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Abstract

In this paper, we consider the problem of making dis-
tributionally robust, skeptical inferences for the multi-
label problem, or more generally for Boolean vectors.
By distributionally robust, we mean that we consider
sets of probability distributions, and by skeptical we
understand that we consider as valid only those infer-
ences that are true for every distribution within this set.
Such inferences will provide partial predictions when-
ever the considered set is sufficiently big. We study
in particular the Hamming loss case, a common loss
function in multi-label problems, showing how skep-
tical inferences can be made in this setting. We also
perform some experiments demonstrating the interest
of our results.

Keywords: Multi-label, Hamming loss, maximality,
binary relevance.

1. Introduction

In contrast to multi-class problems where each instance is
associated to one label, multi-label classification consists in
associating an instance to a subset of relevant labels from
a set of possible labels. Such problems can arise in differ-
ent research fields, such as the classification of proteins
in bioinformatics [22], text classification in information
retrieval [9], object recognition in computer vision [3], etc.

Considering all possible subsets of labels as possible
predictions make the estimation and decision steps of a
learning problem significantly more difficult: partial obser-
vations are more likely to occur, especially when the num-
ber of labels increases, and the output space over which
the probability needs to be estimated grows exponentially
with the number of labels. This means that in some applica-
tions where guaranteeing the robustness and reliability of
predictions is of particular importance, one may consider
being cautious about such predictions, by predicting a set
of possible answers rather than a single one when uncer-
tainties are too high. In the literature, such strategies can
be called partial rejection rules [19], partial abstention [18]
or indeterminate classification [8, 1].

In this paper, we consider the problem of making such
set-valued predictions by performing skeptic inferences
when our uncertainty is described by a set of probabilities.
By skeptic inference, we understand the logical procedure
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that consists, in the presence of multiple models, in accept-
ing only those inferences that are true for every possible
model. Such approaches are different from thresholding
approaches [18, 19], and are closer in spirit to distribu-
tionally robust approaches, even if these later typically
consider precise, minimax inferences, that are cautious yet
not skeptic [12, 4]. We also make no assumption about the
considered set of probabilities, thus departing from usual
distributionally robust approaches, that typically consider
precise predictions, or from existing works dealing with
sets of probabilities and multi-label problems [1], that con-
sidered specific probability sets and zero/one loss function
(seldom used in multi-label problems).

We first introduce in Section 2 the notations we will use
for the multi-label setting, and give the necessary reminders
about skeptic inferences made with sets of probabilities.
Once this is done, we provide in Section 3 novel theoretical
results concerning the Hamming loss and the maximal-
ity decision criterion, those results ending in an inference
procedure that has an almost linear time complexity with
respect to the size of the output space. We also investigate
conditions under which previous heuristics using marginal
probability bounds become exact.

We end the paper in Section 4 by performing some ex-
periments whose goal is first to compare the inferences
obtained by our exact procedures to previous heuristics,
and second to investigate those settings where providing
cautious inferences may be of interest.

2. Preliminaries

This section introduces the necessary background to under-
stand the rest of this paper.

2.1. Multi-label Problem

In multi-label problems, given a subset Q = {@y,..., ®,}
of possible labels, one assumes that to each instance x of
an input space 2~ = R? is associated a subset A C Q of
relevant labels. In practice, we will identify such subsets
with the space of Boolean vectors % = {0, 1}, denoting a
vector y = (yi,...,yn) and having y; = 1 if @; € A, O else.

We assume that observations are i.i.d. samples of a dis-
tribution p : 2" x % — [0, 1], and denote p,(y) := p(y|x)
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the conditional probability of y given x. We denote by
Y = (Y1,...,Y,) the random binary vector over %'. Given
asubset .# C {1,...,m} of indices, we denote by %, the
space of binary vectors over those indices, by Y and Y_ »~
the marginals of Y over these indices and over the comple-
mentary indices {1,...,m} \ .#, respectively. In particular,
Y(;y will denote the marginal random variable over the ith
label. Similarly, we will denote by y , the values of a vector
restricted to elements indexed in .#, and by b » a particular
assignment over these elements. The associated marginal
probability will be

PX(b/) =

)y

YY)y s=b 4

Px(}’)-

We will also consider the complement of a given vector or
assignment over a subset of indices. These will be denoted
byy, and b, respectivcly Given two vectors y' and y?,
we will denote by 71,0 == {i € {1,...,m} : y! # y7} the
set of indices over which two vectors are different, and
similarly by Fji_p :={i € {1,....m} :y} =32} the sets
of indices for which they will be equal.

