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Abstract
Two particles are identical if all their intrinsic proper-
ties, such as spin and charge, are the same, meaning
that no quantum experiment can distinguish them. In
addition to the well known principles of quantum me-
chanics, understanding systems of identical particles
requires a new postulate, the so called symmetrization
postulate. In this work, we show that the postulate
corresponds to exchangeability assessments for sets of
observables (gambles) in a quantum experiment, when
quantum mechanics is seen as a normative and algo-
rithmic theory guiding an agent to assess her subjective
beliefs represented as (coherent) sets of gambles. Fi-
nally, we show how sets of exchangeable observables
(gambles) may be updated after a measurement and
discuss the issue of defining entanglement for indistin-
guishable particle systems.
Keywords: quantum theory, indistinguishable parti-
cles, exchangeability, desirable gambles.

1. Introduction

In recent works (Benavoli et al., 2016, 2017) and in par-
ticular in (Benavoli et al., 2019b), we defined a theory of
probability on a continuous space of complex vectors that
complies with the two postulates of coherence (“The the-
ory should be logically consistent”), and of computation
(“Inferences in the theory should be computable in poly-
nomial time”). We then showed that its deductive closure
is tantamount to Quantum Mechanics (QM). Hence QM
may be viewed as a normative and algorithmic theory guid-
ing an agent to assess her subjective beliefs represented as
(coherent) sets of gambles on the results of a quantum ex-
periment. We were then able to derive (in a coherent way)
the main postulates of QM from standard operations in
probability theory (updating, marginalisation, time coher-
ence). This means we derived a theory of probability which
theoretically and empirically agrees with QM experiments.

When one considers systems including more than one
particle, we must consider the implications of another im-
portant empirical observation: in many of these systems the
particles of interest belong to distinct classes of indistin-
guishable (identical) particles. Two (or more) particles are

said to be identical if all their properties (charge, mass, spin,
etc.) are exactly the same. In other words, no experiment
can distinguish one from the other. Hence, all the electrons
in the universe are identical, as are all the protons. This
means that, when a physical system contains two identical
particles, there is no change in its properties if the roles of
these two particles are exchanged.

This law is formulated in QM by the symmetrization
postulate, which establishes that in a system containing
identical particles the only possible configurations of their
properties (e.g., spin) are either all symmetrical or all an-
tisymmetrical with respect to permutations of the labels
of the particles. In the first case, the particles are called
bosons; in the second case they are called fermions.

In this paper, we aim to derive the symmetrization postu-
late from the way a subject accepts gambles on experiments
involving indistinguishable particles. We assume that the
particles are exchangeable, meaning roughly that the sub-
ject believes that the labels (i.e. electron 1, electron 2,..) we
use to denote them, has no influence on the decisions and
inferences she will make regarding the particles.

Exchangeability is a fundamental concept in classical
probability theory and statistics (Diaconis and Freedman,
1980; Regazzini, 1991). Its assumption, and the analysis
of its consequences, goes back to de Finetti (1974–1975)
and his famous Representation Theorem. In statistics, this
theorem is interpreted as stating that “a sequence of random
variables is exchangeable if it is conditionally independent
and identically distributed.” This theorem was generalised
to QM by Caves et al. (2002) for quantum-state tomogra-
phy, which is a technique to estimate the density matrix of
a particle by performing repeated measures (the order of
the measures is assumed to be exchangeable).

In this paper, we instead deal with the exchangeability of
indistinguishable particles. We show that we can derive the
symmetrization postulate by using the general framework
for exchangeable gambles proposed by De Cooman and
Quaeghebeur (2012) for classical (imprecise) probability
theory.1 This confirms, once again, that QM is a subjective
theory of probability.

1. Exchangeability in the context of imprecise probability was originally
proposed by (Walley, 1991, Sec. 9.5)
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The rest of the paper is organised as follows. In Section
2 we recall how QM can be formulated, and thus under-
stood, as an algorithmic theory of desirable gambles. After
formulating in Section 3 the symmetrisation postulate, in
the following Section 4 we derive it in terms of (algorith-
mic) coherence and exchangeability. Finally, in Section 5
we show how sets of exchangeable observables (gambles)
may be updated after a measurement and in Section 6 we
discuss the issue of defining entanglement for indistinguish-
able particle systems

2. Algorithmic Rationality and QM

In this section, we recall some definition and results from
(Benavoli et al., 2019b). Consider a systems of m particles
(each one is an n j-level system, for instance if we consider
the spin of an electron n j = 2: the spin can be “up” or
“down”). When m > 1 the system is said to be composite,
whereas in case m = 1 we are considering a single particle
system. Hence, the possibility space is

Ω =×m
j=1C

n j .

where
Cn j = {x ∈ Cn j : x†x = 1}.

Next, we describe the observables, the gambles in our set-
ting. Let us recall that in QM any real-valued observable is
described by a Hermitian operator (matrix). This naturally
imposes restrictions on the type of ‘permitted gambles’ g
on a quantum experiment. For a single particle, given a
Hermitian operator G ∈H n×n (with H n×n being the set
of Hermitian matrices of dimension n× n), a gamble on
x ∈ Cn

can be defined as:

g(x) = x†Gx.

