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Abstract

Survival analysis is a type of semi-supervised task where the target output (the survival time) is often
right-censored. Utilizing this information is a challenge because it is not obvious how to correctly
incorporate these censored examples into a model. We study how three categories of loss functions
can take advantage of this information: partial likelihood methods, rank methods, and our own
classification method based on a Wasserstein metric (WM) and the non-parametric Kaplan Meier (KM)
estimate of the probability density to impute the labels of censored examples. The proposed method
predicts the probability distribution of an event, letting us compute survival curves and expected times
of survival that are easier to interpret than the rank. We also demonstrate that this approach directly
optimizes the expected C-index which is the most common evaluation metric for survival models.

Introduction

Survival analysis aims to predict the first occurrence of a stochastic event, conditioned on a set of
features. Cases where the sample time wasn’t recorded because the event in question wasn’t observed
can be framed as a particular type of semi-supervised learning where part of the target values are
referred to as right-censored. In formal terms, we can say that for some examples we do not have the time
of event T', but rather a time 7j (censoring time) such that we know 71" > Tj. The classical approach to
survival analysis, the Cox proportional hazards model, Cox (1972) takes into account censored samples.
Ranking approaches Raykar et al. (2007) is another way to take these censored samples into account by
incorporating them into the training using pairwise ranking loss. Although the exact time of the event
is not known, the pairwise relationship with respect to a censoring date is known for an event occurring
before the censored event. We would thus like to predict the probability distribution of an event.
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In this study, we propose to use the Wasserstein metric (WM) to learn the probability distribution
of the event time. This approach not only provides a more easily interpreted prediction but allows us
to impute the distribution of censored samples given global survival statistics with the non-parametric
Kaplan Meier (KM) estimate. Our intuition is that training with the KM estimate provides a richer
signal during training than a rank loss. We find that this method produces useful predictions despite
a high percentage of censored samples. We also find that this approach directly optimizes the C-index
Harrell et al. (1982) which is the most common evaluation metric for survival models. We compared
our proposed loss to a set of common ranking-specific losses on several reference survival datasets. Our
method is competitive with ranking and likelihood methods that take into account pairwise interactions,
and has the added advantage of providing a good estimation of the event time and the survival curve,
yielding more easily interpreted predictions.

Survival data

In what follows, we will use the f_ollowing notation (summarized in Table 1). Let X be the feature vec-
tor of_the i-th example and let yg') take value 1 if event ¢ happened at time ¢ and O otherwise. Moreover,
let 9 Y be the estimated probability of event i happening at time ¢ and let t() be the (scalar) actual time

of event i. We (ignote by Z,E ) and 2( ) the true and estimated cumulative probability distribution of y.

(1 — (1)

Namely, z;’ = Y - Finally, let ¢V be 1 if example 7 is observed (non-censored) and 0 otherwise.

Notation Meaning

T random variable for time of event
x(® feature vector
y(i) yg) is 1 if event occurred at time ¢, 0 otherwise
¢ time of the event (real-valued)
e indicator Othether example is right-censored

Zg) true CDF ( t0<tyt0 ) attime ¢
2&') estimated CDF at time ¢

Table 1: Notations used in this section, with superscript () indicating the i-th example is concerned.

Ties and censored data

Survival datasets describe events that can have a low temporal resolution (time scale) causing ties
between samples. A given unique time (at a given resolution, e.g. one day) can correspond to multiple
events. Such events are tied which implies that more precise predictions are not relevant. However,
they must be given special attention in constructing loss functions.

As mentioned earlier, another characteristic of survival data is that they are right-censored. We
can still use these examples but only in comparison with samples that had an event before the date of
censorship or by imputing the event time based on statistics over the data.
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Metric of evaluation

The concordance index or C-index Harrell et al. (1982) is the standard evaluation metric for ranking
survival models. It corresponds to the probability of correctly ranking a pair of event times sampled
from the data distribution, and to the normalized Kendall tau metric between the true and predicted
distribution Kendall (1938). It can be seen as a generalization of the Area Under the Receiver Operating
Characteristic Curve (AUROC) that can handle right-censored data Raykar et al. (2007).

We define an acceptable pair as one for which we are sure that the first event occurs before the
second. These are the pairs for which the first element is non-censored, and for which the censoring
or event time of the second element is strictly greater than the first. Let A be the set of acceptable pairs.
Then, the C-index to be Hiaxim'g%d can be written as:

— 1 )< foxi) +31 fxD)=f(xd) .

