis, Gradient Boosting, Functional Data, Nonparametric Like-
lihood

1. Introduction

Time-dependent covariates are becoming increasingly common in modern applications of
survival analysis. For example in medicine, electronic health records systems make it possi-
ble to log patient vitals throughout the day, and these measurements can be used to build
real-time warning systems for adverse outcomes such as in-ICU mortality. Another example
comes from financial technology, where lenders track obligors’ behaviours over time to assess
and revise default rate estimates. The ability to flexibly model the complex interactions
among the time-varying risk factors is crucial to prognosticating risk accurately in real-time,
be it mortality risk or default risk. There is thus a need for survival methods that:

i) Can incorporate potentially high-dimensional covariates that evolve in continuous
time; and

ii) Are nonparametric, i.e. do not require parametric assumptions (e.g. Weibull) or
semiparametric ones (e.g. proportional hazards); and

iii) Preferably have a sound theoretical basis.

© 2021 D.K.K. Lee, N. Chen, H. Ishwaran, X. Wang, H. Zhao, A. Pakbin & B.J. Mortazavi.

www.github.com/BoXHED

LEE CHEN ISHWARAN WANG ZHAO PAKBIN MORTAZAVI

However, much of the recent works in the nonparametric survival literature in machine
learning focus on the special case of time-static covariates X = (XU ... X®) (Ishwaran
et al., 2008; Ranganath et al., 2016; Bellot and van der Schaar, 2018, 2019; Lee et al., 2019).
For this setting, a popular approach is to estimate the conditional survivor function for the
event time T,

S(X) = P(T > 1| X) = exp <— /Ot A(u,X)du) , (1)

where A(t,x) is the hazard function.

In the general setting where the covariates X (t) = (X (¢),---, X®)(t)) are time-
varying, there is no meaningful analogue to the survivor function (1), since it involves
integrating A(u, X (u)) along the unknown future trajectory of the covariates {X (u)}ye(0,4-
Instead of the survivor function, the interest is now on estimating the hazard A(¢,z) given
X (t) = x, which is informally the probability of the event happening in the near future
given it has not happened yet:

P(T € [t,t +dt)|T > t, X (t) =) ~ A(t, 2)dL. (2)

Note that in the time-static covariate setting, we can recover S(t|x) from A(¢,z) via (1).
It follows that the hazard is the fundamental quantity that unifies the analyses of both
settings. Recognizing its importance, recent works in the machine learning literature have
proposed neural network models for the hazard function in the discrete-time setting (Jarrett
et al., 2018; Ren et al., 2019). This is equivalent to solving a series of binary classification
problems, one at each point in an equally spaced time-grid.

To extend hazard modelling to the continuous time setting, we propose a hazard esti-
mator using gradient boosting that satisfies i) to iii). The estimator can be used with any
weak learners including regression trees, and it consistently recovers the true hazard under
mild identifiability conditions. Furthermore, we describe a novel software implementation
of the estimator called BoXHED (Boosted eXact Hazard Estimator with Dynamic covariates)
that is available from GitHub: www.github.com/BoXHED. The comparative performance of
BoXHED will be illustrated using simulated data.

2. Theory overview

Nonparametric hazard estimation via gradient boosting is historically a challenging problem,
especially in the time-dependent covariate setting. Most of the existing boosting approaches
focus on the Cox proportional hazards model for time-static covariates, which apply gradient
boosting to the Cox partial likelihood loss (Ridgeway, 1999; Li and Luan, 2005; Bithlmann
and Hothorn, 2007; Binder and Schumacher, 2008). An alternative approach uses flexible
transformation models of parametric families to allow for time-dependent covariates but
with time-static effects (Hothorn, 2019). To date there is no fully nonparametric boosting
solution for handling time-dependent covariates. This is because the nonparametric log-
likelihood seemingly does not have a gradient, unlike standard applications of gradient
boosting where the gradient can easily be identified and calculated.