Since G is Hermitian and x is bounded (x†x = 1), g is a
real-valued bounded function. For a composite system of
m particles, the gambles are m-quadratic forms:

g(x1, . . . ,xm) = (⊗m
j=1x j)

†G(⊗m
j=1x j), (1)

with G∈H n×n, n=∏
m
j=1 n j, and where⊗ denotes the ten-

sor product between vectors regarded as column matrices.2

Therefore, we have that

LR ={g | G ∈H n×n}

is the restricted set of ‘permitted gambles’ in a quantum
experiment. We can also define the subset of nonnegative

2. Why the tensor product? In classical probability, structural assess-
ments of independence/dependence are expressed via expectations
on factorised gambles g(x1, . . . ,xm) = ∏

m
j=1 g j(x j). This factorised

gamble can equivalently be written as (1), see (Benavoli et al., 2019b)
for more details.

gambles L ≥
R := {g ∈ LR | ming ≥ 0} and the subset of

negative gambles L <
R := {g ∈LR |maxg < 0}.3

Since LR is a vector space including the constant gam-
bles (G = cI with I identity matrix),4 we can use standard
desirability to impose rationality principles (coherence) in
the way a subject should accept gambles. However, this
would not lead to QM. Indeed, as discussed in the Introduc-
tion, QM follows by the two principles of coherence and of
computation.5

As shown by Gurvits (2003), for m > 1 the problem of
deciding whether a gamble is nonnegative, that is whether
it belongs to L ≥

R , is NP-hard, thus leading to a violation
of the aforementioned computation principle.6 To fulfil the
computation requirement, we therefore need to change the
meaning of ‘being nonnegative’ by considering a subset
Σ≥ ( L ≥ for which the membership problem is in P. This
is done by considering the following new set of “tautolo-
gies”:

Σ
≥ := {g ∈LR | G≥ 0}.

That is, a gamble is ‘nonnegative’ whenever G is PSD. Note
that Σ≥ is the so-called cone of Hermitian sum-of-squares
polynomials.

What described above is the essence of the algorithmic
rationality behind QM. In other words, the corresponding
algorithmic theory of desirable gambles is based on the
following redefinition of the tautologies:

• Σ≥ should always be desirable,

The rest of the theory follows exactly the footprints of the
standard theory of (almost) desirability. In particular, the
deductive closure for a finite7 set of assessment G is defined
by: 8

• C := posi(Σ≥∪G ).

And finally the coherence postulate simply states that

• A set C of desirable gambles is said to be A-coherent
if and only if −1 /∈ C ,

where ‘A’ stands for the the fact that the algorithmic bounds
of the coherence problem for a finite set of assessments are
established according to the choice of Σ≥.

3. Notice that, since g is a polynomial and Ω is bounded, ming = infg
and maxg = supg.

4. The constant functions take the form g(x1, . . . ,xm) =
c(⊗m

j=1x j)
†I(⊗m

j=1x j) = c.
5. QM is a theory of bounded (algorithmic) rationality (Benavoli et al.,

2019c,a). Generalised types of coherence were described in some
detail in (Quaeghebeur et al., 2015).

6. The infimum coincides with the minimum because gambles are
bounded polynomials.

7. In case of arbitrary set of assessments, we simply ask in addition for
C to be topologically closed.

8. ‘posi(A )’ denotes the conic hull of a set of gambles A . It is defined
as posi(A ) = {∑i λigi : λi ∈ R≥,gi ∈A }.
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Remark 1 In classical coherence, the tautologies are the
set of all nonnegative gambles L ≥

R . This is the only differ-
ence w.r.t. QM. The classical axioms of desirability are: (i)
L ≥

R should always be desirable; (ii) K := posi(L ≥
R ∪G );

(iii) −1 /∈K . However, evaluating if a gamble belongs to
L ≥

R is NP-hard as discussed previously.

Remark 2 There are different notions of desirability (al-
most, strict, real (Walley, 1991)); here we use the term
desirability for almost desirability. A-coherence is an in-
stance of almost desirability.

We can finally associate a ‘probabilistic’ interpretation
through the dual of an A-coherent set. Let us consider the
dual space L ∗

R of all bounded linear functionals L : LR→
R. With the additional condition that linear functionals
preserve the unitary gamble, the dual cone of an A-coherent
C ⊂LR is given by

C ◦ := {L ∈ S | L(g)≥ 0, ∀g ∈ G } , (2)

where S = {L ∈L ∗
R | L(1) = 1, L(h)≥ 0 ∀h ∈ Σ≥} is the

set of states. It is not difficult to prove that C ◦ can actually
equivalently be defined as:

M := {ρ ∈ S | Tr(Gρ)≥ 0, ∀g ∈ G }, (3)

where S = {ρ ∈H n×n | ρ ≥ 0, Tr(ρ) = 1} is the set of
all density matrices and gambles g are defined as in (1)
and are essentially specified by the Hermitian matrix G.
We also show that they are generalised moment9 matrices:
ρ := L(zz†).

The derivation allows us to formulate quantum weirdness
(that is the disagreement between QM and classical physics)
as a Dutch book (sure loss). This goes as follows. Given
that QM uses a stronger notion of positivity/negativity, a
set of desirable gambles can include a gamble f ∈L <

R \Σ<

and still be A-coherent. When this happens, we have en-
tanglement. In this case, the experimental results appear
illogical to us (incompatible with our common understand-
ing), because they are simply incoherent under classical
desirability.

9. In classical probability, given a (real) variable x and an expectation
operator E, the n-th (non-central) moment of x is defined as mn :=
E[xn] (we can also define multivariate moments, e.g., E[xn

1xm
2 ]). Given

a sequence of moments m0,m1,m2, . . . ,mn, there exist infinitely many
probability distributions corresponding to the same moments and they
form a convex set. A sequence of scalars m0,m1,m2, . . . ,mn is a valid
sequence of moments provided that they satisfy certain consistency
constraints. For instance, the moment matrix, obtained by organising
that sequence into a matrix (in a certain way), must be positive
semi-definite. This gives reason for the constraint ρ ≥ 0 for density
matrices in QT. In general, ρ is a generalised moment matrix, that
is a moment matrix computed with respect to a ‘charge‘. (Benavoli
et al., 2019b).

3. The Symmetrisation Postulate
In this section, we formulate the symmetrisation postulate
using QM theory (Cohen-Tannoudji et al., 2020, XIV.C-1,
p. 1434). In the next section, we will instead derive this
postulate using exchangeable gambles.

Suppose we have m particles, each with single-particle
state space represented by a vector space V = Cn

(we as-
sume n j = n, same dimension for all particles). We denote
a state (a wavefunction) with |ψ〉, where |ψ〉 ∈ V .10 Ac-
cording to QM postulates, if the particles were distinguish-
able the composite space of m particles would be given by
⊗m

i=1V . Let us denote the state of a particle with |αi〉, so that
an element of ⊗m

i=1V is denoted as |ψ〉= |α1〉⊗· · ·⊗ |αm〉.

