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Abstract

In many biomedical applications, outcome is measured as a “time-to-event” (e.g., time-to-
disease progression or death). Cox proportional hazards (CoxPH) model has been widely
used to assess the association between baseline characteristics of a patient and this out-
come. Meanwhile, in therapeutic areas such as Oncology, clinical imaging (e.g. computer-
ized tomography (CT) scan) is widely used for detection, diagnosis of disease, monitoring
of progression and treatment effect. We are interested in using such images with neural
network to build predictive models with survival data. However, the standard methodolo-
gies cannot be applied to imaging data with time-to-event outcome due to challenges such
as memory constraint. In this work, we develop a simple methodology to engage images
with survival data. Our proposed methodology is a modified version of CoxPH model that
is amenable to SGD and allows us to overcome the existing challenges. We present the
neural network architecture for the survival prediction using images. Our architecture can
leverage new advances in network topology.

Keywords: Survival prediction; Time-to-event outcome; Deep neural network; Convo-
lutional neural network; Cox proportional hazards; Stochastic gradient descent; Imaging
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1. Introduction

In many biomedical applications, outcome is measured as a time to an event of interest,
e.g., time to death, time to disease progression, etc. Assessing the relationship between the
baseline features of a patient and this outcome is known as Survival Analysis (Schober and
Vetter, 2018). In such applications, we have partial information on some patients due to
censoring. For instance, some patients may leave the study early before experiencing the
event of interest. The Cox proportional hazards (CoxPH) model (Cox, 1972) is a widely
used tool for assessing such association when data are incomplete due to censoring. In
such a model with n patients, the parameter of interest 3 is estimated by maximizing an
objective function called the log-partial-likelihood which is defined as

pl ™ (BD™) =3 5 (fﬂ(m(i)) ~log (D exp (fﬁ(w(j))))> (1)
i=1 JER;

where covariate (Y is a p-dimensional vector representing characteristics of patient i;
fg(:c(’)) is a specified function, usually called the risk function. It connects the covari-
ates (characteristics) of interest (Y to the outcome of interest (survival time). In many
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scenarios where the standard CoxPH model is used, f is simply chosen as a linear function,
ie., fag(x) =T B =+B121+ -+ Bpap; Ri = {j|t; > t;} is the “risk set for patient i”; §;
is an indicator showing whether patient i is censored (§; = 1: not censored, otherwise cen-
sored). D) represents n independent observations drawn from Cox proportional hazards
model: D™ = {D; = (y;,0;,2)|i = 1,2,...,n} where y; is time to event or censoring,
whichever comes first.

Although the standard CoxPH model has been widely used, it is not amenable to stochas-
tic gradient descent (SGD)-based algorithms because the expression in (1) cannot be split
over individual patients. SGD-based algorithms are key to engage with complex prediction
models such as those characterized by neural networks. In applications such as oncology
and pathology where we have imaging data (e.g., CT or pathological images), we train com-
plex models using SGD-based algorithms to do prediction/classification. Therefore, there
is a need to come up with a method that facilitates using SGD-based algorithm for survival
prediction (i.e., with time-to-event outcome) through training complex models for fg(x)
through neural networks.

There have been some efforts to overcome this issue with standard CoxPH models. Toulis
and Airoldi (2017) presented SGD-based algorithms for a variety of applications including
the Cox proportional hazards model. However their algorithm suffers from two issues: It
cannot accommodate streaming data, and in fact it has high computational complexity
(it requires ~ n? computation). Raykar et al. (2008) proposed directly maximizing the
concordance index (Austin and Steyerberg, 2012). While this is an interesting predictive
target, it moves us away from generative parameters in the Cox model. Katzman et al.
(2017); Ching et al. (2018) connected neural networks to the log-partial likelihood. However,
they engaged with [non-stochastic] gradient descent, which is not amenable to very large
and/or imaging datasets. The work of Kvamme et al. (2019) is most closely related work.
As with Katzman et al. (2017) and Ching et al. (2018), they connect neural networks with
the partial likelihood; however they note that a stochastic gradient-like optimization method
will be needed to scale to large datasets. As such, they come up with a heuristic for an
“approximate gradient”. They do not justify the heuristic (and in fact, their stochastic
gradient is not unbiased, so there is no guarantee that any of the results of SGD-based
methods will hold). In (Gensheimer and Narasimhan, 2019) authors presented a fully-
parametric model based on SGD that is out of our focus that is CoxPH as a semi-parametric
model.