A
J J (x(i);x(j))ZA

Loss functions for censored data

The aim of this paper is to explore the benefits of using a WM as a loss function for survival data
analysis. As a result, in this section we present loss functions in the context of survival prediction for
censored data. We divide these loss functions into three categories: partial likelihood methods, rank
methods, and our classification method based on the WM.

As we focused on comparable neural network architectures, we exclude from our benchmark more
classical methods such as Random Survival Forests Ishwaran et al. (2008) (shown in Katzman et al.
(2016); Luck et al. (2017) to perform worse than deep learning models trained with a Cox Loss). We
also did not attempt a comparison with Deep Exponential families Ranganath et al. (2016), which use
a generative approach, making a direct comparison harder.

Cox Model

Cox introduced a general conditional log-likelihood to fit survival models, in which the probability of
observations is maximized Cox (1972). It was demonstrated by Raykar et al. (2007) that Cox’s partial
likelihood is approximately equivalent to maximizing the C-index. We present the general formula,
with a real-valued score prediction function f estimating the probability of the event at a particular
time, given input features X(V).

Denoting the predicted score f%(i)) =expfd xV) the loss'g:

0= log/ (x1") log SO
i:cW=1 jtd

We also consider a variant of this loss, Efron’s approximation Efron (1977) that commonly improves

performance when there are many tied event tigggs. In thatgase, the left-hand term of the log-likelihood

remains the same, but the right-hand sum log f (X(i)) is replaced by
ixc®W=1  j:t@ t®
St > _ ;| X
log FD) e f(x)
1=0 j:ta JH J
= jt® k2H

where 7 denotes the unique times, H the set of indices ¢ such that tMW=7randc =1,
In our experiments, the Cox variant refers to a multi-layer perceptron (MLP) f trained with the
normal Cox loss or with Efron’s approximation loss, as in Katzman et al. (2016); Luck et al. (2017).



EXPLORING THEWASSERSTEIN METRIC FOR SURVIVAL ANALYSIS

Ranking

Many methods attempt to directly predict the rank of the different examples. This is done by learning
the following objective: X

argmax% f (xM) £ (x1y)
(x(;x())2A

where is a function that relaxes the non-differentiatlef the C-index Raykar et al. (2007). We
evaluated the functions used in Raykar et al. (2007), Ranking SVM Herbrich et al. (2000), Rank-
boost Freund et al. (2003) and RankNet Burges et al. (2005). These functions have been shown in
Kalb eisch (1978) to correspond to lower bounds on the C-index. Some of the expressions mentioned
in those works are identical up to a constant, which would have no impact on the nal result. We use

to denote the Sigmoid functiari m

Wasserstein metric

The Wasserstein metric was considered among others as part of a tree-based algorithm for survival
analysis Crowley et al. (1995). The work proposes the metric as one of many possible choices, and
does not propose a theoretical justi cation for its use. While there have to our knowledge been no
other previous attempts to use the Wasserstein metric on survival data or ranking problems, Frogner
et al. (2015) used a Wasserstein loss for image classi cation and tag prediction. Hou et al. (2016)
and Beckham and Pal (2017) apply a Wasserstein metric for the more restrictive case of ordinal
classi cation. Recently, Mena et al. (2018) used the Sinkhorn algorithm, which is commonly used in
optimal transport applications, as an analogy to the Softmax for permutations.

The WM is the minimum cost to transport the mass from one probability distribution to another. In
the case of distributions of discrete supports (histograms of class probabilities), this is computed by
moving probability mass from one class to another, according to the ground distance matrix specifying
the cost to transport probability mass to and from different classes. Thus, the WM takes advantage of
knowledge of the structure of the space of values considered, e.g., the 1-dimensional real-valued time
axis, so that some errors (e.g. between neighboring events) are appropriately penalized less than others.

The WM is particularly adapted to a survival context. We deppthe true data distribution, and
p the distribution estimated by the model. We writé¢he set of joint distributionp( ; ) with left and
right marginalg andp, respectively. Given an exampteand corresponding real time of evant
we can write:

W(p ipr)= o( 'TI)Z Erim p(:jx) d(T1iT2)
Asp; is a Dirac, we have that:

ET1;T2 p(;jx) d(Tl;TZ) = ETl p( ;Tjx) d(Tl;T)
In all that follows,d(T1;T>) is chosen to be proportional to the number of train set elements having
events betweef; andT,. The termis thereforBr |, (7jx) 1 Cindex.