Example 1 Consider the probabilistic tree developed in
Figure 1 defined over % = {0,1}? describing a full joint
distribution over two labels. In such trees, the probability of
any vector is simply the product of the probabilities along
its path. We can consider the assignment by = (1) and its
complement by = (0) associated to the partial vectors (-,1)
and (+,0), the first one having probability

P(by = (1)) = P((-,1)) = P((0,1)) + P((1,1))
=0.5-0.2+0.5-0.7 = 0.45.

08 (1=0,y2=0)

=0
05 Y1

0.2 (r1=0,y2=1)

0.3
0.7

Figure 1: Probabilistic binary tree of two labels

05 1 =1y2=0)

=1y=1)

In the sequel of this paper, we will use such trees to
illustrate our results, replacing the precise probabilities on
the branches by intervals'. An example will be provided
later. The resulting set of probabilities over % will then
simply be the set of all joint probabilities obtained by taking
precise values within those intervals.

As in this paper we are interested in making set-valued
predictions for the multi-label problems, we will use the

1. While we will use IP trees for illustrative purpose, our results hold for
any credal set, not only those given by IP trees, that cannot represent
all possible credal sets over ¢/, in contrast with the precise case.
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notation Y C &% for generic subsets of . We will use the
notation ) = {0, 1, %} for the specific subsets induced by
partially specified binary vectors t) € ), where a symbol
x stands for a label on which we abstain. Denoting by .#*
the indices of such labels, we will also slightly abuse the
notation 1) and 2) to also denote the corresponding family
of subsets over %/, i.e.,

n={ye¥ :Vi¢d 7"y =v,}.

Such subsets are indeed often used to make partial multi-
label predictions, and we will refer to them on multiple
occasions, calling them partial vectors. However, using
only subsets within ) may be insufficient if one wants to
express complex partial predictions. For instance, in the
case where m = 2, the partial prediction Y = {(0,1),(1,0)}
cannot be expressed as an element of ), as approximating
Y with an element of ) would result in Y, and not the
initial subset.

2.2. Skeptic Inferences with Distribution Sets

Basic representation We assume that our uncertainty
is described by a convex set of probabilities &, ak.a. a
credal set [16], defined over %. Such sets can arise in
various ways: as a native result of the learning method [1,
51; as the result of an agnostic’ estimation in presence of
imprecise data [20]; or as a neighbourhood taken over an
initial estimated distribution p, such as in distributionally
robust approaches [4].

Skeptic inference and decision Once our uncertainty is
described by a credal set 22, the next step in the learning
process is to deliver an optimal prediction, given a loss
function £ : % x % — R where £(3,y) is the loss incurred
by predicting ¥ when y is the ground-truth.

When the estimate p is precise, this is classically done
by picking the prediction minimizing the expected loss, i.e.
Oy D

95 arg min E 5 (E(y’ )) = arg min Z ply

yew ye/’/

or, equivalently, by picking the maximal elements of the
linear ordering > >—P where y” = >p y if

Ep () —€(y",-))= Z}/ﬁ(y) (L, y) —L(y",y))
ye
)
= Eﬁ (‘g(ylv )) _Eﬁ (g(y//, ))2 0,

Since tf is a complete pre-order, picking any of the possi-
bly indifferent maximal elements will be equivalent with
respect to expected loss minimization.

When considering a set &2 as our uncertainty representa-
tion, there are many ways [21] to extend Equation (2). In

2. With respect to the missingness process.
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this paper, we will consider the main decision rule that may
return more than one decision in case of insufficient infor-
mation: maximality. This rule follows a skeptical strategy,
in the sense that the returned set of predictions is guaran-
teed to contain the optimal prediction, whatever the true
distribution within &2.