To explain why, let us first fix the survival setting, which comes from the seminal
work of Aalen (1978): In addition to the quantities appearing in (2), we now also have an

www.github.com/BoXHED

THEORY AND SOFTWARE FOR BOOSTED NONPARAMETRIC HAZARD ESTIMATION

indicator Y'(t) € {0,1} denoting whether the subject is at risk of experiencing the event
during [t,t + dt). Both X(¢) and Y (t) are assumed to be predictable processes. Under
this setting, the probability (2) of experiencing the event during [t,¢ + dt) generalizes to
A(t,2)Y (t)dt. This allows for a variety of censoring schemes including right-censoring, where
Y (t) is nonincreasing. Without loss of generality let us also normalize the units of time so
that Y (t) = 0 for ¢ > 1, i.e. the subject is not a risk after time ¢ = 1. This allows us to
restrict attention to the time interval (0, 1].

If the subject experiences the event in (0, 1] then A = Y (T') equals 1, otherwise A =0
and we set T to an arbitrary number greater than 1. Given n functional data samples
{Xi(-),Yi(+), T;},, the evolution of subject ¢’s event status can then be thought of as a
sequence of coin flips at time increments t = 0, dt, 2dt, - - -, with the probability of “heads” at
each time point equal to \(¢,2)Y (¢)dt. Therefore, subject i’s contribution to the likelihood
is

{1 = A0, X:(0))Y;(0)dt} x {1 — A(dt, Xi(dt))Yi(dt)dt} x - - x X(Ty, Xi(T;)) ™

e Jo e ®AEXa()dt \ (T, X;(T;))A,

where the limit can be understood as a product integral. Hence, if the log-hazard function
is F(t,xz) = log A(t,z) then the (scaled) negative log-likelihood functional is

1 [t | 1 ¢
Ro(F)= -3 /0 Yi()e" R dt = =) | AF (T Xi(T)), (3)
i=1 =1

which we shall refer to as the likelihood risk. The goal is to estimate the hazard function
A(t, z) = eF(t®) nonparametrically by minimizing R, (F).

However, the chief difficulty with minimizing R, (F") using gradient boosting is that the
canonical representation of the likelihood risk does not have a gradient. To see this, observe
that the directional derivative of (3) equals

1

d
B 0n), =

> /0 YEFROD X, (1))t - U3 AT X(T),
1=1 =1

which is the difference of two different inner products (ef’, f) - (1, f)y where (g,)1 =

LS fy Ya(t)g(t, Xa(t) £(t, Xi(t))dt and (g, f); = LS Aig(Ty, Xi(T)) f(Th, Xi(Ty).
Hence, the directional derivative cannot be expressed as a single inner product of the form
(gr, f) for some function gr(t,z). Were it possible to do so, gr would then be the gradient
function.

In simpler non-functional data settings like regression or classification, the loss can
be written as L(Y, F(x)), where F is the non-functional statistical target and Y is the
outcome, so the gradient is simply 0L(Y, F(x))/0F(x). The negative gradient is then
approximated by a base learner from a predefined function class F (e.g. linear functions
or tree learners), and the approximation is used as the direction of update in a boosting
iteration. Importantly, in the simpler non-functional data setting the gradient does not
depend on the space that F' belongs to.

LEE CHEN ISHWARAN WANG ZHAO PAKBIN MORTAZAVI

By contrast, our key insight that resolves the challenge with nonparametric hazard
boosting is that the gradient of R, (F') can only be defined after carefully specifying an ap-
propriate sample-dependent domain for R, (F'). The likelihood risk can then be re-expressed
as a smooth convex functional, and an analogous representation also exists for the popu-
lation risk. These representations not only allow us to describe and implement a gradient
boosting procedure, but are also crucial to establishing the consistency of our estimator.
In the interest of space we will specialize the general representation for R, (F) to the case
where the base learner class consists of regression trees, which is what we use to implement
our estimator. The general treatment of arbitrary learner classes can be found in Lee et al.