USE AS A LEARNING OBJECTIVE

Levinaand Bickel (2001) notes that under certain conditions satis ed inthe case of ordinal classi cation,
the WM takes the following expression:

WM(pid= = jiCDF () CDF (@

whereT is the size of the Softmax layer a@DF (:) is a function that returns the cumulative density
function of its input density. Her@,andq are two probability distributions with discrete supports.
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we writef (x)= 20 to highlight the de)gendency onThe objective can be written as:
argmin% wijjiz®  z®jj':

|
Herew; corresponds to thd(T;;Ti+1 ). Itis computed using train set data. The correspondence to
the expected C-index only holds fior 1. Works in ordinal classi cation of images considered the
squared Wasserstein metric Hou et al. (2016) in addition tb fhdistance. We considered additional
values of, namelyl:5and2 in our experiments as a relaxation of the problem, and observed in practice
better gradients for those higher values.of

IMPUTING MISSING VALUES FOR CLASSIFICATION

In order to allow the WM objective to lead to good training, we have imputed the CDF of the censored

datawithl: KM ,whereKM isthe Kaplan-Meier non parametric estimate of the survival distribution

function computed on the training set (see Figure 1). With the KM estimator, the survival distribution

functionS(t) is estimated as a step function, where the value attinsecalculated as follows:
Sti)=8(t )@ di=n);

with d; denoting the number of eventstatindn; the number of patients alive just befdre

Figure 1: An overview of the proposed distribution matching loss. In the case that a sample is censored
the KM estimate is used to impute the probability that should be assigned for that event.

Experiments
Datasets

We assess the presented models on a variety of publicly available datasets. The characteristics of these
datasets are summarized in Table 2.

Nb. Nb. (%) Nb. (%) Nb.

Datasets samples  censored unique times features

SUPPORT2 9105 2904(32.2) 1724(19.1) 98
AIDS3 3985 2223(55.8) 1506 (37.8) 19
COLON 929 477(51.3) 780 (84.0) 48

Table 2: Characteristics of the datasets used in our evaluation. The datasets have different numbers
of samples, percentage of censored, and tied patients. The features are typically continuous or discrete
clinical attributes.
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SUPPORTZ records the survival time for patients of the SUPPORT study. It is a medium-sized
dataset with a relatively low proportion of censored patients.

AIDS3? corresponds to the Australian AIDS Survival Data. Data on patients diagnosed with AIDS
in Australia before July 1, 1991. This data set has been slightly altered as a condition of its release,
to ensure patient con dentiality. It is a small dataset with a medium proportion of censored patients.

COLON? consists of data from the rst successful trials of adjuvant chemotherapy for colon cancer.
We considered death as a target event for our study.

Data pre-processing

We used a one-hot encoding for categorical features, and unit scaling for continuous features. For
features with missing values, we added an indicator function for the absence of a value.

We performed 5 fold cross validation and kept 20% of the train set as a validation set. The prediction
performance was reported as meastandard error of the C-index over the 5 folds. Early stopping
was performed on the validation C-index.

We used a multi-layer perceptron with ReLU activation functions where applicable, and used
Dropout Hinton et al. (2012), Batch Normalization loffe and Szegedy (2015) and L2 regularization
on the weights. We used the Adam optimizer. For the ranking and log-likelihood methods the output
was a single unit with a linear activation function. For the methods requiring a prediction of output
times, we used a Softmax function. Our code was written in PyTorch Paszke et al. (2017)

We performed hyper-parameter tuning with Bayesian optimization for each splitindependently. The
training and validation sets were used to determine the optimal hyper-parameters, namely number of
layers (1-4), layer width (10-1000), dropout fraction (0.0-1.0), learning rate (1e-6, 1le-3) ahd, the
regularization coef cient (1e-8, 1e-2). For WM models, we also optimized the time-granularity in
the range (1-5). We use a patience of 20 for early stopping. The hyper-parameters of each model were
selected with the same number of runs, in order to provide a fair comparison.