Definition 1 Maximality consists in returning the maxi-
mal, non-dominated elements of the partial order ~ 7 such
thaty =7y if

E<£(y/a ) _E(yv )):Plél;EP (g(y/v ) —E(y7 )) > Oa (3)

that is if exchanging y' for y is guaranteed to give a positive
expected loss. The maximality rule returns the prediction
set )

Y%y: {ye@’ﬁy’e@ sty >f”y}. 4)
Since >y & is in general a partial order with incomparabil-
ities, YQ’I & may result in a set of multiple, incomparable
elements. Clearly, the more imprecise is &7, the larger is
the set Y},,. Computing ¥}’;, can be a computationally
demanding task, thus making the prediction step critical
when considering combinatorial spaces, such as the one
considered in this paper. Obtaining Y%@ may indeed re-
quire at worst to perform (|%[)(|%| — 1)/2 comparisons,
where |%| = 2™, ending up with a complexity of &/(2%™")
that quickly becomes untractable even for small values of
m.

Example 2 Figure 2(a) illustrates the computation of an
expected loss in the case of a probabilistic tree and the
zero/one loss function when comparing y' = (0,1) and
¥y’ = (1,0). Global expectation is reached by making lo-
cal, backward computations. In this case, we have that
(1,0) >Z)/1 (0,1), the expectation being positive.

Figure 2(b) pictures an imprecise probabilistic tree for
the same situation, with interval probabilities. The com-
putation of the corresponding lower expectation is done
in the same way as in the precise case, starting from the
leaves and iterating local computations. In the example
(1,0) >f$ . (0,1) as the final lower expectation is positive.

Thus, simply enumerating elements of % is not practi-
cally possible, and other strategies need to be adopted. We
next show that in the case of Hamming loss, one of the
most common loss used in multi-label and binary problems,
we can use an efficient algorithmic procedure to perform
skeptic inferences. This is done both for general sets &
and for specific sets induced from binary relevance models.

3. Skeptic Inference for the Hamming Loss

The Hamming loss, that we will denote /g, is a commonly
used loss in multi-label problems. It simply amounts to
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compute the Hamming distance between the ground truth
y and a prediction J, that is

m
fﬂ&wzﬁhwm:+%m (5)
i=
where 1(4) denotes the indicator function of the event
A. Note that in contrast with the subset loss £y, (9,y) =
1(5+y) . the Hamming loss differentiates the situations
where only some mistakes are made from the ones where a
lot of them are made (being maximum when =Y is the
complement of y).
In the case of precise probabilities, it is also useful to
recall that the optimal prediction for the Hamming loss [7],
i.e. the vector §;,, , satisfying Equation (1) is

. 1
Yily,p = 0

When considering a set & of distribution, one is imme-
diately tempted to adopt as partial prediction the partial
vector fiy, 5 € Q) such that

if p(Yp=1)> 5
else.

(6)

1 ifP(Yy =1)>
ﬁi,fﬂ,,@ = 0 lfB(Y{l} = O) >
«if 3 € [P(Yy =

BN[— N[ —

)

—_

),P(Yiy = 1)].

It has however been proven that f),, » is an outer-
approximation of Y?” 2 (e, YJ/"I 2 S0y, 2), thus providing
a quick heuristic to get an approximate answer [8].

The next sections study the problem of providing exact
skeptic inferences, first for any possible probability set &2,
then for the specific case where & is built from marginal
models on each label, that corresponds to binary relevance
approaches in multi-label learning.

3.1. General Case

In this section, we demonstrate that for the Hamming loss,
we can use inference procedures that are much more effi-
cient than an exhaustive, naive enumeration. Let us first
simplify the expression of the expected value.

