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Abstract
The present paper proposes a generalization of lin-
earity axioms of coherence through a geometrical ap-
proach, which leads to an alternative interpretation of
desirability as a classification problem. In particular,
we analyze different sets of rationality axioms and,
for each one of them, we show that proving that a
subject, who provides finite accept and reject state-
ments, respects these axioms, corresponds to solving
a binary classification task using, each time, a differ-
ent (usually nonlinear) family of classifiers. Moreover,
by borrowing ideas from machine learning, we show
the possibility to define a feature mapping allowing
us to reformulate the above nonlinear classification
problems as linear ones in a higher-dimensional space.
This allows us to interpret gambles directly as payoffs
vectors of monetary lotteries, as well as to reduce the
task of proving the rationality of a subject to a linear
classification task.

Keywords: imprecise probabilities, coherence, convex
coherence, monetary scale, piecewise separators

1. Introduction

The Bayesian framework is a sound and consistent
theory because it is a logic. In fact, it can be shown
that the rules of (Bayesian) probabilities can be inferred
via mathematical duality from a set of logical axioms
[3, 12, 23, 25, 30, 31], that one can interpret as rationality
requirements in the way a subject accepts gambles on the
results of an uncertain experiment. Mathematically, for
a finite possibility space, gambles g are represented by
column vectors in Rn, where n is the size of the (finite)
possibility space Ω (n = |Ω|) of the experiment. In this
paper, we interpret gambles as payoff vectors of monetary
lotteries.1 By denoting with D the set of gambles an
agent finds to be desirable and with g a generic gamble

1. This is not the usual interpretation. Walley [30] has discussed in
some detail why gambles should be interpreted as uncertain rewards
in terms of lottery tickets that can be won or lost. In this paper, we
abandon this assumption because we aim to relax the linearity axiom.

in Rn, the axioms of desirability can be expressed as:2

D1: Tautologies if g≥ 0⇒ g ∈D ,
D2: Falsum if g < 0⇒ g /∈D ,
D3: Linearity if g,h ∈D ⇒ λg+µh ∈D

for any λ ,µ ∈ R+,
D4: Closure if g+ ε ∈D for all ε ∈ R+

∗ ⇒ g ∈D ,
D5: Completeness if g /∈D ⇒−g ∈D .
The first axiom – D1 – also known as accepting partial
gains criterion in literature [30], states that an agent should
always accept non-negative gambles, because they can only
increase the agent’s utility. The second axiom – D2 –also
known as avoiding sure loss criterion in literature [30],
states that an agent should always avoid negative gambles,
because they can only decrease the agent’s utility. In
what follows, for simplicity, we denote by T the set of all
non-negative gambles T := {g ∈ Rn : g≥ 0} and by F the
set of negative gambles F := {g ∈ Rn : g < 0}. Hence, the
two previous axioms can be rewritten respectively as D1:
T ⊆ D and D2: D ∩ F = /0. The third and fourth axiom
state instead that the utility of the agent is linear – D3 (a
standard assumption in decision theory) – and, respectively
continuous: D4. D5 states that an agent has complete
preferences on the states of the world.

These axioms provide the foundation of rational deci-
sion making as it was shown in [18, 32, 33], providing
a connection between desirability and Von Neumann and
Morgestern’s [19] and Anscombe and Aumann’s [3] ax-
iomatisation of rationality. However, in several situations
the above axioms can be restrictive and researchers have
relaxed and generalised them in many ways. For instance,
it is not very realistic to assume that an agent can always
compare alternatives. Axiomatisations of rational decision
making under incompleteness can be obtained by drop-
ping D5 [4, 13, 14, 18, 29, 30]. The closure (continuity)
axiom D4 can also be abandoned. Although D4 makes
tighter the connection between desirability and probability
theory [5, 8, 10], the extra generality of sets of desirable
gambles without D4 makes them useful when dealing with
the problem of conditioning on sets of probability zero, or

2. In D4, we use ε to denote also the constant gamble given by g(ω) = ε

for every ω ∈Ω.
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NONLINEAR DESIRABILITY

of choosing between two options under zero expectation
[28, 30]. The axioms D1 and D2 can also be restrictive.
For instance, in case Ω is an infinite possibility space, eva-
lutating the positivity (or negativity) of a gamble can be
computationally very demanding. This leads to a notion of
computational rationality [6, 7] which restricts D1 and D2.
Instead [26] focuses on relaxations of the notion of avoid-
ing sure loss (D2) only. Finally, the axiom D3 (linearity)
is also not very realistic, especially when one considers
monetary gambles (i.e. gambles that return euros instead of
lottery tickets about euros). The linearity axiom has been
replaced by convexity in [17, 20].

