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Abstract

Credal networks are a popular class of imprecise prob-
abilistic graphical models obtained as a Bayesian net-
work generalization based on, so-called credal, sets
of probability mass functions. A Java library called
CREMA has been recently released to model, process
and query credal networks. Despite the NP-hardness of
the (exact) task, a number of algorithms is available to
approximate credal network inferences. In this paper
we present CREPO, an open repository of synthetic
credal networks, provided together with the exact re-
sults of inference tasks on these models. A Python tool
is also delivered to load these data and interact with
CREMA, thus making extremely easy to evaluate and
compare existing and novel inference algorithms. To
demonstrate such benchmarking scheme, we propose
an approximate heuristic to be used inside variable
elimination schemes to keep a bound on the maximum
number of vertices generated during the combination
step. A CREPO-based validation against approximate
procedures based on linearization and exact techniques
performed in CREMA is finally discussed.

Keywords: Probabilistic graphical models, credal net-

works, Bayesian networks, variable elimination, con-
vex hull, imprecise probability.

1. Introduction

Probabilistic graphical models are popular tools for modern
Al and machine learning [20]. Although mostly based on
classical probability theory, graphical models relying on
more general formalisms have been also proposed [9, 27].
Among them, credal networks [12] display a clear and in-
terpretable semantics, directly extending that of Bayesian
networks [25]. Moreover, credal networks have been re-
cently used to address unidentifiable queries in structural
causal models [28]. The counterpart of such interpretability
and expressiveness is the intractability of exact inferences.
Being a generalization of Bayesian network inference [11],
credal network inference is NP-hard and, unlike the case of
Bayesian networks, might remain NP-hard even for simpler
topologies [23]. Nevertheless, a number of approximate
algorithms has been proposed in the literature (see [24] for
a recent survey), thus making possible to practically use
these models in applications (e.g., [2, 3, 16]).
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So far, the software implementations of these algorithms
are mostly developed by different research groups and
based on different tools and formats, this preventing ex-
tensive benchmarking and comparison. Yet, a Java library
for credal network modelling, processing and inference,
called CREMA, has been recently released [17]. The main
goal of CREMA is to provide a standard and unifying
framework to develop, test and compare existing credal
network algorithms and promote the development of novel
schemes. To fully accomplish this plan, we present here
CREPO, an open and extensible repository including credal
network specifications and the results of exact inferences
on such models. We also deliver a Python tool to easily
load CREPO data and interact with CREMA in order to
easily evaluate and compare credal network algorithms. Be-
sides the two algorithms already embedded in CREMA,
i.e., a credal version of the variable elimination scheme,
and an approximate procedure based on a reduction to
linear programming [5], we finally present a very first ex-
ample of CREPO-based benchmarking in CREMA for a
novel heuristic algorithm. The heuristic is applied inside
a variable elimination scheme: after any combination step,
a geometric reduction is applied to keep a bound on the
number of vertices, thus preventing any exponential blow
up. This corresponds to an anytime procedure with respect
to the value of such bound.