Remark 3 In section 2 we considered xi ∈V , while in this
section we use |αi〉 ∈V . Why? The reason is that, in Section
2, xi represents an unknown “classical” variable (e.g., the
direction of the spin) and we ask a subject to express her
beliefs about xi in terms of acceptance of gambles. Con-
versely, |αi〉 is a state: a proxy quantity which is used in QM
to compute the probability of the results of an experiment.
QM postulates are formulated in terms of |αi〉 (usually de-
noted as |ψi〉). Indeed, under the epistemic interpretation of
QM, |αi〉 corresponds to a belief state and so it is different
from xi. This difference is also evident from the fact that,
for a composite system, |ψ〉= |α1〉⊗ · · ·⊗ |αm〉 ∈ ⊗m

i=1V ,
while [x1, . . . ,xm] ∈ ×m

i=1V . To understand this difference,
consider the toss of a classical coin: Ω = {H,T} and
p = [pH , pT ] ∈ R2 is the vector of probabilities for Heads
and Tails. Now consider the toss of three coins, the compos-
ite possibility space is ×3

i=1Ω, while the joint probability
mass function belongs to ⊗3

i=1R2 = R8.

In this work, we are interested in defining the state space
for indistinguishable particles.

Let π denotes a permutation of the indices of the ele-
ments of the tensor product |α1〉⊗ · · ·⊗ |αm〉. Since such a
permutation defines the product

∣∣απ(1)
〉
⊗·· ·⊗

∣∣απ(m)

〉
, by

permuting the elements of the tensor products, we are basi-
cally permuting the labels of the particles. A permutation
that only swaps two variables is called a transposition.

The sign of a permutation π , denoted by sign(π), equals
1 if π can be written as a product of an even number of
transpositions, and equals -1 if π can be written as a product
of an odd number of transpositions. Notice that the sign of
π can be calculated as follows:

sign(π) = det
m

∑
i=1

eieT
π(i),

where ei is an element of the canonical basis of Rm (see
(Cohen-Tannoudji et al., 2020, XIV.B-2-c)).

Since permutations are linear operator, we can equiva-
lently express permutation π as a matrix operator Pπ acting

10. |ψ〉 is a ket, that is a column vector.
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on the tensor product:

Pπ(|α1〉⊗ · · ·⊗ |αm〉) :=
∣∣απ(1)

〉
⊗·· ·⊗

∣∣απ(m)

〉
.

The matrix Pπ is unitary, that is P†
π Pπ = Pπ P†

π = I, but not
necessarily Hermitian. In what follows, by Pm we both
denote the collection of all permutations and of all corre-
sponding permutation operators.

We now introduce the symmetriser and the antisym-
metriser:

ΠSym :=
1

m! ∑
πr∈Pm

Pπr ,

ΠAnti :=
1

m! ∑
πr∈Pm

sign(πr)Pπr .

which are projectors11 (Cohen-Tannoudji et al., 2020,
XIV.B-2-c). They project onto respectively:

SymmV = {|ψ〉 ∈ ⊗m
i=1V : Pπ |ψ〉= |ψ〉 , ∀π ∈ Pm}

AntimV = {|ψ〉 ∈ ⊗m
i=1V : Pπ |ψ〉= sign(π) |ψ〉 , ∀π ∈ Pm}.

Lemma 4 (Cohen-Tannoudji et al. (2020)) The follow-
ing equalities hold for any permutation operator Pπ ∈ Pm:

1. Pπ ΠSym = ΠSymPπ = ΠSym;

2. Pπ ΠAnti = ΠAntiPπ = sign(π)ΠAnti.

Proof Given two permutations Pπi 6= Pπ j , we have that
Pπ Pπi 6= Pπ Pπ j . Hence we have that

Pπ ΠSym =
1

m! ∑
πr∈Pm

Pπ Pπr =
1

m! ∑
π ′r∈Pm

Pπ ′r .

Analogously, since sign(π)sign(π) = 1

Pπ ΠAnti =
1

m! ∑
πr∈Pm

sign(πr)Pπ Pπr

=
sign(π)

m! ∑
πr∈Pm

sign(πr)sign(π)Pπ Pπr

=
sign(π)

m! ∑
π ′r∈Pm

sign(π ′r)Pπ ′r .

The symmetrisation postulate states the following:

When a system includes several identical par-
ticles, only certain states of its state space can
describe its physical states. Physical states are,
depending on the nature of the identical particles,

11. They are Hermitian Π
†
Sym = ΠSym,Π

†
Anti = ΠAnti and they satisfy

Π2
Sym = ΠSym,Π

2
Anti = ΠAnti and ΠSymΠAnti = ΠAntiΠSym = 0.

either completely symmetric or completely anti-
symmetric with respect to permutation of these
particles. Those particles for which the physi-
cal states are symmetric are called bosons, and
those for which they are antisymmetric, fermions.
(Cohen-Tannoudji et al., 2020, XIV.C-1, p. 1434)

The postulate thus limits the state space (possibility space)
for a system of identical particles. Contrary to the case
of particles of different natures, this space is no longer
the tensor product ⊗m

i=1V of the individual state spaces of
the particles constituting the system, but rather a subspace,
namely SymmV or AntimV , depending on whether the par-
ticles are bosons or fermions. Only states belonging either
to SymmV or to AntimV are physically possible. This is the
reasons they are called physical states.

Given k physical states |ψi〉 (belonging to either SymmV
or AntimV ), we can then define the density matrix as usual:

ρ =
k

∑
i=1

pi |ψi〉〈ψi| ,

where pi are probabilities, pi ≥ 0 and ∑
k
i=1 pi = 1. It can

then be verified that, in the symmetric case, given that
|ψi〉= ΠSym |ψi〉, we have that ρ = ΠSymρΠSym. Similarly,
in the antisymmetric case, ρ = ΠAntiρΠAnti.