Quantitative evaluation

We aim to demonstrate that our method provides a good time prediction, while remaining competitive
in terms of C-index with more specialized methods, such as ranking losses and Cox partial-likelihoods.
To do so, we rstreport C-index values over multiple runs of our model and the baselines, on different
datasets. We also introduce experiments to evaluate the effect of increasing the proportion of censored in-
dividuals, and either removing censoring, or treating censoring as an actual event. Finally, we report the
absolute error relative to the event range, allowing a comparison with state-of-the-art survival models.

COMPARISON OF DIFFERENT RANKING METHODS

We study the impact of the different loss functions in Table 3. We determine how the standard Cox
model performs in comparison to ranking and classi cation losses.

The ranking functions are plotted in Figure 2 to illustrate how they scale errors differently.

One way to study the differences between these methods is to look at the counts of how many
examples were wrongly predicted at every time point. In Figure 3, we look at the number of samples
over predicted at every time point usin%(the following calculation for each non-censored patient:

1(rank>t)

¢ N t

1. available at http://biostat.mc.vanderbilt.edu/wiki/Main/DataSets
2. available at https://vincentarelbundock.github.io/Rdatasets/datasets.html
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Loss Type Variant SUPPORT2 AIDS3 COLON DEATH
Partial likelihood Cox 87:16 0:23 5592 061 6425 0:27
Partial likelihood Cox Efron's 86:86 0:22 56844 0:29 6224 0:37
Ranking (2) 87:21 0:20 5538 0:63 6383 0:25
Ranking Log-sigmoid 86:98 0:21 57.34 0.41 6397 0:31
Ranking (z 1) 87.22 0.21 57.03 0:33 65.16 0.30
Ranking 1 exp( z) 87:21 0:18 5598 0:54 6393 0:45
WM (ours) =1 86:52 0:12 5514 0:56 6292 0:59
WM (ours) I=1:5 8673 0:21 5725 04 6317 0:25
WM (ours) =2 87:15 0:22 5607 0:48 6360 0:58

Table 3: Performance scores of the different methods. The table reports the C-index staadard

error over the 5 fold. For each dataset, the best model in terms of mean score is highlighted in bold.
We draw the readers attention to the classi cation losses which are among the losses that give the
bestresults.

In Figure 4 we also directly plot the alignment of predicted rank against the ground truth rank for the
SUPPORT2 dataset. We observe that WM captures the rank well and exposes a step in the predictions
which may expose some unknown pattern in the data. The red line indicates the min and the max rank
to highlight where samples are tied.

TIME PREDICTION EVALUATION

The performance of our models are also evaluated in terms of absolute error relative to the event range,
i.e.,jf tj=tmax FOr censored events, the relative error is de nak(0;t f)=tmax , to account for

the fact that no error is made as long asf. Table 4 shows the meanstandard error over the 5 fold

of the median and 50% empirical intervals for relative absolute errors on non-censored events, on all
test-data. Our method is competitive with the state-of-the-art DATE methods, without requiring the
introduction of a generative model, or extra regularization losses. We achieve better C-index values
than those reported, and for the best methbdsl ;| = 1:5), the 50% empirical ranges is from the

same range. Interestingly, flor 2 our model performs worse, while still maintaining a good C-index
value. This is due to the fact that the evaluation criteria relates tbaror.

Method SUPPORT2 AIDS3 COLON DEATH

WM (I=1) 1.545 0.059(0.274,16.818) 29.781.109 (29.904,33.100) 48.053.886 (31.343,62.771)
WM (I=1.5) 1.938 0.272(0.414,18.524) 29.458.007 (27.430,31.564) 31.752.716(17.897, 39.596)
WM (1=2) 3.721 0.232(1.196,20.612) 28.769.716(27.285,31.001) 32.314.502 (16.863, 38.385)

DATE 2.7(0.4,16.1)* -
DATE-AE 1.5(0.4,19.2) -
DRAFT 2.0(0.2,35.3)* -

Table 4: Mean standard error over the 5 fold of that median relative absolute errors (as percentages of
tmax ), ON non-censored data. Other methods are the recent state-of-the-art models for survival modeling
from Chapfuwa et al. (2018), indicated by an asterisk (only one split considered in this case). Rangesin
parentheses are 50% empirical ranges over (median) test-set predictions. - indicates no reported value.
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Figure 2: The different functionsused in the ranking losses. Depending on this function, ranking
errors will be accounted for differently which can impact overall learning.