(2021).
Since a tree learner F'(¢,z) in the hazard setting is a piecewise constant function of both
tand z = (33(1), e ,:z(p)), we can express it as a weighted sum of indicator functions for

disjoint time-covariate regions {B;};, i.e. F € F = {Z] cilp;(t,z) 1 ¢c; € R}. The most
common way for generating these regions is to use axis parallel cuts when growing the tree,
in which case the regions are hypercubes of the form

tB<t<t?
E(I»B) < aj() < (1 B)
B=< (t,x) : . . (4)

2PB) < 2®) < 50.5)

It can then be verified that the likelihood risk (3) and its gradient function evaluated at F
are respectively

Ry(F)= > (e%ﬂj - %) . gr(ta)=) (e%‘ o >IB (t,z), (5

g >0 >0

where

—Tllz/o Yit) - I[t, Xi(t) € By), v, ZAI{ﬂ,X()} € B)).

Note that v; is the (scaled) number of events observed in the time-covariate region Bj,
while ;1; measures the denseness of the sample trajectories inside B;. We can use {yu;};
to define the empirical correlation between two tree learners Iy (¢,) = >, c1;1p,(t,z) and

Fo(t,x) =3, c2ilp,(t, x) as

Z HjC15C24

\/Z :“JCU \/Z NJCQJ

Positive values of (F, F3), then imply that F; and F5 are aligned, and the closer (Fy, Fy),, is
to 1 the closer the alignment is. Note that even if F; and F5 are not defined on the same set of
regions { B} };, we can always find a finer partition {Bj}; such that I\ (¢, z) = _; c’leB;, (t,x)
and Fy(t,z) = Zj 0’2]-13; (t,x).

<F17F2

(6)

THEORY AND SOFTWARE FOR BOOSTED NONPARAMETRIC HAZARD ESTIMATION

Algorithm 1 presents the procedure for performing boosted nonparametric hazard es-
timation using generic tree learners. In essence the algorithm creates a sequence of tree
learners go(t,x), g1(t,x), - ,g9m—1(t,) in an iterative manner, and uses them to form an
ensemble estimator of the log-hazard function Fis(t,z) = Fy—v Zi\n/[;ol gm(t,), from which
the hazard estimator can be obtained as Apoost (t,z) = ef'™ (t:2) Here, M is the number of
boosting iterations and v < 1 is the learning rate. The initial guess for the log-hazard,
Fy =log(>_; Ai/ >_; 1j), is the best constant that minimizes (3).

At the m-th boosting iteration, the tree learner g,, is obtained by approximating the
gradient gp,, with a shallow regression tree. The degree of approximation is measured by
(9ms 9F,.)y, Which improves with more tree splits, but this comes at the cost of a more
complex g,, that is prone to overfit. In (7) in Algorithm 1 we allow for the use of any
approximation that has a correlation of at least ¢ with g, for a fixed ¢ € (0, 1]. In practice
a small value of ¢ is desired, which corresponds to simple tree learners with a small number
of splits.

Algorithm 1 Boosted nonparametric hazard estimation with generic tree learners

Input #iterations M, learning rate v < 1, correlation € € (0, 1].
Initialize Fy = log(D i, Ai/ >, 117)-
form=0to M —1do

Compute an approximation g,, to the gradient gr, that satisfies

(s 9P) > € (7)
Compute Fo1 < Fp — vgm.

Output:)\bOOSt (t, x) — eFIW(tVI).
end for

Under mild identifiability conditions and by scaling M and v in an appropriate manner
with sample size n, it can be shown that Xboost converges in probability to the best tree-
based hazard estimator among {ef : F' € F}. Here, ‘best’ is defined as the hazard estimator
closest to the true hazard X in the metric induced by ||Fy — Fy|| = \/E (Fy — >, Fy — F),,
where the expectation is with respect to the functional data samples. Formally, j\boost
satisfies the oracle equality

2
3 s F 2
H)\boost -)\H = g}ég}_”@ -)\H + Op(l).
See Proposition 4 in Lee et al. (2021) for details.