Lemma 2 In the case of Hamming loss and given y',y?,
we have

E [u(y*) —tu(",")] P(Yi=y;)—P(Y;=y]) (8)

on

i=1

If we consider a set of indices ﬂyl:yz for which Equa-
tion (8) is cancelled, it can be rewritten

Y POy P= ).

i€d.
€Sy 42

€))

The next proposition shows that this expression can be
leveraged to perform the maximality check of Equation (3)
on a limited number of vectors.
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Loyt ((0,1),7) = Lo/ ((1,0),1) =

(v1=0,y2=0) 0

0.7 i=1y2=1) 0

(a) Probabilistic tree and expected loss

Loyt ((0,1),7) = Lo/ ((1,0),1) =

(1=1,y2=0) 1

(i=1y2=1) 0

(b) Imprecise probabilistic tree and lower expected loss

Figure 2: Precise and imprecise probabilistic trees

Proposition 3 For a given set . of indices, let us con-
sider an assignment a_y and its complement a y. Then, for
any two vectors y',y* such that yly =ay, yzj =ay and
y' .=y, wehave

171

5 (10)

Y uy = inf ¥ PYi=aq)>
P E{yieﬁ
In the remaining of the paper, given a partial assignment
by over a subset of indices .#, we will define the partial
Hamming loss between b » and an observation y as

C(by,y) =Y Lippy,) -
i€dy

(11)

When .# = {1,...,m}, we simply retrieve the usual Ham-
ming loss. The next proposition shows that the condition
of Proposition 3 actually comes down to minimize the ex-
pected partial Hamming loss.

Proposition 4 For a given set ¥ of indices, let us consider
an assignment a_y and its complement a 4. We have

inf P(Yi=a;) =E[l;(ay,) (12)
PeP
icd
This allows us to use Algorithm 1 to find Y%‘g. The

following result provides the time complexity of the algo-
rithm.

Proposition 5 Algorithm 1 has to perform 3™ — 1 compu-
tations, and its complexity is in 0'(3™)

Proposition 5 tells us that, in the case of Hamming loss,
finding Y% < can be done almost linearly with respect to
the size of %. This is to be compared to a naive enumer-
ation, that requires (2")(2"™ — 1) computations. Figure 3
plots the two curves as a function of the number m of la-
bels, demonstrating that our result allows a significant gain
in computations. In later experiments, we shall study the
differences between Y’["’ < and the crude approximation of
Equation (7). Also, such a strategy can be optimized by us-
ing well-known techniques [2, algo. 16.4]. As said before,
the set Y%} . Will in general not be exactly described by a
partial vector within g), as shows the next example.
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Algorithm 1: Maximal solutions under Hamming loss
and general set

Data: #2 (convex set of distributions)

Result: Y%I P (set of undominated solutions)

S=%,

for i in I1:m do

Zi={S7 .7 C{l,....m},|#|=i};// Index
sets of size i

forall z € % do

foralla, € %, ; // Binary vectors over
indices in z

do

if infpc » ¥ jc, P(Y; = a;) > % then
S=S\{ye#:y.—a});
end
end

end

# of Evaluation needed (/0g10)

35

‘ —e— Naive —=— Algorithm 1 ‘

Figure 3: Comparison of Algorithm 1 with naive enumera-
tion (log-ordinate scale).

Example 3 Consider again the tree provided in Fig-
ure 2(b). The result of applying Algorithm I provides the
following results:

[0((1,%),)] = 0.444 > 0.5 = (0,%) ¥ (1,%),
[05((0,%),-)] =0.456 > 0.5 = (1,%) 1 (0, %),

I= 1=
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E[lu((*,1),))] =0.498 > 0.5 = (*,0) #u (x,1),
E[lu((%,0),))] = 0.354 > 0.5 = (%,1) #u (,0),
E[lg((1,1),)] =0.942> 1.0 = (0,0) #u (1,1),
E[¢u((1,0),))] =0.846 > 1.0 = (0,1) #u (1,0),
E[y((0,1),-)] =1.001 > 1.0 = (1,0) = (0,1),
E[¢(5((0,0),-)] =0.810 > 1.0 = (1,1) ¥ (0,0),

where for two partial vectors y',y* such that ﬂy* ;‘2,
we use the short-hand notation y' =y y* to say that the
dominance relation given by Definition 1 holds for any
fixed replacement of the abstained labels.