(8) SUPPORT?2 (b) AIDS3 (c) COLON

Figure 3: We compare each method by plotting the percentage of patients that survived after their
predicted rank. The ranking provided by each method xed training/validation/test split is used for
all methods and the test set is shown.

IMPACT OF USING CENSORED DATA

The purpose of this section is to demonstrate why censoring should not be ignored due to the infor-
mation we can garner from it. We compare three methods to account for censored data. First, we
completely removed censored examples from the training set (no censored data). Second, we also
considered the censoring time to correspond to an actual event occurrence (transforming each example
censored at timeinto the same example with an event occurring at tipfdeath at censoring). Finally,



EXPLORING THE WASSERSTEIN METRIC FOR SURVIVAL ANALYSIS
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Figure 4: Actual and predicted log rank for the uncensored patients only. From left to right the Cox
Efron, the log sigmoid and the WM for the SUPPORT?2 dataset. The min and the max correct rank
is shown in red. They overlap unless there are many ties.

we also listed results for the standard approach (with censored data). In the case of WM, the censored
times are imputed with the (1 K M) curve.

We run this experiment on the SUPPORT?2 dataset for the three best methods of each category as
it is the largest public dataset we have: Cox Efron’s, o and our method’s WM. The results are presented
in Table 5. Overall, the WM is equivalent to the others in the two contexts examined.

—— EMD (ours)
___._—_.___.;_._—ijl~~‘ -+~ log sigm
\b§\+ —-- Cox Efron

..

AN

013 0;4 0;5 0;6 0j7 0j8 0j9
% censured patients
Figure 5: We study how the composition of censored and uncensored patients during training impacts
the C-index mean standard error over the 5 fold in the SUPPORT?2 dataset. The validation and test

sets are fixed and the training set has censored patients introduced by marking patients as censored
at random. The plot starts at 30% because the dataset has that many censored patients by default.
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Figure 6: Predicted survival curve for all individuals in the test set of a single fold of SUPPORT2.
Darker hues of red indicate higher densities of examples having similar survival curves.
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Method WM (1=2) Ranking (o) Cox

No censored data  85.322 0.169 85.830 0.230 85.460 0.192
Death at censoring 83.714 0.242 83.743 0.229 83.305 0.208
With censored data  87.147 0.216 87.214 0.198 87.162 0.226

Table 5: We explore how the three categories of methods are impacted by adding censored data. The
table reports the C-index mean  standard error over the 5 fold. For “Death at censoring”, we set the
death event as the censored time. It is clear that censored data contains information that we can use
to make better predictions.

EXPLORING THE IMPACT OF CENSORED DATA

In order to determine how much of an improvement we can obtain from incorporating censored data we
can vary the composition of samples that are censored in the training data, while keeping the validation
and test sets the same. In Figure 5 we show the evolution of the C-index with different percentages
of censoring of the training set in the SUPPORT?2 dataset.

Overall, we observe a drop in performance of our method relative to the others. This is most likely
due to the fact that the KM estimator used for the WM during training benefits from having many
uncensored examples.

Visual comparison of the test-set survival distribution and survival curve prediction

We present qualitative results that show particularities of the data and predictions for SUPPORT?2, the
dataset that gives the highest C-index.

Figure 6 shows the predicted survival curves for all test set patients for SUPPORT?2. Many events
occur very early, making these events a separate mode. The strong penalty placed by the weighted WM
on predicting an event too early explains the gap between the two groups of survival curves. Addressing
this by adding a regularization term could improve the resulting error.

The model is very good at predicting events early on. Further time steps introduce greater uncertainty
as the probability mass is spread out. Wrongly predicted examples tend to occur at later times. This is
again a consequence of the fact that many events occur early in training, meaning that the transportation
cost is highest between the early time buckets.

Figure 7 shows the violin plots for the real time and expected time (as predicted by the model). This
recapitulates what was mentioned previously about the model being better at predicting earlier time
steps due to the nature of the loss. The bottleneck in the right-most plot (expected time) corresponds to
aregion of high transportation cost due to the large quantities of events occurring at that point in time.

Conclusion

We proposed a new method based on the WM for survival data analysis. Experiments on the different
datasets show that our models trained with the WM loss produce accurate predictions (evaluated in
terms of C-index) compared to the more classical losses of the Cox model and ranking loss functions,
which directly approximate a lower bound of the C-index. While not always state of the art, our method
always yields some of the best results for each dataset.
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