3. BoXHED implementation

Algorithm 1 supports a variety of ways for implementing g,,, which needs to be sufficiently
aligned with the gradient. Since the representation (5) for R, (F) is convex, g, is aligned
with the gradient if and only if R,,(F};,) can be decreased by moving in the direction of —g,.
Furthermore, the larger the decrease, the greater the alignment. This key insight leads to

LEE CHEN ISHWARAN WANG ZHAO PAKBIN MORTAZAVI

an approach for growing the tree g,, that is similar to the spirit of XGBoost (Chen and
Guestrin, 2016), albeit even more targeted at risk reduction: Starting with a tree with a
root node, we choose the split that maximally reduces the exact likelihood risk, and repeat
the process iteratively on successive leaf nodes until the tree has been split L times. The
BoXHED package (Wang et al., 2020) is an instance of Algorithm 1 that we implement using
this approach. The current version (1.0) is written in Python and is specialized to right
censored data, i.e. Yj(t) = I(t < T;) where T} is the minimum of the event time and the
censoring time for subject 7. In this case the likelihood risk (3) reduces to

7 . .
Ro(F) = %Z {/0 el X)) gt — AiF(TiaXi(Ti))} :

i=1

The specific way BoXHED constructs g,, is as follows. Initialize g, (t,2) = 0 to be the
tree with just a root node, and let

I+1

gm,l(t’ 33) = Z cm,jIBm,j (tv x)

j=1

be the intermediate tree after [splits. Here, the splits can be on the covariates or on time.
Each of the time-covariate regions By, 1, - , By, 141 represent one of the leaf nodes in the
intermediate tree, and ¢y, 1, - - , ¢ 141 are the values of the tree function in those leaf nodes.
To obtain gy, +1(¢, z), we split one of the B,, ; regions into two subregions A; and Ay of
the same form as (4) to get

Om,l+1 (t, .iL') = ng(t, a;) — Cm,jIBm’j (t, x) + ’YIIAl (t, l’) + ’)’QIA2 (t, $)

The region B,, ; to split, the variable or time axis to split on and the location of the split,
and also the values of (y1,72) are all chosen to minimize Ry, (Fy, — gm,i+1)-

Whereas XGBoost minimizes a second order Taylor approximation to a risk function in
order to speed up computations, BoXHED is able to directly minimize the exact likelihood
risk in an efficient way: Since the tree values =1, 2 only apply to the subregions Ay, As, we
can write Ry, (Fy — @m,i+1) as

n 2

1 . . - .

; Z Z{/ Fm(t X (t)— 'YkIAk(t, Xz(t))dt — Az Fm(ﬂ, X’L(Tz)) — '7k:| IAk (T:L, Xl(TZ))} +C
=1 k=1

1 n 2 Tz ~ R

-3 {e e / eFm@XO)) (8, X5 (0)dt + - Aila, (Ti,XZ-(Ti))} +C

o 0
=1 k=1

where C, C' are quantities that do not depend on 77 or 72. Rewriting the above yields
2
Ry(Fo = mi+1) = Z[eﬂ’“Uk + Vil + 7, (8)
k=1

where Uy = n~ 130, foﬂ Xy (t, X;(t))dt and Vi, = n~ 130, AT, Xi(Th)} €
Ag]. Note that Vj is the (scaled) number of events observed in Ag. If Uy, Vi > 0 then the

THEORY AND SOFTWARE FOR BOOSTED NONPARAMETRIC HAZARD ESTIMATION

minimizing value in Ay is v = log(Ug/V)). Substituting this into (8) yields the minimized

value R(Fp, — gm i41) = Zi:l Vi <1 + log g—:) + C'. By reasoning inductively, the decrease
in the likelihood risk due to the new split is
d = R(Fyn — gmiv1) — R(Em — 8m.1)

Uy U, U + Uz) 9)

Vi (14log =)+ Vo 1+log22) = (Vi+ V) (1+1og 222,

1< gV1> 2(ng) % 2)(gV1+V2

which can be viewed as a score for determining the best split: Of all possible splits (defined
by Bp,j, A1, and Ag) where Uy, Vi > 0 in both subregions, the best one is that which
minimizes (9). Since at each iteration only two new leaf nodes are created, it is only
necessary to determine the best split for each of the two new regions at the next iteration:
d remains unchanged for the other leaf nodes from previous iterations.