About this example, we can first note that 3> —1 =8
comparisons are performed (in accord with Proposition 5).
Secondly, also note that the final solution which is the set

Y%{ﬁ = {(1’0)7(070)7(1» 1)}
does not belong to ).

Remark 6 A key finding of the results of this section, il-
lustrated by Example 3, is that when considering sets of
distributions and skeptic inferences, it is not sufficient to
consider marginal probabilities in order to get optimal,
exact predictions. This contrasts heavily with the case of
precise distributions, in which having only the marginal
information allows to get optimal predictions for a number
of loss functions, including the Hamming loss, but also
precision@k, micro- and macro-F measure, as well as oth-
ers [14, 15].

Remark 7 Despite our best efforts and except for some
few tweaks, we were not really able to significantly lower
the complexity of finding Y%J o L.e., 10 go Sfrom the still
exponential complexity of Proposition 5 to a polynomial
one in the number of labels. This contrasts with the precise
case, where one can use the marignal information to obtain
the result in a polynomial time in the number of labels. The
fact that we cannot rely on the marginal bounds of P(Y;)
suggest us that reaching such a polynomial complexity for
exact inferences over generic credal sets & may not be

doable.

3.2. Binary Relevance and Partial Vectors

The previous section looked at the very general case where
the set &2 is completely arbitrary and proposed some rather
efficient inference methods (almost linear in the size of %)
for this case. In this section, we are interested in conditions
imposed upon & that guarantee the sets Y%J o to be partial
vectors, that is to belong to ). In particular, we show that
this is the case when considering models that generalize
binary relevance notions by using imprecise marginals with
an assumption of independence. The interest in studying
such models is that they constitute baseline models when it
comes to multi-label problems.
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In this section, we consider that the joint probability p
over ¢ and its imprecise extension are built as follows: we
have information on the marginal probability p; € [0, 1] of
y; being positive, and define the probability of a vector y as

Di (1=pi).
{ilyi=0}

p(y) = (13)

{ilyi=1}

Without loss of generality, the imprecise version then
amounts to consider that the information we have is an
interval [p ,p;], as every convex set of probabilities on a
binary space (here, {0,1}) is an interval. We then consider
that a probability set g over % amounts to consider the
robust version of Equation (13), that is

p(y)€{ IT »
{ilyi=1}

In this specific case, we can show that Y%{ g can be exactly
described by a partial vector.

[T (=pi)lpie [pi,pi]} . (14

{ily;=0}

Proposition 8 Given a probability set Ppg and the Ham-
ming loss, the set Y%, Py € 2

Remark 9 As the optimal prediction for the 0/1 or subset
loss £y in the precise case is the same as Equation (6)
when p(y) is of the kind (13), it follows that Proposition 8
is also true for this loss.

4. Experiments

In this section, we perform some empirical experiments
investigating the interest of using skeptical inferences rather
than precisely-valued inferences when uncertainties are
too high. More precisely, after formalizing inferences in
trees (such as the one used in Example 2), we first evaluate,
through simulation, the difference between exact inferences
and the approximation of Equation (7). We then investigate,
under an assumption of binary relevance (i.e. independent
binary models), the interest of using IP to produce partial,
skeptic inferences. We investigate in particular how such a
setting cope with missing labels.

4.1. Inference in Binary Trees

As we saw in Proposition 3 and Algorithm 1, estimating
Y%{ o implies the calculation of the infimum expectation
Ey [(5(-,a )] given an assignment a_». One possibility to
compute it is to write it as an iterated conditional expecta-

tion over the chain of labels, i.e.,

Ey[ly(-a.z)|=infpe » By, [EYz [-»-Eym PH('@%)‘U“WH]] ] \}7
(15)

where [|j|] ={1,2,...,j—1,j} is a set of previous in-
dices and Yy[ | = {Y1,...,Ym—1} is a random binary

[m—1|
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vector. While in general such an expectation has to be
computed globally, it has been shown by Hermans and De
Cooman [11] that in the specific case of tree structures,
it can be computed recursively. using the law of iterated
lower expectations®
Exln ()2 [Br, |- B [, ][] (16)

Equation (16) allows one to compute global infimum expec-
tation using local models and backward recursion, i.e., we
first compute the local lower expectations starting from the
leaves of the tree and proceed iteratively (for further details
see [24]). Figure 2(b) is an illustration of this procedure.