Authors in (Tarkhan and Simon, 2020) presented a simple framework for proportional
hazards regression that is amenable to SGD-based algorithms. It facilitates training com-
plex, e.g., neural-network-based models with survival data. Their proposed framework
generalizes and justifies some of the heuristic algorithms in other work — it both identifies
why it should work and proves that it will. They considered a population parameter ,8(5)
that is defined as the population minimizer of the expected negative partial likelihood of s
random patients as

B¢) = argmin{E,[-pI®) (3/D)] } (2)
B

where D) is a draw of s random patients from the population. They proved that when
the assumptions of the Cox model hold, then ,6(5) is equal to the true parameter 3*. Then
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they proposed to use SGD where the estimated parameter at m-th iteration is given as

Blm) = Blm — 1) + 3 x V5 {p(B(m - )DL } (3)

where 3 (m—1) is the estimated parameter at the previous iteration m—1; 7,, is the learning
rate; Vg(.) is the gradient with respect to parameter 3; pl(s) (B(m — 1)|D7(7f)) is log-partial
likelihood with random dataset of s patients Dfﬁ).

In this extended abstract, we aim to use the proposed framework in (Tarkhan and
Simon, 2020) to show how we can develop predictive survival model using imaging data
by engaging with deep neural networks (DNN) to train complex models. Note that if we
choose s = 2, the log-partial likelihood in (2) becomes a smoothed version of concordance
index given by

efﬁ(w“))
fa@D) | fa@®)

efﬁ(w@))
Ia@D) | ofa(@?)

Pl (8D = zog( )1(7:1 <to) + log( )1(752 <t).

(4)

Therefore, our loss function is defined as the negation of (4). Note that due to censoring,
for instance in the case of s = 2, not all pairs are comparable. A pair is comparable if the
patient with smaller time is not censored. We do not update parameters of model (defined
by neural network) for those non-comparable pairs.

2. Method

2.1. Survival neural network architecture

One important aspect of the proposed framework (2) by (Tarkhan and Simon, 2020) was
to facilitate the use of neural network-based models with time-to-event outcomes. Figure 1
illustrates the network architecture of such a model for survival prediction using imaging
data. This architecture receives s images from a random stratum of s patients out of n
patients each time. There are s parallel lines of network Net for the stratum of s images.
The network Net is exactly the same for all lines (input images), i.e., they share the same
parameters (coefficients) of interest 3 that need to be estimated. Output of these s lines
are the estimated risk scores fg(x;) for patients i = 1,2,...,s patients. After gathering
these s estimated risk scores, we estimate the parameters of network @ by minimizing
the negative log-partial likelihood (as the objective function) following (3). If s = 2, this
architecture is similar to a Siamese-like network (Koch et al., 2015). Note that network
Net can have any structure with one single output, it could be a customized network or a
complex state-of-the-art network.

2.2. Data generation mechanism

We now engage with empirical experiments using the network architecture presented in
Figure 1: We use MNIST dataset (Deng, 2012) to simulate time-to-event outcome. The
MNIST dataset is a standard benchmark dataset that has been used for the image clas-
sification purposes. This dataset contains ngpqin = 60,000 and ngest = 10,000 greyscale
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Figure 1: A generic network architecture for survival prediction using imaging data. There
are s parallel lines of exactly the same network Net, one line for a single image.
Output of each line is the estimated risk for corresponding patient which goes to
the output node with a loss function defined in 2.

images with size 28x28 for training and testing, respectively. These images correspond to
digit numbers between 0 and 9. We follow (Bender et al., 2005) to generate the censoring
and event times independently assuming an exponential baseline hazards with parameter
A = 1. Time-to-event for digit d; is given by

y; ~ exp(p = exp (—nd;)) (time to event/censoring),
d; ~ Bernoulli(p =1 —p¢), p. = Pr(t; > ¢), (5)

where y; = min(t;, ¢;), i.e., time to event ¢; or censoring ¢; whichever comes first. Here p,,
the probability of censoring, is a parameter we can tune. In this work, we choose probability
of censoring as 20% (p. = 0.2); n is the proportion of risk score (fg(X;)) with respect to
digit d;. A higher n corresponds to a higher risk score and a better separation of times-to-
event for different digits. Note that u = exp (—nd;)) is the scale parameter of exponential
distribution. With datasets D(rain) — (Yi, 05y Xi)yi = 1,2,..., Nyrain and assuming no
information on d;, the task of the neural network is to learn survival from handwritten
images X;.