Example 1 Consider m= 2 particles with |α1〉 , |α2〉 ∈C
2
.

In this case there are only two possible permutations πa
(identity) and πb (swap) with sign(πb) =−1:

1 2

1 2

1 2

2 1

The permutation matrices are Pπa = I and:

Pπb =


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

 . (4)

The latter acts on |α1〉⊗ |α2〉 as follows

Pπb(|α1〉⊗|α2〉)=Pπb


α11α21
α11α22
α12α21
α12α22

=


α11α21
α12α21
α11α22
α12α22

= |α2〉⊗|α1〉 .

The projectors are:

ΠSym =
I +Pπb

2
, ΠAnti =

I + sign(πb)Pπb

2
=

I−Pπb

2
, (5)
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which act on |α1〉⊗ |α2〉 as follows12

ΠSym(|α1〉⊗ |α2〉) =


α11α21

α11α22+α12α21
2

α11α22+α12α21
2

α12α22

 , (6)

ΠAnti(|α1〉⊗ |α2〉) =


0

α11α22−α12α21
2

α12α21−α11α22
2
0

 (7)

From last equality, it follows that, in case α1 = α2,
ΠAnti(|α1〉⊗ |α2〉) = 0. This is called Pauli exclusion prin-
ciple: two Fermions cannot have identical state.

4. Exchangeable Gambles

In the previous section, we discussed the symmetrisation
postulate. In this section, we formulate it in terms of A-
coherence and exchangeability. In doing so, we extend
some of the definitions and results originally presented
in (De Cooman and Quaeghebeur, 2012) to the quantum
setting introduced in Section 2.

As discussed in Section 2, we consider gambles on xi ∈
V = Cn

. Given m particles, the possibility space is ×m
i=1V .

Therefore, π denotes a permutation of the indices of the
vector (x1, . . . ,xm), i.e.,

π(x1, . . . ,xm) = (xπ(1), . . . ,xπ(m)).

A generic gamble is denoted as:

g(z,z) := z†Gz,

with z :=⊗m
j=1x j. Let πr,πl be two permutations, we define

πlg(z,z)πr :=
1
2
(g(πlz,πrz)+g(πrz,πlz))

=
1
2
(
z†P†

πl
GPπr z+ z†P†

πr GPπl z
)
.

Note that (i) πlgπr = πrgπl , and (ii) πlgπr is a gamble (it
returns real values).13

Remark 5 This definition of permuted gamble is different
from the one used in (De Cooman and Quaeghebeur, 2012)
(the permutation of g(ω) is defined as π ◦g = g(πω)). In
QM, gambles are quadratic forms of complex variables
and, therefore, we can define more general symmetries by
exploiting the fact that z and its complex conjugate z† can
be treated as two “different” variables.

12. The right hand side term in (6) or (7) is a complex vector, but its
norm can be different from one. In this latter case, it needs to be
normalised.

13. This holds because P†
πl GPπr +P†

πr GPπl is Hermitian.

Example 2 Consider m = 2 particles with x1,x2 ∈ C2
. We

have already seen that there are only two possible permu-
tations πa (identity) and πb (swap). Therefore, we have
πagπa = g and

πagπb =
1
2
((x1⊗ x2)G(x2⊗ x1)+(x2⊗ x1)G(x1⊗ x2)) ,

πbgπb = (x2⊗ x1)G(x2⊗ x1).

For πl ,πr ∈ Pm, we write

δ
?
l,r :=

{
sign(πl)sign(πr) when ?= Anti,
1 when ?= Sym.

Given this definition, in the remaining of this section, all
definitions, results and corresponding proofs will be param-
eterised by ? ∈ {Anti,Sym} and δ ?

l,r. They therefore apply,
uniformly, to both the symmetric and the antisymmetric
cases.

We now provide the definition of A-coherent ?-
exchangeable set of desirable gambles.

Definition 6 Consider the set

I? := {g−δ
?
l,rπlgπr | g ∈LR, πl ,πr ∈ Pm}.

We say that an A-coherent set of desirable gambles C is
?-exchangeable if I? ⊆ C .

Given Definition 6, we can prove the following result.

Proposition 7 Let C be an A-coherent set of desir-
able gambles. If C is ?-exchangeable, then it is also ?-
permutable, that is δ ?

l,rπlgπr are in C for all g ∈ C and all
πl ,πr ∈ Pm.

Proof The proof is similar as the one for (De Cooman and
Quaeghebeur, 2012, Prop.9). For g ∈ C and πl ,πr ∈ Pm,
we have −g− δ ?

l,rπl(−g)πr ∈ I? ⊆ C . Given that −g =

z†(−G)z, then −g− δ ?
l,rπl(−g)πr = δ ?

l,rπlgπr − g. Since
δ ?

l,rπlgπr = δ ?
l,rπlgπr−g+g and g,δ ?

l,rπlgπr−g ∈ C , we
conclude by additivity that δ ?

l,rπlgπr ∈ C .

As in (De Cooman and Quaeghebeur, 2012), but taking
into account that we are working with quadratic forms, we
define the linear operators

exm
? (g) := z†

Π
†
?GΠ?z.

We verify some of their properties; in particular that they
can be used to equivalently characterise symmetric and
antisymmetric exchangeability (Corollary 11).

The first result follows immediately from the fact that
the symmetrisers and the antisymmetriser are projectors.

Lemma 8 Let g be a gamble, then exm
? (exm

? (g)) = exm
? (g).
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The idea behind this linear transformations exm
? (g) is that

they render a gamble g insensitive to permutation by replac-
ing it with the uniform average exm

? (g) of all its permuta-
tions πlgπr, as shown hereafter.

Proposition 9 Let g be a gamble, then

exm
? (g) =

1
m!m! ∑

πr ,πl∈Pm

δ
?
l,rπlgπr.

Proof It is immediate to verify that exm
? (g) =

1
m!m! ∑πr ,πl∈Pm δ ?

l,rg(πlz,πrz). To conclude, note that:

∑
πl ,πr∈Pm

δ
?
l,rπlgπr =

= ∑
πl ,πr∈Pm

δ?