In this paper, we assume that D1, D2 and D4 hold true
and provide a geometric view of desirability which allows
us to easily extend desirability to nonlinear utility.

In order to introduce this interpretation, we first con-
sider a slightly more general framework for desirability
whereby an agent can express both acceptance or rejection
of gambles [22]. By rejecting a gamble, the agent expresses
that they consider accepting that gamble unreasonable. Let
A and R denote the set of acceptable and, respectively,
rejectable gambles by the agent. We assume then the pres-
ence of a modeller, who aims to prove the rationality of the
agent. The modeller can have in mind different concepts
of rationality depending on the axioms they decide to con-
sider as rational. Once established the axioms, they should
evaluate the rationality of the agent on the basis of the
only information available, which we assume to be (A ,R).
Clearly, in practical situations, A and R are finite. So, we
assume that they consider the agent rational if there exists
a set D such that D ⊇A and D ∩R = /0 that satisfies the
rationality axioms established by the modeller. In this pa-
per, we assume that D must always satisfy D1, D2 and D4
(which we consider minimal requirements for rationality),
therefore T ⊆D , D ∩F = /0 and D must be closed in the
sense of D4. We will present rationality models where the
modeller considers additional requirements of rationality
and discuss methods to choose the least committal set D
compatible with these requirements – D will be defined
as deductive closure of A taken with respect to the set of
rationality axioms considered.3

It is well-known that, if the modeller assumes all axioms
of rationality D1−D5, then the problem of determining
if the agent is rational or not becomes, thanks to the hy-
perplane separation theorem, a binary linear classification
problem [30]. Indeed, in this case the agent is rational if
and only if there exists a linear prevision P(·) such that
P(g)≥ 0, for every g ∈A and P(g)< 0, for every g ∈R.
However, a linear prevision is essentially an expected value
operator taken with respect to a finitely additive probabil-
ity: P(g) = gT β for every g ∈ Rn with β ∈ Rn, β 
 0 and
∑

n
i=1 βi = 1, where βi, for every i, are the components of

the vector β . This is equivalent to have a binary linear clas-

3. We assume it is determined by A and only indirectly by R.

sifier that classifies any gamble g on the basis of the sign of
P(g) = gT β , which classifies in a different way A and R.
It is easy to see that the constraints on the coefficient β of
this classifier, can be dropped asking it to directly classify
in a different way A ∪T and R ∪F . 4 In this case, we say
that the pair (A ∪T,R ∪F) is linearly separable. Figure
1.1 provides a 2D illustration of this case.

In this paper, we show that this way of interpreting the
problem as a binary classification task, is very general. In
particular, indeed, we show that:

• in the imprecise case (that is, assuming D1–D4 but
not completness axiom D5), the problem can be refor-
mulated using a binary piecewise linear classifier (see
Section 2);

• if rationality is expressed through D1, D2, convexity
replacing linearity, and D4 [17], the problem can be
reformulated using a binary piecewise (convex) affine
classifier (see Section 3);

• if rationality is expressed through D1, D2, “positive
additivity” replacing linearity, and D4, the problem
can be reformulated using a binary piecewise positive
affine classifier (see Section 4);

• for more general cases that, however, respect D1, D2
and D4, the problem can be reformulate using a non-
linear classifier (see Section 6).

This allows us to model more realistic cases of desirabil-
ity, see Example 2. Moreover, by borrowing ideas from
machine learning,5 we show that we can define a feature
mapping that allows us to reformulate the above nonlin-
ear classification problems as linear classifiers in a higher-
dimensional space.

2. Standard Imprecise Probability

Suppose to have a modeller who considers as rational an
agent who respects D1-D4. Furthermore suppose, as before,
that the only information they possess consist of a finite set
of gambles A , the agent is willing to accept, and a finite
set of gambles R, they are willing to reject. Then we can
assume that the modeller considers the agent rational if and
only if there exists a set of gambles D that satisfies D1-D4
(that we call coherent from now on), such that D ⊇A and
D ∩R = /0.

Let us indicate with L (Ω), or L when there is no possi-
ble ambiguity, the set of all gambles defined on a possibility
space Ω. Suppose moreover, as before, that |Ω|= n. So, in
what follows, L = Rn.