2.3. Oracle concordance

For simulation results, we choose s = 2, i.e., we update our model using pairs of patients
for each step of the SGD algorithm. For the sake of comparison, we calculate the Oracle
concordance, i.e., the best concordance that the neural network can achieve as

Ei,j:ti<tj {I[di > dj] +0.51[d; = dj]}

Ntest (ntest - 1)/2

Coracle(n) = ) (6)
where ngest(niest — 1)/2 represents the total number of possible pairs from testing dataset
with testing data size nyes. In this definition, which has been widely used (Klaveren et al.,
2016), we assign 1 if ¢; < t; and d; > d; (concordant), 0 if ¢; < t; and d; < d; (dis-
concordant), and 0.5 if d; = d; (undecided). Note that the Oracle concordance depends on
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1 because distribution of time-to-event depends on 7 based on data generation mechanism
in 5.

3. Results

We use strata size s = 2 with two lines of network Net where our objective function is
defined as negative log of the smoothed concordance index defined in (4). Although, sub-
network Net can have any arbitrary architecture, we consider two choices: (1) a minimalist
architecture including three convolution layers and (2) a state-of-the-art network architec-
ture EfficientNet (Howard et al., 2019) as part of network Net. In all of our simulations, we
use AMSgrad algorithm with learning rate 10~%, one stratum (pair) of patients per opti-
mization step, and 100 epochs. For each epoch, we randomly split the training images into
pairs of images.

3.1. Minimalist network

Given the fact that MNIST dataset includes small-sized greyscale images, a simplistic con-
volution neural network (CNN) has adequate receptive field to capture the relevant features.
We choose a minimalist CNN network including three convolution layers with 32, 64, and
128 (5,5) filters with stride 1. Each of these three convolution layers are activated by ReLU
functions and are followed by (2,2) Maxpool layers. Finally, all of these layers are followed
by a fully connected layer with 256 nodes. Figure 2(a) compares testing concordance index
for varying training sample sizes n and choices of 7. As expected, the performance improves
(closer to Oracle concordance) as n and/or n increases.

3.2. Transfer learning with state-of-the-art network

There are different ways to transfer the information learned by a pre-trained network from
other problems to our specific problem. This is known as transfer learning Yang (2010).
Depending on sample size and similarity of domain knowledge, we can freeze some layers
(initial layers) and train others (higher layers) partially. In our simulation results, we
use baseline EfficientNet-B0 as the first part of network Net to extract features with shape
(7x7x1280) from the layer just before the softmax layer with 1000 outputs. After this feature
extraction step, we added two dense layers with 500 and 256 nodes. Their parameters are
updated by minimizing the objective function defined as negative log of concordance defined
in (4). Figure 2(b) presents the concordance indices for varying n and 7 using EfficientNet-
B0 as part of Net. The performance improves by increasing n and 1. However, we observe
that the performance is worse than that obtained using the minimalist network. The reason
could be that the extracted features from EfficientNet-B0 are not strongly associated with
the time-to-event outcome (due to difference in domain knowledge).

4. Discussion

We presented a generic neural network architecture for survival prediction using imaging
data. We used the MNIST dataset to simulate time-to-event outcomes. We chose two
networks for estimating the risk score: (1) a minimalist network and (2) EfficientNet as a
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Figure 2: Negative log-concordance index for varying training sample sizes and choices of 7 (pro-
portion of risk score to digit value) for (a) minimalist network including three convolution
layers followed by a dense fully-connected layer with 256 nodes; (b) state-of-the-art net-
work EfficientNet as a part of Net followed by two dense fully-connected layers with 500
and 256 nodes.

state-of-the-art network. We observed that both choices resulted in good performance in
terms of concordance index.

It would be of interest to consider the performance of our algorithm with a variety
of datasets. In this work we used the MNIST dataset as an illustrative example, as 1)
it is straightforward to simulate event-times by defining risk scores proportional to digit
numbers; and 2) MNIST is a standard dataset for which convolutional networks have shown
strong performance for classification.

Although transfer learning with state-of-the-art networks may decrease computing time
substantially, in our example the minimalist network for Net outperformed the state-of-the-
art EfficientNet. This is likely, in part, because the MNIST dataset includes small-sized
greyscale images of simple digits and a simplistic CNN likely suffices to capture the relevant
features. However, for more complicated images, one may need to consider more complex
(deeper and wider) networks and/or apply transfer learning with pre-trained state-of-the-art
networks to get the best performance.
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