Finally, let us note that computing marginals P(Y;; = 0)
and P(Y;; = 1) used in Equation (7) is equally easy, as it
amounts to compute the lower expectation of the indicator
functions 1y,_g) and 1(y,_), respectively.

4.2. Exact vs Approximate Skeptic Inference

In this section, we want to assess how good is the outer-
approximation given by Equation (7), by comparing it to
an exact estimation of the set Y[ P Such an estimate is
essential to know in which situation Equation (7) is likely to
give a too conservative outer-approximation, and in which
cases it can safely be used.

To perform this study, we simulate credal sets &2 over %
by generating binary trees in the following way: we choose
an € € [0,0.5], and for a label ¥; and a path y,...,y;—1, we
generate a random 6 ~ %/ ([0, 1]) to obtain the interval

Bx(Y{i} =1|yi,...,yi—1) = max(0,0 — )
ﬁx(Y{i} = 1|y1, A ,yi_l) = min(B + €, l)
where % ([0,1]) is a uniform distribution and € is a param-

eter representing the imprecision level of our interval. The
value of parameter € impacts directly the width of the inter-
val and therefore the precision of the obtained prediction.
We evaluate skeptic inferences on five different samples
of 2000 binary trees, each sample having a fixed £ (i.e. 103
instances). For each instance, we evaluate the quality of the
outer-approximation by computing the number of added
elements in the corresponding set of binary vectors, i.e.,

dt.

(5.9) a7

= 94, 0| — 1Y), .

As we have that fy, » 2 Y/ .- Equation (17) will
never be negative. Also since dlfferent number of labels
will induce different upper bounds for Equation (17), we
uniformize the results across different numbers by parti-

tioning the results in four bins:

go = {(ﬁ Y) (2000) d(g

0.9 — O} ’

3.In general, there is only an inequality between Equations (15)
and (16)
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Clgo.zsz#{(ﬁ,Y (2000) ’O<d5 o, §2‘9|/4},
g<0s = #{ (5, 0)7 ]2'9'/4<d€ 2, <2972},
_ Sy (2000) 1| e 1)
qél—#{(ﬁ,Y)i ’2 [2<dfg) <2 }

Finally, we perform the computer simulations on a
discretization of the parameter € € {0.05,0.15,...,0.45}.
Thus, the results obtained, in percentage and with confi-
dence interval (of the five repetitions), for each € value
and partitions g, are shown in the Table 1. We omitted the
results of € = 0.45 since it always yields go = 100% for all
labels.

The main findings of those simulations are as follows:

* globally, fj,, 5 provides a quite accurate approxima-
tion of the true set, as it is exact (i.e., in gg) most of
the time;

¢ the quality of fj,,, 4 decreases as the number of labels
increases, making it unfit for applications having a
high number of labels [13];

¢ the quality of f),, 5 seems to be the worst for moder-
ate imprecision, probably because a high imprecision
will tend to provide more empty vectors as predictions;

¢ there are a few cases where f),, 5 provides bad (i.e.,
are in g<os) to really bad approximation (i.e., are
in g<j). This indicates that having exact inference
methods may be helpful to identify those cases.

We now perform other experimental studies on real data
sets in order to check how skeptic inferences for multi-label
problems behave in presence of noisy or missing labels.

4.3. Skeptic Inference with Binary Relevance

In this subsection, we perform a set of experiments to inves-
tigate the usefulness of using skeptic inferences in multi-
label problems. In particular, we investigate what happens
when some labels are noisy or missing. To that end, we use a
set of standard real-word data sets from the MULAN repos-
itory* (c.f. Table 2), following a 10x 10 cross-validation
procedure to fit the model.