2
(g(πlz,πrz)+g(πrz,πlz))

=
1
2 ∑

πl ,πr∈Pm

δ
?
l,rg(πlz,πrz)+

1
2 ∑

πl ,πr∈Pm

δ
?
r,lg(πrz,πlz)

= ∑
πl ,πr∈Pm

δ
?
l,rg(πlz,πrz).

Clearly, the linear transformations exm
? assume the same

value for all gambles that can be related to each other
through some permutation.

Proposition 10 Let g be a gamble, and πl ,πr ∈ Pm. Then

exm
? (δ

?
l,rπlgπr) = exm

? (g).

Proof By exploiting linearity

exm
? (δ

?
l,rπlgπr) = δ

?
l,rexm

? (πlgπr) =

= δ
?
l,r
(
z†

Π
†
?

(
1
2
(
P†

πl
GPπr +P†

πr GPπl

))
Π?z
)

=
δ ?

l,r

2
z†

Π
†
?P†

πl
GPπr Π?z+

δ ?
l,r

2
z†

Π
†
?P†

πr GPπl Π?z

=
δ ?

l,r

2
z†(Pπl Π?)

†G(Pπr Π?)z+
δ ?

l,r

2
z†(Pπr Π?)

†G(Pπl Π?)z

By Lemma 4 and the fact that δ ?
l,rδ

?
l,r = 1, we finally obtain

δ ?
l,r

2
z†(Pπl Π?)

†G(Pπr Π?)z+
δ ?

l,r

2
z†(Pπr Π?)

†G(Pπl Π?)z =

=
δ ?

l,rδ
?
l,r

2
z†

Π
†
?GΠ?z+

δ ?
l,rδ

?
l,r

2
z†

Π
†
?GΠ?z

= exm
? (g).

Similarly to what was done by De Cooman and Quaeghe-
beur (2012), we can prove the following.

Corollary 11 Let C be an A-coherent set of desirable
gambles. Given

V? := {g− exm
? (g) | g ∈LR}

the following claims are equivalent,

(1) C is ?-exchangeable;

(2) V? ⊆ C .

Proof For (1 ⇒ 2), by Proposition 9, we can write
g− exm

? (g) =
1

m!m! ∑πlπr(g− δ ?
l,rπlgπr). Since C satisfies

linearity and given I? ⊆ C , then g− exm
? (g) ∈ C .

For (2⇒ 1), by linearity of exm
? and Proposition 10

g−δ
?
l,rπlgπr− exm

? (g−δ
?
l,rπlgπr) = g−δ

?
l,rπlgπr,

which shows that g−δ ?
l,rπlgπr ∈ C .

The following result also holds.

Proposition 12 Let C be an A-coherent set of desirable
gambles. Then, assuming C is ?-exchangeable, the follow-
ing claims hold for all gambles g,g′:

1. g ∈ C iff exm
? (g) ∈ C ;

2. if exm
? (g) = exm

? (g
′) then g ∈ C iff g′ ∈ C .

Proof The proof is the same as for (De Cooman and
Quaeghebeur, 2012, Prop.10). First notice that the first
claim follows from the second, by taking g′ := exm

? (g)
and applying Lemma 8. For the second claim, assume
exm

? (g) = exm
? (g
′) and g ∈ C . Notice that g′− exm

? (g
′) =

g′− exm
? (g),−g− exm

? (−g) = exm
? (g)−g ∈ V?. By Corol-

lary 11 and additivity, we obtain (g′−exm
? (g))+(exm

? (g)−
g)+g = g′ ∈ C .

We now consider the dual of an A-coherent set of ?-
exchangeable gambles.

From Section 2, to define the dual, we consider the dual
space L ∗

R of all bounded linear functionals L : LR → R.
With the additional condition that linear functionals pre-
serve the unitary gamble, the dual cone of an A-coherent
C ⊂LR is given by

C ◦ = {L ∈ S | L(g)≥ 0, ∀g ∈ G } , (8)

where S = {L ∈L ∗
R | L(1) = 1, L(h)≥ 0 ∀h ∈ Σ≥} is the

set of states.

Definition 13 Let L∈ S. We say that L is ?-exchangeable if
it belongs to the dual C ◦ of an A-coherent ?-exchangeable
set of gambles C .

Proposition 14 Assume L ∈ S. The following statements
are equivalent:
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1. L is ?-exchangeable;

2. L( f ) = 0 for all f ∈I?.

3. L( f ) = 0 for all f ∈ V?.

Proof We verify (1⇔2). If L is ?-exchangeable, we
know that g− δ ?

l,rπlgπr,δ
?
l,rπlgπr − g ∈ C , meaning that

L(g−δ ?
l,rπlgπr)≥ 0 and −L(g−δ ?

l,rπlgπr)≥ 0. Therefore
L( f ) = L(g− δ ?

l,rπlgπr) = 0. For the other direction, as-
sume that L( f ) = 0 for all f ∈I?, From L, by duality, we
can define the set of desirable gambles {g∈LR : L(g)≥ 0}.
We have proven in (Benavoli et al., 2019b) that this is an A-
coherent set of desirable gamble and, moreover, it includes
I? by hypothesis. By Corollary 11, the equivalence (1⇔3)
can be proven in a similar way.

We recall the following well-know result (see e.g. (Holevo,
2011)).

Proposition 15 Let G be a Hermitian matrix; then G≥ 0
if and only if Tr(SG)≥ 0 for all S≥ 0.

We use the previous result to prove the following.

Proposition 16 Assume L ∈ S. The following statements
are equivalent:

1. L is ?-exchangeable;

2. L
(

zz†−
δ ?

l,r
2 Pπr zz†P†

πl −
δ ?

l,r
2 Pπl zz†P†

πr

)
= 0 for all

πlπr ∈ Pm;

3. L
(

zz†−Π?zz†Π
†
?

)
= 0.