4. Indeed, if gT β ≥ 0 for every g ∈ T and gT β < 0 for every g ∈ F ,
then β 
 0. Therefore, it can be normalized obtaining a probability
distribution on Ω.

5. There is however a substantial difference between the classification
problem we aim to solving here and standard classification problems
considered in machine learning. In our case, together with the training
data set (A ,R), there are two infinite sets T,F which must also be
classified. To our best knowledge, this problem has only be studied
by Mangasarian and Wild [16] for support vector machines.
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Figure 1.1: Example of a linearly separable pair (A ∪T,R ∪F), (left). The middle and right plots instead, show two
examples of non-linearly separable pairs (A ∪T,R ∪F). The (blue) points denote gambles in A ; the (red)
triangles denote gambles in R. The blue line in the left plot is the linear function gT β = 0 that separates A ∪T
from R ∪T . In the right plot, R = /0.

In this section we prove that, determining whether an
agent is rational in the sense of respecting D1−D4, is equiv-
alent to solve a binary piecewise linear classification task.

Definition 1 (Binary piecewise linear classifier) We de-
note with the term binary piecewise linear classifier, a
classifier PLC(·) defined on L and characterized by the
following discriminant function:6

PLC(g) :=

{
1 if gT β j ≥ 0, for all j ∈ {1, ...N}
−1 otherwise

(1)

for every g ∈L , with β j ∈ Rn, for all j,7 N ≥ 1.

Definition 2 (Piecewise linear separability) A pair of
sets of gambles (A,B) is piecewise linearly separable if
there exists a binary piecewise linear classifier PLC(·),
such that PLC(A) = 1 and PLC(B) =−1.8 In this case, we
indicate the set of these classifiers with PLC(A,B).

Now we can show the main result of this section. All the
proofs are in the supplementary material.

Proposition 3 Given a pair of finite sets of gambles
(A ,R), there exists a coherent set D , such that D ⊇ A
and D ∩R = /0, if and only if (A ∪T,R ∪F) is piecewise
linearly separable.

From the proof of this proposition, it follows in particu-
lar that, if the pair (A ∪ T,R ∪F) is piecewise linearly
separable, the region classified as 1 by a classifier PLC ∈
PLC(A ∪T,R ∪F), i.e. D := {g ∈L : PLC(g) = 1}, is
a coherent set, such that D ⊇ A and D ∩R = /0. Vice

6. We take for simplicity the values 1 and −1.
7. W.l.o.g. we can assume β j 6= 0 for every j since, otherwise, we can

exclude it from the family of weights characterizing the classifier.
This reasoning can be applied to every other classifier in the text.

8. With a little abuse of notation, with PLC(K ) = c for K ⊆L , c ∈
{−1,1}, we mean PLC(g) = c, for all g ∈K . We will use the same
notation also for the other types of binary classifiers considered later
on.

versa is not true in general.9 Analogous reasonings can be
applied for the other concepts of rationality, and hence of
coherence, treated in Section 3 and Section 4. Obviously,
the same is valid also for the most strictly concept of ra-
tionality (expressed through axioms D1-D5), seen in the
Introduction (it is a subcase of the actual one).

In this case however, we can give another interpretation
of a rational agent, which is an extension of the one seen
in the Introduction. It is easy to show indeed that every
binary piecewise linear classifier that classifies T as 1, is
characterized by a set of weights {β j}N

j=1 such that β j 

0, for all j = 1, ...,N. Therefore, we can normalise them
getting N probability mass functions on Ω. So, given a
pair of finite sets of gambles (A ,R), (A ∪T,R ∪F) is
piecewise linearly separable if and only if there exists a
set of probability mass functions Pj = β j on Ω such that:
EPj(g), i.e. the expected value of a gamble g taken with
respect to Pj, is not negative for all g∈A ∪T and all Pj; for
all g ∈R ∪F there exists at least a Pi such that EPi(g)< 0.
Reformulation of Prop. 3 in those probabilistic terms is
also a well-known result in the literature [30].