Candidate split points for variables. Given a set of candidate split points for a
particular variable, the best split point is that which minimizes (9). If) is continuous,
BoXHED proposes split candidates based on the percentiles of the observed data for z(9). The
default setting places a candidate split at every decile.

If (9) is categorical, BoXHED employs a one-hot encoding heuristic: Set A; equal to the
intersection of B,, ; with the region where 2() equals a particular categorical label. Hence
Ay is the intersection of By, ; with the region where 2\ is any other label. The algorithm
would then choose the category label for A; that minimizes the score (9). The rationale
for this is that if Uy and V} can be varied continuously, then (9) tends to —oo as the ratio
U1 /V1 tends to co. Hence a heuristic is to find a subset of categorical labels to intersect
with B, ; so that U;/V; is maximized. This always has a solution in the form of a singleton
set.

Defining variable importance. A variable importance measure can be constructed
for the BoXHED estimator: Define the importance of the k-th variable (the zero-th one
being time t) as Z, = Znﬂf;()l Zk(gm), where for tree g, with L internal nodes Zj(g.,) =
_25:1 deI(v(¢) = k) > 0. Here, d; is the split score (9) at iteration ¢ and v(¢) is the
variable used for the partition. Hence the second sum represents the total reduction in
likelihood risk due to splits on the k-th variable in the m-th tree, and Zj is the total risk
reduction across all the trees. To convert Z; into a measure of relative importance between
0 and 1, it is scaled by maxy 7y, where a larger value confers higher importance.

4. Numerical Study

To illustrate the value that BoXHED adds to the survival analysis toolbox, we compare its
performance to those of several existing methods. We use simulated datasets for which the
true hazard function is known in order to compute how well the methods do in recovering
the truth. The performance metric is the L?-error, which is calculated on test datasets

. 1/2 .
of N randomly sampled data points erry> = {% Zfil()\i -)\i)Q} , where \; and \; are
the predicted and true hazard values for the i-th test data point. Further comparisons

based on the time-dependent AUC (Blanche et al., 2019), as well as a detailed analysis of

a cardiovascular disease dataset from the Framingham Heart Study, can be found in Wang
et al. (2020).

LEE CHEN ISHWARAN WANG ZHAO PAKBIN MORTAZAVI

Estimator

BoXHED kernel flexsurv blackboost
0 0.17(0.17, 0.17) 0.14(0.14, 0.15) 0.53(0.52, 0.54) 0.58(0.577 0.59)
A1 20 0.20(0.20, 0.20) 3.4(3.0, 3.9) 0.54(0.53, 0.54) 0.58(0.577 0.59)
40| 0.21(0.20, 0.21) 43(5.7, 80) 0.54(0.54, 0.55) 0.58(0.57, 0.59)

0 0.23(0.23, 0.24) 0.11(0.11, 0.12)) 1.1(1.17 1.1) 1.4(1.4, 1.4)

A2 20 0.25(0.25, 0.26) 4.5(3.9, 5.2) 1.1(1.17 1.1) 1.4(1.4, 1.4)

40 0.26(0.26, 0.27) 29(117 46) 1.1(1.17 1.1) 1.4(1.4, 1.4)
0 0.038(0.037, 0.040) 0.046(0.044, 0.049) 0.0040(0.0039, 0.0041) 0.10(0.107 0.11)
Az 20 0.047(0.046, 0.049) 1.8(1.1, 2.5) 0.020(0.019, 0.020) 0.10(0.107 0.11)
40 0.050(0.0487 0.051) 7.6(5.3, 9.7) 0.030(0.029, 0.031) 0.10(0.107 0.11)
0 0.049(0.048, 0.050) 0.045(0.044, 0.046) 0.20(0.19, 0.20) 0.20(0.197 0.20)
Ay 20 0.060(0.059, 0.062) 3.9(0.667 7.1) 0.20(0.19, 0.20) 0.20(0.197 0.20)
40 0.069(0.067, 0.070) 5.5(4.3, 6.7) 0.20(0.20, 0.21) 0.20(0.197 0.20)