Proof As before, we only verify the equivalence (1⇔2).
Assume L ∈ S is ?-exchangeable and consider the set
of gambles A = {g− δ ?

l,rπlgπr : πlπr ∈ Pm,G ≥ 0} and
B = {δ ?

l,rπlgπr − g : πlπr ∈ Pm, G ≥ 0}. Since L is ?-
exchangeable, it follows that L( f ),L( f ′) ≥ 0 for each
f ∈A , f ′ ∈B. This implies that

0≤ L(g−δ
?
l,rπlgπr)

= L(z†Gz)−
δ ?

l,r

2
L
(
z†P†

πl
GPπr z+ z†P†

πr GPπl z
)

= Tr

(
GL

(
zz†−

δ ?
l,r

2
Pπr zz†P†

πl
−

δ ?
l,r

2
Pπl zz†P†

πr

))

= Tr

(
G

(
L(zz†)−

δ ?
l,r

2
Pπr L(zz†)P†

πl
−

δ ?
l,r

2
Pπl L(zz†)P†

πr

))
for each πlπr ∈ Pm, G ≥ 0. Similarly, we have that 0 ≤
L(−g+δ ?

l,rπlgπr) =−L(g−δ ?
l,rπlgπr). We therefore con-

clude the proof of this implication by applying Proposi-
tion 15. To prove the other direction, simply note that
the second claim implies that 0 = L(−g + δ ?

l,rπlgπr) =

−L(g−δ ?
l,rπlgπr).

From (Benavoli et al., 2019b), we know that ρ := L(zz†)
is indeed a density matrix. Therefore, Proposition 16 im-
mediately implies the following.

Corollary 17 A density matrix ρ ∈ S= {ρ ∈H n×n | ρ ≥
0, Tr(ρ) = 1} is ?- exchangeable if any of the following
statement holds:

1. ρ =
δ ?

l,r
2 Pπr ρP†

πl +
δ ?

l,r
2 Pπl ρP†

πr for all πlπr ∈ P;

2. ρ = Π?ρΠ
†
?.

Point 2 of Corollary 17 therefore derives the symmetrisation
postulate discussed in Section 3 via duality from a set of
A-coherent exchangeable gambles.

Example 3 Consider the density matrix

ρ := L


 x11x†

11x21x†
21 x†

11x12x21x†
21 x11x†

11x†
21x22 x†

11x12x†
21x22

x11x†
12x21x†

21 x12x†
12x21x†

21 x11x†
12x†

21x22 x12x†
12x†

21x22

x11x†
11x21x†

22 x†
11x12x21x†

22 x11x†
11x22x†

22 x†
11x12x22x†

22
x11x†

12x21x†
22 x12x†

12x21x†
22 x11x†

12x22x†
22 x12x†

12x22x†
22




=
1
2


1 0 0 1
0 0 0 0
0 0 0 0
1 0 0 1

 (9)

For Pπa = I4 and Pπb as in (4), we have

ρ = P†
πaρPπb = P†

πb
ρPπa = P†

πb
ρPπb .

Therefore, ρ is symmetrically exchangeable (it also satisfies
ΠSymρΠSym = ρ .) Instead the matrix

ρ =
1
2


0 0 0 0
0 1 −1 0
0 −1 1 0
0 0 0 0

 (10)

is antisymmetrically exchangeable. It satisfies
ΠAntiρΠAnti = ρ as well as ρ = −0.5(P†

πaρPπb +

P†
πbρPπa) = P†

πbρPπb .

5. Updating
Let us assume we measure a subset of particles x1, . . . ,xm̌
with m̌≤m. Quantum projection measurements can then be
described by a collection {Πi}nm̌

i=1, with Πi ∈H nm̌×nm̌, of
projection operators that satisfy the completeness equation
∑

nm̌
i=1 Πi = I.
We recall the following definition from (Benavoli et al.,

2019b, Sec. S.9.1).

Definition 18 Let C be an A-coherent ?-exchangeable co-
herent set of desirable gambles, the set obtained as

CΠi =
{

z†Gz | z†(Πi⊗ Im−m̌)
†G(Πi⊗ Im−m̌)z ∈ C

}
(11)

is called the set of desirable gambles conditional on Πi.

28



QUANTUM INDISTINGUISHABILITY

We already know (Benavoli et al., 2016) that updating pre-
serves coherence. We now see that it also preserves ex-
changeability.

Proposition 19 Let C be an A-coherent ?-exchangeable
coherent set of desirable gambles. Then CΠi is an A-
coherent ?-exchangeable coherent set of desirable gambles
on the variables xm̌+1, . . . ,xm and its dual is

MΠi =

{
(Πi⊗ Im−m̌)

†ρ(Πi⊗ Im−m̌)

Tr((Πi⊗ Im−m̌)†ρ(Πi⊗ Im−m̌))

∣∣∣ρ ∈M

}
,

(12)
where M is the dual of C .

Proof In (Benavoli et al., 2019b, Sec. S.9.1) we have al-
ready proved that CΠi is coherent and that MΠi is the dual
of CΠi . Therefore, we only need to prove that CΠi is a
?-exchangeable coherent set of desirable gambles on the
variables xm̌+1, . . . ,xm. This means we need to prove that

z†Gz−
(

δ ?
l,r
2 z†(Im̌ ⊗ Pm−m̌

πl
)†G(Im̌ ⊗ Pm−m̌

πr )z +
δ ?

l,r
2 z†(Im̌ ⊗

Pm−m̌
πl

)†G(Im̌⊗Pm−m̌
πr )z

)
∈CΠi for each gamble z†Gz. This

gamble is in CΠi provided that:

z†(Πi⊗ Im−m̌)
†
[
G−

δ ?
l,r
2 (Im̌⊗Pm−m̌

πl
)†G(Im̌⊗Pm−m̌

πr )

−
δ ?

l,r
2 (Im̌⊗Pm−m̌

πr )†G(Im̌⊗Pm−m̌
πl

)
]
(Πi⊗ Im−m̌)z,

is in C . By exploiting the following property of the tensor
product

(I2⊗B)(A⊗ I1) = (A⊗ I1)(I2⊗B),

we need to verify that

z†
[
(Πi⊗ Im−m̌)

†G(Πi⊗ Im−m̌)

−
δ ?

l,r
2 (Im̌⊗Pm−m̌

πl
)†(Πi⊗ Im−m̌)

†G(Πi⊗ Im−m̌)(Im̌⊗Pm−m̌
πr )

−
δ ?

l,r
2 (Im̌⊗Pm−m̌

πr )†(Πi⊗ Im−m̌)
†G(Πi⊗ Im−m̌)(Im̌⊗Pm−m̌

πl
)
]
z,

is in C . This is true because C is ?-exchangeable.