2. Credal Networks Inference

The (discrete) variables X := (Xi,...,X,) of a credal net-
work are in one-to-one correspondence with the nodes
of an acyclic directed graph ¢. Variable X; takes its val-
ues in Z;, x; being its generic value. Let Pay, denote
the parents of X; according to ¢. In a Bayesian network,
a joint mass function P(X) is obtained from the condi-
tional probability tables { P(X;|Pay;)}?_,. The Markov con-
dition for the directed graph ¢ induces a number of condi-
tional independence relations leading to the factorization
P(x) = [T, P(xi|pay,). A credal network is just a direct
generalization of this formalism: each probability mass
function P(X;|pay, ) is replaced by a (so-called credal) set of
probability mass functions. Notation K (X;|pay,) is used. A
joint credal set K(X) is consequently obtained by taking all
joint mass functions factorizing as a Bayesian network over
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the same graph and allowing the conditional probability
mass functions of each conditional probability table to take
their values from the corresponding credal sets.! Marginal
inference in a credal network is intended as the computation
of the lower and upper bounds of the probability of a single
variable with respect to the local credal sets, e.g., E(xq) =
Minp(x; pay )ek (X;[Pay,) L\ {x,} [ Ii=1 P(xi[pay, ). Conditional
queries, e.g., P(xq4|xg) are analogously defined. Those
queries remains unaffected by the convex closure of the lo-
cal credal sets [1]. Here we only consider finitely-generated
models corresponding to convex sets with a finite number
of vertices. As credal networks generalize Bayesian net-
works, the hardness of those tasks for Bayesian networks
[11], also concerns credal network inference. Yet, unlike the
case of Bayesian networks, the inference remains hard even
on simple topologies [23], with the general task belong-
ing to higher complexity classes [15]. To better understand
this point, consider the classical variable elimination (VE)
scheme for Bayesian networks [19], where sums and prod-
ucts involved in the computation of the target are swapped
in order to reduce the size of the joint models involved in
the sums. For an optimal choice of the (elimination) order
in which the sums are performed, the complexity of the
procedure is bounded by the exponential of the so-called
treewidth of graph ¢ [20]. The same scheme in a credal
network require each combination to be performed sep-
arately for all the elements of the credal sets associated
with the different variables. Although this can be done by
considering only the vertices of the credal sets, this might
be not sufficient to prevent an exponential blow up. To hin-
der such growth, the convex hull of any combination can
be computed and the inner points removed. Yet, this does
not provide theoretical guarantees, thus justifying the hard-
ness results for credal network inference even for bounded
treewidth topologies. For this reason approximate schemes
have been proposed. One of the most popular is ApproxLP,
a technique based on a linearization of the optimization
required by the inference, that allows to reduce the query
to a sequence of linear programming tasks and Bayesian
network inferences on a model with the same topology [5].

3. The CREPO Repository

Let us introduce CREPO, an open and extensible repository
of synthetic credal networks, especially designed for the
benchmarking of inference algorithms. We first describe its
main features and then discuss a number of relevant issues
we addressed during its preparation.

1. This approach to credal network modelling, based on the notion of
strong independence, allows for a direct sensitivity analysis interpre-
tation of the results based on these models [12]. The most popular
alternative is based on the notion of epistemic irrelevance [13]. See
[23] for a discussion on the relations between the two approaches.
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Technical features. CREPO is stored at Github to sim-
plify its distribution and versioning.> This is important, as
we expect to extend the repository, which now includes
only relatively small and simple models (< 10 nodes, car-
dinalities between two and three, indegree and number of
vertices for credal sets between two and six) in order to
make possible to quickly compute exact inferences with
the credal VE. CREPO includes 378 randomly generated
networks. The models are specified in UAI-like formats de-
veloped for credal networks.? The repository also contains
the results of exact inferences based on the credal VE and
the approximate results achieved with ApproxLP. Although
the benchmark data can be obtained with any existing git
tool, a Python package* was developed to easily access the
repository and interact with CREMA as shown in Figure 1.

import crepobenchmark as crb

# Download the inference result

data crb.get_benchmark_data ()

# Save a model from the repository

crb.save_model ("vs_n4_mID2_mD6_mV4_nv2-1",
"model.uai")

# Run exact inference

crb.run_crema ("model.uai",

S

target=0)

Figure 1: Python code to access CREPO.

Vertices and Linear Constraints. The local credal sets
of a credal network can be assumed to be convex. Thus, we
describe a (finitely generated) credal set by explicitly list-
ing their vertices (so-called V-representation) or by a finite
set of linear constrains on its points (H-representation). Al-
gorithms based on credal VE cope with V-representations,
as products and sums are achieved separately for all the
possible combination of the vertices of different credal
sets. Being based on linear programming with respect to
local credal sets, optimization-based procedures such as
ApproxLP need instead H-representation. Each CREPO
network in therefore available in both representations.
CREMA supports these formats and offers conversion tools
based on polyhedral algorithms [6]. Yet, when moving
from V- to H-representation, numerical issues might arise
because of a dimensionality gap: the normalization con-
straint to be satisfied by its points makes a credal set K(X)
an object in the d-dimensional space with dimensionality
smaller than or equal to d — 1, where d := |.2|. To address
those issues, it suffices to find the actual dimensionality of
K(X), i.e., the rank of the matrix containing its vertices, and
obtain an orthonormal basis for the vertices, e.g., by Gram-
Schmidt orthogonalization [8]. The H-representation can
be therefore computed with respect to the new basis, where
the matrix with the vertices has full rank and hence does
not suffer numerical issues, and eventually reformulated in
the original basis.