Table 1: erry2 with 95% confidence intervals. The hazard function used in each simulation
and the number of irrelevant covariates present ({0,20,40}) is provided in the
left column. BoXHED’s hyper-parameters are tuned to the training data, whereas
those for the other methods are tuned directly to the test data. Note that this
puts BoXHED at an disadvantage. Furthermore, flexsurv includes the log-normal
distribution as one of its parametric options, so it is correctly specified for As.

Baseline Comparisons. We compare BoXHED to several existing hazard estimation
methods: Kernel smoothing (Nielsen and Linton, 1995), a nonparametric hazard estimator
for low dimensional covariate settings; parametric hazard estimators for time-dependent
covariates (flexsurv in R); and boosted parametric estimators for time-static covariates
(blackboost in R). The Cox proportional hazards model is excluded because it is only able
to estimate the cumulative hazard but not the hazard itself. The hyper-parameters® for
BoXHED are tuned using five-fold cross-validation on the training data. For kernel smoothing
we utilize the kernel function K (u) = 3393 (1 — 2%)6I(—1 < z < 1) from Pérez et al. (2013).
The hyper-parameters® for the baseline estimators are tuned directly to the test data. Note
that this puts BoXHED at a significant disadvantage.

Simulated datasets. We simulate four datasets from the following hazard functions
used in Pérez et al. (2013), with z; being a piecewise-constant function with values drawn

from U(0, 1]:
)\1(t,$t) = B(t’ 2a 2) X B($t>272)’ >\2(t7$t) = B(t’474) X B(xt7474)7

1 ¢p(logt —) 3
As(t = -
3(t,) t ®(zy —logt)’ 2

t € (0,1],

N

1
A(t,xy) = —t2 exp (—2 cos(2mxy) — 3) , te(0,5],

2

where B(+, a,a) is the PDF of the Beta distribution with shape and scale parameters equal
to a, and ¢(-) and ®(-) denote the PDF and CDF of N(0,1). In other words, A\; and Ao

1. Candidates L € {1,2,3,4} and M € {100,150, --- ,300}.
2. Bandwidth for kernel; choice of parametric family for flexsurv and blackboost; number of trees in
blackboost.

THEORY AND SOFTWARE FOR BOOSTED NONPARAMETRIC HAZARD ESTIMATION

take the form of Beta PDF's, and A3 is the hazard of the log-normal distribution. As will be
explained, the first two cases naturally favour kernel while the third one favours flexsurv.

To investigate the robustness of BoXHED to noise in a high dimensional setting, we also
add up to 40 irrelevant covariates to each hazard function. The trajectories of the covariates
are simulated as piecewise-constant paths with values drawn from U (0, 1].

For the training set we draw 5,000 sample trajectories, and we also draw 5,000 for the
test set.

Results. Table 1 presents the L?-errors for the hazard estimators when applied to the
simulated datasets. The main takeaways are:

e BoXHED always outperforms kernel when irrelevant covariates are present. The meth-
ods are comparable when no irrelevant covariates are present, with kernel having the
edge in the first two cases A\; and Ag. This is because the kernel function K(u) is a
location- and scale-transformed Beta PDF, which is also the functional form for A\q
and Xo. It is therefore unsurprising that kernel is able to approximate A; and As
better than regression trees. The minuscule edge that kernel enjoys for A4 is likely
due to the fact that it was tuned directly to the test data.

e For A3, flexsurv performs the best, followed closely by BoXHED. The reason for
flexsurv’s outperformance is due to the fact that it includes the log-normal dis-
tribution as one of its parametric options, so it is correctly specified for As.

e Neither BoXHED nor blackboost are affected much by irrelevant covariates, while
kernel’s performance drops dramatically when irrelevant covariates are added. These
findings are in line with the well known fact that kernel smoothing suffers from the
curse of dimensionality, while boosted trees automatically perform variable selection.