6. Entanglement
Unlike systems consisting of distinguishable14 particles, in
the case of identical particles the notion of entanglement is
still under debate (see e.g. (Benatti et al., 2014)). The reason
being that, for instance, the two matrices in Example 3 are
entangled density matrices for distinguishable particles
and, at the same time, they also satisfy the symmetry and
anti-symmetry relationship of identical particles. Are those
density matrices entangled in the (anti-)symmetric case?

14. Spatially well-separated indistinguishable particles can be distin-
guished.

For distinguishable particles, our gambling formulation
of QM allows us to formulate and detect entangled density
matrices thorough a Dutch book (sure loss) (Benavoli et al.,
2019b). This goes as follows. Given a density matrix ρ̃ , we
can first compute its dual (an A-coherent set of desirable
gambles):

C := {g(z,z) = z†Gz : L(g) = Tr(Gρ̃)≥ 0}

and then consider its “classical” extension

K := posi(C ∪L ≥
R ).

Hence, K is coherent (under the standard axioms of desir-
ability) provided that K ∩L <

R = /0.
As done in (Benavoli et al., 2019b, Sec.4.4), we thus

state the following definition.

Definition 20 Let ρ̃ be a density matrix. Then ρ̃ is entan-
gled if K ∩L <

R 6= /0 (K does not avoid sure loss).

If ρ̃ is not entangled, the bounded linear functionals
in its dual can be written as an integral with respect to a
probability measure (Benavoli et al., 2019b):15

ρ =
∫

Ω

zz†dµ(z). (13)

As an immediate consequence of Definition 20 and Equa-
tion (13) we get:

Proposition 21 Let ρ̃ be a density matrix, then ρ̃ is not
entangled iff it is a truncated moment matrix (with respect
to a standard probability measure µ(z)).

The question is therefore how we can extend this re-
sult to the case of indistinguishable particles. In this aim,
we need to consider a constraint: not all Dutch books can
be constructed. In a system of indistinguishable particles,
physical observables (that is, gambles which can be eval-
uated through an experiment or, equivalently, physically
realisable gambles) must be invariant under all permuta-
tions of the m identical particles (Cohen-Tannoudji et al.,
2020, XIV.C-4-a):

g(z,z) = z†Gz = z†
Π?GΠ?z ∀ z. (14)

Based on this constraint, we can thus obtain the following
result.

Proposition 22 Let ρ̃ be an entangled ?-exchangeable
density matrix, then the following two statements are equiv-
alent:

• there exists a physical observable g(z,z) which be-
longs to L <

R such that Tr(Gρ̃)≥ 0;

15. To do that, we need to perform another natural extension to the space
of all gambles posi(K ∪L ≥).
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• ρ̃ cannot be written as

∫
Ω

Π?zz†Π
†
?

Tr(Π?zz†Π
†
?)

dµ(z).

for any probability measure µ(z).

Proof The results follow by (Benavoli et al., 2019b,
Sec.4.4). We only need to observe that if g(z,z)< 0, then
for all probability measures µ:

0 >
∫

Ω

z†Gzdµ(z)

=
∫

Ω

z†
Π?GΠ?zdµ(z)

=
∫

Ω

Tr(GΠ?zz†
Π?)dµ(z)

= Tr
(

G
∫

Ω

Π?zz†
Π?dµ(z)

)
,

the second equality follows by the assumption that g is
a physical observable and thus Equation (14). The above
inequality implies that

Tr

(
G
∫

Ω

Π?zz†Π
†
?

Tr(Π?zz†Π
†
?)

dµ(z)

)
< 0.

Let σµ be the result of the integral (a density matrix). Since
the above inequality must hold for all µ , we can rewrite
this condition as supµ Tr(Gσµ)< 0. Therefore, any density
matrix ρ̃ such that Tr(Gρ̃)≥ 0 must be entangled: it cannot
be expressed as an expectation with respect to a probability
measure µ .

The above result means that particles are entangled when
classical probability coherence and quantum A-coherence
disagree. The first statement tells us that we can use a
Dutch book (sure loss) to detect entanglement, but only if
the Dutch book is a physical observable. Notice that Propo-
sition 22 is in agreement with definitions of entanglement,
and ways to detect it, as discussed for instance in (Iemini
et al., 2013; Iemini and Vianna, 2013; Reusch et al., 2015)
(in particular see (Reusch et al., 2015, Eq. 12)).

Example 4 We apply Proposition 22 to the previous two
particles Example 3.

Fermions: consider the atomic charge (Dirac’s delta)
µ = δz̃ with z̃ = [1,0]T ⊗ [0,1]T = [0,1,0,0]T . Note that,

∫
Ω

ΠAntizz†Π
†
Anti

Tr(ΠAntizz†Π
†
Anti)

δz̃(z).=
1
2


0 0 0 0
0 1 −1 0
0 −1 1 0
0 0 0 0


which is the density matrix in (10). From Proposition 22,
we conclude that that the density matrix is not entangled.

Bosons: consider the atomic charge (Dirac’s delta)
δz̃ with z̃ = 1

2 [−ι ,1]T ⊗ [ι ,1]T = [0.5,−0.5ι ,0.5ι ,0.5]T ,
where ι is the complex unit. Note that,

∫
Ω

ΠSymzz†Π
†
Sym

Tr(ΠSymzz†Π
†
Sym)

δz̃(z).=
1
2


1 0 0 1
0 0 0 0
0 0 0 0
1 0 0 1


which is the density matrix in (9). From Proposition 22, we
conclude that that the density matrix is not entangled.