2. https://github.com/IDSIA/crepo
3.https://crema-toolbox.readthedocs.io
4. https://pypi.org/project/crepobenchmark
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Random Generation of Credal Sets. The random
credal networks in CREPO have been obtained by ex-
tending a Bayesian network tool [18]. To generate ran-
dom credal sets, we stick with the V-representation and a
uniform sampling of mass functions from the probability
simplex is iterated unless the resulting credal set has the
required number of vertices. Dedicated sampling proce-
dure are adopted [26], as trivial strategies such as sampling
uniform numbers separately for each state and then normal-
izing does not guarantee uniformity.

Inference Tasks Selection. When solving marginal or
conditional inference tasks in credal networks, an obvious
preprocessing task consists in exploiting the d-separation
properties of credal networks to simplify the problem. This
basically consists in removing the barren nodes, remove the
arcs leaving the observed variables, replacing the states of
the observed variables with two states only corresponding
to the actual observation and its negation, and finally take
only the connected component of the model where the
queried variable is located. These procedures are embedded
in CREMA and the resulting graph is called requisite [24].
In order to have challenging inference tasks, in CREPO
we select a marginal and a conditional task maximizing
the size of the requisite graph. This roughly corresponds
to take leaves as queries for marginal tasks, and roots for
conditional ones with observations on the leaves.

4. Credal VE with k-Reduction

Let us call reduction any transformation of a convex set
reducing its number of points and achieved by removing or
replacing other points. Convex hull, intended here as the
removal of the inner points after the convex closure, is a
reduction not providing guarantees on the size of its out-
put (apart from the trivial case of credal sets over Boolean
variables). Although typically faster than convex hull, dis-
carding Pareto-dominated points might encounter the same
drawback [22]. This is the case also for Pareto-dominance
relaxations [21]. In practice, good approximations can be
obtained in this way, but it is not possible to predict in
advance the minimum relaxation level keeping the running
time under some threshold. To address such limitations, we
propose here a k-reduction, intended as a reduction provid-
ing an upper bound on the number of points of the output.
Sampling (or picking) k points from a credal set or from its
vertex is an obvious k-reduction, while a more sophisticated
approach is depicted in Figure 2 and defined as follows.

Definition 1 (k-reduction) Given convex set K in input,
take its vertices e(K). Find the two distinct points p', p" of
e(K) at minimum distance. Remove p' and p" from e(K)
and return in output e(K)U{(p' + p")/2}. Repeat this
procedure until the number of points becomes equal to k.
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Figure 2: A 4-reduction: inner points of the original convex
set are red, its vertices blue, midpoints green.

Credal VE might take exponential time even with bounded-
treewidth models because of an unbounded growth in the
number of points involved in the combinations. Taking the
convex hull after any combination might be not enough,
while adding the above k-reduction prevents such growth.
As convex hull algorithms might be slow because of the
high number of input points and/or space dimensionality
[71, it is important to note that the procedure in Definition
1 does not require the convex hull to be executed again
after the reductions, as the midpoint of the two vertices
removed from the set is a vertex of the new set.> Moreover,
those midpoints are inner points of the original convex
set, thus the algorithm provides an inner approximation of
credal inferences. The performance of the combination of
such method with credal VE for two different threshold
levels and Kullback-Leibler as (pseudo) distance in the
reduction has been tested in CREMA on the CREPO tasks
(version 0.0.3). Table 1 shows that the new method can
nicely trade off accuracy and execution time (the speed-up
is the ratio between execution time of credal VE and that
of the algorithm).

Table 1: Benchmarking k-reduction in CREPO.

Method RMSE Speed up
ApproxLP 0.0058 32.107
10-reduction + CVE ~ 0.0011 86.849
S-reduction + CVE 0.0045 147.066

5. Conclusion and Outlooks

A first repository to benchmark credal network inference
has been presented together with a novel scheme to speed
up credal variable elimination. As a future work, we intend
to expand CREPO with new and more challenging infer-
ence tasks, and add to CREMA other algorithms, such as
those in [4, 14], to promote a deeper understanding of the
existing algorithms and the design of new schemes. For the
k-reduction, we want to achieve a further validation and
investigate the analogies between our geometrical approach
and the information-theoretic method proposed in [10].

5. See extended version http://arxiv.org/abs/2105.04158.
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