Evaluation As we perform set-valued predictions, usual
measures used in multi-label problems cannot be adopted
here. We thus consider it appropriate to use an incorrect-
ness measure (IC), coupled with a completeness (CP) mea-
sure [8, §4.1], defined as follows

18
%)= 17 L o o
CP(Y,y) = %, (19)

4. http://mulan.sourceforge.net/datasets.html


http://mulan.sourceforge.net/datasets.html

DISTRIBUTIONALLY ROBUST, SKEPTICAL BINARY INFERENCES IN MULTI-LABEL PROBLEMS

#label | & %0 #label | & %
90 9<0.25 q<0s q<1 90 9<025 4<0.5 q<i1
0.05 | 100.0£0.00% 0.00£0.00%  0.00£0.00%  0.00=0.00% 0.05 | 78.61£135% 199+131%  149+025%  0.00£0.00%
, | 015 ] 9893:£001% 0.00£0.00%  107£011%  0.000.00% g | 015 | 9166+£033%  597+£031%  178:015%  0.59+0.14%
025 | 98.98+0.18% 0.00+0.00% 1.02+0.18%  0.00%0.00% 025 | 97.70+021%  1.66+021%  0.64+0.20%  0.00+0.00%
035 | 100.0£0.00% 0.00+£0.00% 0.00+0.00%  0.00+0.00% 035 | 99.67+0.04%  0.00+0.00%  0.33£0.04%  0.00+0.00%
0.05 | 97.05£0.25% 295+0.25%  0.00£0.00%  0.00=0.00% 0.05 | 74.28£0.92% 25.03+096% 0.69+0.07%  0.00%0.00%
o | 015 | 95855038% 297+024% L17£0.17%  0.01%0.02% o | 015 | 934350320%  444034%  138:033%  075+025%
025 | 99.02£0.17%  0.08:£0.05% 0.90+0.18%  0.00%0.00% 025 | 98.50+0.15%  0.00+£0.00%  1.50+0.15%  0.00+0.00%
035 | 100.0-£0.00% 0.00:£0.00% 0.00+0.00%  0.0040.00% 035 | 100.04£0.00%  0.00+£0.00%  0.00£0.00%  0.00+0.00%
0.05 | 90.26-0.44% 9.74:£0.44%  0.00£0.00%  0.00=0.00% 0.05 | 73.63£0.60% 24.99+0.66% 1.38+0.13%  0.00£0.00%
o | 015 | 9144£063% 4755035%  279%019%  102+023% ||| 015 | 93724064%  420+055%  208+£0.56%  0.00+0.00%
025 | 97.98+0.18% 128+0.06% 0.71+0.12%  0.03+0.02% 025 | 97.2040.20%  2.80+020%  0.00£0.00%  0.00+0.00%
035 | 100.0-£0.00% 0.00:£0.00% 0.00+0.00%  0.0040.00% 035 | 100.04£0.00%  0.00+£0.00%  0.00£0.00%  0.00+0.00%
(a) (b)
Table 1: Average partitions amounts g, (%) with confidence interval.
Dat; set  #Features #Labels #Instances #Cardinality #Density values are removed from the training data. Table 3 illus-
emotions 72 6 593 1.90 0.31 . ..
scene 294 6 2407 1.07 0.18 trates a data set data with missing values.
yeast 103 14 2417 4.23 0.30

Table 2: Multi-label data sets summary

where Q denotes the set of predicted label such that fj; = 1
or fj; = 0 (in other words any abstained predicted label
f); = * is not in Q). When predicting complete vectors, then
CP =1 and IC equals the Hamming loss (i.e. Equation (5)),
and when predicting the empty vector, i.e. all labels equals
to f); = %, then CP = 0 and by convention IC = 0. Since
those measures are adapted to partial vectors, we will use a
simple binary relevance strategy in the experiments.

Naive Credal classifier To obtain probability intervals
over each label, we use an imprecise classifier called the
naive credal classifier (NCC) [25], which extends the
classical naive Bayes classifier (NBC). We refer to Zaf-
falon [25] for details, and will only recall here that the
imprecision of this classifier is regulated by a value s € R,
with the imprecision being higher as s increases (for s = 0,
we retrieve basic empirical frequencies estimate).