5. Discussion

Survival data with potentially high-dimensional time-dependent covariates are becoming
increasingly common in applications, yet there is a paucity of theoretically sound methods
for analyzing them in a nonparametric way. Our proposed hazard estimator adds to this
literature in a meaningful way, and we have made the BoXHED implementation available on
GitHub to extend the machine learning toolbox for survival analysis. The simulation results
here illustrate the value of BoXHED for time-dependent covariate survival problems.

References

0. O. Aalen. Nonparametric inference for a family of counting processes. Annals of Statis-
tics, 6(4):701-726, 1978.

A. Bellot and M. van der Schaar. Boosted trees for risk prognosis. In Machine Learning for
Healthcare Conference, pages 2—16, 2018.

A. Bellot and M. van der Schaar. Boosting transfer learning with survival data from het-
erogeneous domains. In The 22nd International Conference on Artificial Intelligence and
Statistics, pages 57—65, 2019.

LEE CHEN ISHWARAN WANG ZHAO PAKBIN MORTAZAVI

H. Binder and M. Schumacher. Allowing for mandatory covariates in boosting estimation
of sparse high-dimensional survival models. BMC Bioinformatics, 9(1):14, 2008.

P. Blanche, M. W. Kattan, and T. A. Gerds. The c-index is not proper for the evaluation
of-year predicted risks. Biostatistics, 20(2):347-357, 2019.

P. Bithlmann and T. Hothorn. Boosting algorithms: Regularization, prediction and model
fitting. Statistical Science, pages 477-505, 2007.

T. Chen and C. Guestrin. XGBoost: A scalable tree boosting system. In Proceedings of
the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining, pages 785-794. ACM, 2016.

T. Hothorn. Transformation boosting machines. Statistics and Computing, pages 1-12,
2019.

H. Ishwaran, U. B. Kogalur, E. H. Blackstone, and M. S. Lauer. Random survival forests.
The Annals of Applied Statistics, 2(3):841-860, 2008.

D. Jarrett, J. Yoon, and M. van der Schaar. MATCH-Net: Dynamic prediction in survival
analysis using convolutional neural networks. arXiv preprint arXiv:1811.10746, 2018.

Changhee Lee, William Zame, Ahmed Alaa, and Mihaela Schaar. Temporal quilting for
survival analysis. In The 22nd International Conference on Artificial Intelligence and
Statistics, pages 596-605, 2019.

D. K. K. Lee, N. Chen, and H. Ishwaran. Boosted nonparametric hazards with time-
dependent covariates. Annals of Statistics (forthcoming), 2021.

H. Li and Y. Luan. Boosting proportional hazards models using smoothing splines, with ap-
plications to high-dimensional microarray data. Bioinformatics, 21(10):2403-2409, 2005.

J. P. Nielsen and O. B. Linton. Kernel estimation in a nonparametric marker dependent
hazard model. Annals of Statistics, 23(5):1735-1748, 1995.

M. L. G. Pérez, L. Janys, M. D. Martinez-Miranda, and J. P. Nielsen. Bandwidth selection in
marker dependent kernel hazard estimation. Computational Statistics and Data Analysis,
68:155-169, 2013.

R. Ranganath, A. Perotte, N. Elhadad, and D. Blei. Deep survival analysis. In Machine
Learning for Healthcare Conference, pages 101-114, 2016.

K. Ren, J. Qin, L. Zheng, Z. Yang, W. Zhang, L. Qiu, and Y. Yu. Deep recurrent survival
analysis. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 33,
pages 4798-4805, 2019.

G. Ridgeway. The state of boosting. Computing Science and Statistics, 31:172-181, 1999.

X. Wang, A. Pakbin, B. J. Mortazavi, H. Zhao, and D. K. K. Lee. BoXHED: Boosted
exact hazard estimator with dynamic covariates. In International Conference on Machine
Learning, pages 9973-9982. PMLR, 2020.

10

	Introduction
	Theory overview
	BoXHED implementation
	Numerical Study
	Discussion