7. Conclusions

In this paper we showed that we can derive the symmetriza-
tion postulate for indistinguishable particles in QM using
the framework of exchangeable desirable gambles. There-
fore, once again, we proved that QM is a theory of proba-
bility: it can be derived by the principles of coherence and
computation plus structural assessments of exchangeability.
Moreover, we showed that, also in the case of indistinguish-
able particles, entanglement can be defined (and detected)
as a Dutch book: the clash between the QM notion of ra-
tionality (which accounts for the principle of computation)
and the classical notion of rationality (which assumes infi-
nite computational resources).

We obtained these results by exploiting symmetrization
procedures to model structural assessments of indistin-
guishability. This approach, which is called “first quantiza-
tion” in QM, has a main drawback: it includes redundant
information. More specifically, it potentially allows us to
gamble on the state of a single particle which is not a phys-
ical observable (it is impossible in the first place to tell
which particle is which). This constitutes a well-known
limit in QM. As an example, we had to impose the con-
dition on physical observables given by Equation (14) in
order to obtain Proposition 22.

In QM, there is another formalism to work with indis-
tinguishable particles, called second quantization. Its lan-
guage allows one to ask the following question “How many
particles are there in each state?”. Since this formalism
does not refer to the labelling of particles, it contains no
redundant information. As future work, we plan to provide
a gambling formulation of QM for the second quantization,
exploring the connection with the count vectors formalism
developed by De Cooman and Quaeghebeur (2012).

Author Contributions

All authors have contributed equally to the manuscript.

30



QUANTUM INDISTINGUISHABILITY

References
Fabio Benatti, Roberto Floreanini, and Kelvin Titimbo.

Entanglement of identical particles. Open Systems &
Information Dynamics, 21(01n02):1440003, 2014.

Alessio Benavoli, Alessandro Facchini, and Marco Zaf-
falon. Quantum mechanics: The Bayesian theory gen-
eralized to the space of Hermitian matrices. Physical
Review A, 94(4):042106, 2016.

Alessio Benavoli, Alessandro Facchini, and Marco Zaf-
falon. A Gleason-type theorem for any dimension
based on a gambling formulation of Quantum Mechanics.
Foundations of Physics, 47(7):991–1002, 2017.

Alessio Benavoli, Alessandro Facchini, Dario Piga, and
Marco Zaffalon. Sum-of-squares for bounded rationality.
International Journal of Approximate Reasoning, 105:
130–152, 2019a. ISSN 0888-613X.

Alessio Benavoli, Alessandro Facchini, and Marco Zaf-
falon. Computational complexity and the nature of
quantum mechanics. Technical report, 2019b. URL
https://arxiv.org/abs/1902.04569.

Alessio Benavoli, Alessandro Facchini, and Marco Zaf-
falon. Bernstein’s socks, polynomial-time provable co-
herence and entanglement. In J De Bock, C de Campos,
G de Cooman, E Quaeghebeur, and G Wheeler, editors,
ISIPTA ;’19: Proceedings of the Eleventh International
Symposium on Imprecise Probability: Theories and Ap-
plications, PJMLR. JMLR, 2019c.

Carlton M Caves, Christopher A Fuchs, and Rüdiger
Schack. Unknown quantum states: the quantum de finetti
representation. Journal of Mathematical Physics, 43(9):
4537–4559, 2002.

Claude Cohen-Tannoudji, Bernard Diu, and Franck Laloë.
Quantum Mechanics, Volume 2: Angular Momentum,
Spin, and Approximation Methods. John Wiley & Sons,
2020.

Gert De Cooman and Erik Quaeghebeur. Exchangeability
and sets of desirable gambles. International Journal of
Approximate Reasoning, 53(3):363–395, 2012.

B. de Finetti. Teoria delle Probabilità. Einaudi, Turin,
1970.

B. de Finetti. Theory of Probability. John Wiley & Sons,
Chichester, 1974–1975. English Translation of de Finetti
(1970), two volumes.

Persi Diaconis and David Freedman. Finite exchangeable
sequences. The Annals of Probability, pages 745–764,
1980.

Leonid Gurvits. Classical deterministic complexity of ed-
monds’ problem and quantum entanglement. In Proceed-
ings of the thirty-fifth annual ACM symposium on Theory
of computing, pages 10–19. ACM, 2003.

Alexander S Holevo. Probabilistic and statistical aspects of
quantum theory, volume 1. Springer Science & Business
Media, 2011.

Fernando Iemini and Reinaldo O Vianna. Computable mea-
sures for the entanglement of indistinguishable particles.
Physical Review A, 87(2):022327, 2013.

Fernando Iemini, Thiago O Maciel, Tiago Debarba, and
Reinaldo O Vianna. Quantifying quantum correlations
in fermionic systems using witness operators. Quantum
information processing, 12(2):733–746, 2013.

Erik Quaeghebeur, Gert De Cooman, and Filip Hermans.
Accept & reject statement-based uncertainty models. In-
ternational Journal of Approximate Reasoning, 57:69–
102, 2015.

E Regazzini. Coherence, exchangeability and statisti-
cal models (de finetti’s stance revisited). Sviluppi
metodologici nei diversi approcci all’inferenza statis-
tica, Pitagora Editrice Bologna, pages 1–37, 1991.

A Reusch, J Sperling, and W Vogel. Entanglement wit-
nesses for indistinguishable particles. Physical Review
A, 91(4):042324, 2015.

P. Walley. Statistical Reasoning with Imprecise Probabili-
ties. Chapman and Hall, New York, 1991.

31

https://arxiv.org/abs/1902.04569

	Introduction
	Algorithmic Rationality and QM
	The Symmetrisation Postulate
	Exchangeable Gambles
	Updating
	Entanglement
	Conclusions