In this paper, we restrict the values of
the  hyper-parameter of the imprecision to
s € {0,0.5,1.5,2.5,3.5,4.5}. Our purpose here is
not to find the “optimal” value of s, but to show the
effectiveness of injecting imprecision (i.e. to provide
robust and skeptical inferences). As the NCC requires
discrete features, when those were continuous we simply
discretized in z equal-width intervals, with two levels of
discretization z=5 and z=6.

Missing labels To simulate missingness, we uniformly
pick at random a percentage of missing labels, with five
different levels of missingness: {0,20,40,60,80}. Missing

5. Bearing in mind that it can be replaced by any other (credal) imprecise
classifiers, see [2, §10].
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Features |  Missing
X, X5 X3 Xs X | Y Y
107.1 25 Blue 60 1 1 0 *
-50 10 Red 40 0 1 * 1
200.6 30 Blue 58 1 * 1 0
107.1 5 Green 33 0 * 1 0

Table 3: Missing labels illustration

In Figures 4 and 5, we provide the results of the incor-
rectness and incompleteness measures obtained by fitting
the NCC model on different percentages of missing labels
and data sets of Table 2. While it may be surprising to see
that the precise model is not really affected by randomly
missing labels, the figures show that IP models behave as
expected: as more labels are missing, our model becomes
more cautious but also more accurate on those prediction
is still makes. Moreover, for moderate values of missing-
ness (20 or 40%) and moderate imprecision (s = 2.5 or
below), completeness remain reasonable and above 50%,
with important variations accross data sets that we will in-
vestigate. Of those, one quite noticeable result is that for
the Emotions data set, even with 80% of missing label, a
light imprecision (s = 0.5 ) allows us to reach a reasonable
completeness of about 80% with a gain of 5% in terms of
correct predictions.

Results obtained are sufficient to show that skeptic infer-
ences with probability sets may provide additional benefits
when dealing with missing labels. Those results could, of
course, be improved by picking other classifiers, such as
the NCC2 [6], an extension of the NCC tailored for missing
values.
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Figure 4: Incorrectness evolution for each level of imprecision (one curve each) and discretization z=35 .pdf(top) and

z=06 (down), with respect the percentage of missing labels.
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Figure 5: Incompleteness evolution for each level of imprecision (one curve each) and discretization z=35 (top) and z=6
(down), with respect the percentage of missing labels.

5. Conclusion and Discussion

In this paper, we investigated the problem of providing
cautious, skeptical multi-label inferences when considering
the well-known Hamming loss and generic probabiltiy sets.
We provided efficient algorithmic procedure to do so in
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the general case, and showed that in the Binary relevance
scheme, those same predictions were reduced to partial
vectors computable from marginal probability bounds over
the labels.

Experiments on simulated data sets show that this last so-
lution, when used as an outer-approximation in the general
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case, degrades in quality as the number of labels increases
and the level of imprecision is mild. On the other hand,
experiments on various real data sets show that making
skeptical inferences generally provide quite satisfactory
results when considering missing labels.

In future works, it would be interesting to compare our
skeptical inference approach against those rejecting and
abstaining approaches, for instance the recently proposed
abstention approach in [23]. Such comparisons would nev-
ertheless require a deep analysis of the models, decision
rules as well as instances on which each approach abstains,
and is out of the scope of the present paper, whose main
focus was how to derive cautious predictions over binary
vectors when considering probability sets as our uncertainty
model.

Another natural next step will be to solve the maximality
criterion using other loss functions commonly used in multi-
label problems, e.g. ranking loss, Jaccard loss, F-measure,
and so on. As noticed in Remark 6, such problems are
likely to be much more intricate when considering sets of
probabilities. Finally, let us notice that while this paper
focused on the issue of multi-label learning problems, our
results readily apply to any Boolean vectors of m items.
As Boolean vectors and structures as well as probability
bounds naturally appear in a number of other applications,
including occupancy grids [17] or data bases [10], a future
work would be to investigate how our present findings can
help in such problems.
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