Once established that the agent is rational, i.e. if (A ∪
T,R∪F) is piecewise linearly separable, the minimal set of
assumptions the modeller can made on the agent’s beliefs is
represented by the least committal coherent set containing
A (see the proof of Prop. 3 or [30]):

E (A ) := posi(A ∪T ), (2)

where, given K ⊆L :

posi(K ) :=

{
r

∑
j=1

λ j f j : f j ∈K ,λ j > 0,r ≥ 1

}
, (3)

and where K ′ of a set K ′ ⊆ L represents the closure
of K ′ with respect to the supremum norm topology [30,
Section 3.7.2–3.7.4] or with respect to the usual topology
of Rn [30, Appendix D]. Notice that, geometrically, it cor-
responds to a (closed) convex cone. Further, it corresponds

9. For example if D is not finitely generated [30].

63



NONLINEAR DESIRABILITY

also to a concept of deductive closure for the set A . It is
easy to see in fact that the operator Ccohr : A → E (A ),
defined for every A ⊆L , is a closure operator. The proof
of Prop. 3 guarantees in particular that this set can be rewrit-
ten as the region classified as 1 by a binary piecewise inear
classifier. Hence, in principle, it can be found solving the
classification task with some other constraints, which can
be formulated as a linear programming problem [9].

2.1. Feature Mapping

In this section we will prove that the previous problem,
which is a non linear classification task in general, can be
reformulated as a linear classification problem in a higher
dimensional space. Let {B j}N

j=1 denote a partition10 of L
defined as follows [21]:

B j := {g ∈L : gT
ω j ≤ gT

ωk for k = 1, . . . ,N, j 6= k}.
(4)

The vectors ω j ∈ Rn are parameters defining the parti-
tion. Now, we can introduce the feature mapping φ :=
(φ1, . . . ,φN), with φ j : Rn → Rn defined as φ j : g →
IB j(g)g, for every j = 1, . . . ,N, where IB j(g) := 1 if
g ∈B j and 0 otherwise.11 Further, we define the following
classifier, which corresponds to a linear classifier in the
feature space:

LCφ (g) :=

{
1 if ∑

N
j=1(φ j(g))T β ′j ≥ 0

−1 otherwise.
(5)

for every g ∈ L , with β ′j ∈ Rn, for all j = 1, . . . ,N. In
what follows, we consider both {β ′j}N

j=1 and {ω j}N
j=1 as

parameters of LCφ (·). Finally, we introduce the following
definition to simplify notation.

Definition 4 (Φ-separability) A pair of sets of gambles
(A,B) is Φ-separable, if there exists a classifier LCφ (·)
of the type (5), such that LCφ (A) = 1 and LCφ (B) = −1.
In this case, we indicate the set of these classifiers with
LCΦ(A,B).

We can now state the main result of this section.

Proposition 5 Let (A ,R) be a pair of finite sets of gam-
bles. If (A ∪ T,R ∪ F) is piecewise linearly separable,
then it is also Φ-separable. Vice versa, if there exists a
classifier LCφ (·) ∈ LCΦ(A ∪T,R ∪F) with ω j = β ′j, for

10. We call it partition with a little abuse of notation. Indeed, we guaran-
tee only that intB j ∩ intBk = /0, for every j,k ∈ {1, . . . ,N}, j 6= k,
where intB j represents the interior of B jin the usual topology of
Rn. Instead, it is guaranteed that ∪N

j=1B j = L because every g ∈L

belongs to at least a B j . Indeed, for every g ∈L , {gT ω j} j∈N is a
finite set of real values, so the minimum always exists.

11. Therefore, IB j (g)g = g if g ∈B j and 0n otherwise, where 0n is the
null vector in Rn. Analogous notation is used for the other feature
mappings described in the article.

all j = 1, ..,N,12 then (A ∪ T,R ∪F) is also piecewise
linearly separable.

The proof of this proposition is based on the ob-
servation that: min(gT β1, . . . ,gT βN) ≥ 0 if and only if
∑

N
j=1(IB j(g)g)

T β j ≥ 0, when ω j = β j for all j. There-
fore, there is a one-to-one correspondence between classi-
fiers PLC(·)∈ PLC(A ∪T,R∪F) and classifiers LCφ (·)∈
LCΦ(A ∪T,R∪F) with ω j = β ′j, for all j = 1, ..,N. Fur-
ther, in this case, the regions {g ∈L : LCφ (g) = 1} corre-
spond to coherent sets D such that D ⊇A and D ∩R = /0.
Moreover, β ′j 
 0, for all j, analogously to the constraints
on β j that we have for the correspondent classifiers PLC(·).
Analogous considerations can be made for the feature map-
pings introduced for the other definitions of coherence
treated in Section 3.1 and in Section 4.1.

Example 1 Consider a coin tossing experiment whose
outcomes are h, Heads and t, Tails. A gamble g in this
case, has two components g(h) = g1 and g(t) = g2. If
the agent accepts g then they commit themselves to re-
ceive/pay g1 if the outcome is Heads and g2 if Tails. As-
sume that A = {[−1,2]T , [−0.5,3]T , [2,−1]T} and R =
{[−1,1]T , [−3,2]T , [1,−2]T}, this could correspond to an
imprecise rational agent whose D = E (A ) is shown in
Figure 2.1 (left). We can introduce the partition

B1 = {g : 2
6 g1 +

1
6 g2 ≤ 1

6 g1 +
2
6 g2}, (6)

B2 = {g : 1
6 g1 +

2
6 g2 ≤ 2

6 g1 +
1
6 g2}, (7)

and verify that the classifier defined as:

LCφ (g) :=

{
1 if ∑

2
j=1(IB j(g)g)

T β ′j ≥ 0
−1 otherwise.

(8)

for every g∈L , with β ′1 = [ 2
6 ,

1
6 ]

T and β ′2 = [ 1
6 ,

2
6 ]

T , classi-
fies A ∪T as 1 and R∪F as−1 and, moreover, the region
{g ∈L : LCφ (g) = 1} corresponds to E (A ).13

3. Convexity
When one considers monetary gambles, the linearity as-
sumption D3 is not very realistic. In this section we con-
sider a weaker form of rationality. We assume D1, D2, D4
and a relaxed version of the axiom D3:

D3∗ : if g,h ∈D , then tg+(1− t)h ∈D for each t ∈ [0,1]
[Convexity].

12. It is only a sufficient condition. Note also that the feature mapping de-
fined in this section is not unique. We can find other feature mappings
that guarantee the same properties (see Example 1).

13. Note that this is not the only feature mapping that we can use to
linearly separate A ∪ T from R ∪ F . Given the fact that D is a
convex cone in 2D indeed, there always exist a linear classifier that
classifies A ∪T as 1 and R∪F as−1 in the feature space determined
by the feature mapping η : g→ [g2,Ig1<0(g)g1,Ig1≥0(g)g1]

T . In this
case, it is sufficient to consider β ′ = [1,2, 1

2 ]
T .
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Figure 2.1: Example of a standard (imprecise) coherent set of gambles (left); a convex coherence set (center) and a positive
additive coherent set (right). Points denote gambles in A ; triangles gambles in R. The blue shaded region is
the deductive closure of A for the three different notions of coherence.

We define a set D that satisfies D1, D2, D3∗, D4 a convex
coherent set of gambles.

Again, if an agent that is willing to accept and reject
respectively a finite set A and a finite set R, is rational in
this sense, there exists a convex coherent set of gambles
D , such that D ⊇ A and D ∩R = /0. If this is the case,
the minimal set of assumptions that the modeller can made
on the agent’s beliefs is represented by the least commit-
tal convex coherent set that contains A . It can be proven
that it corresponds to ch(A ∪T ), the closed convex hull of
A ∪T in the usual topology of Rn or, equivalently, in the
supremum norm topology (see Lemma 23). Furthermore,
geometrically, it corresponds to a convex polyhedron (see
Lemma 24). Clearly, also in this case, it corresponds to a
deductive closure for the set A [15, Page 2039].

We claim that proving if an agent is rational in this sense
is again equivalent to solve a binary classification task.

Definition 6 (Binary piecewise affine classifier) We de-
note with the term binary piecewise affine classifier a clas-
sifier PAC(·) defined on L and characterized by the fol-
lowing discriminant function:

PAC(g) :=

{
1 if gT β j +α j ≥ 0, for all j ∈ {1, ...N}
−1 otherwise.

(9)
for every g ∈L , with β j ∈ Rn, α j ∈ R for all j, N ≥ 1.

Definition 7 (Piecewise affine separability) A pair of
sets of gambles (A,B) is piecewise affine separable if there
exists a binary piecewise affine classifier PAC(·), such that
PAC(A) = 1 and PAC(B) = −1. In this case, we indicate
the set of these classifiers with PAC(A,B).

Now we can state the main result of this section.

Proposition 8 Given a pair of finite sets of gambles
(A ,R), there exists a convex coherent set of gambles
D , such that D ⊇ A and D ∩R = /0, if and only if
(A ∪T,R ∪F) is piecewise affine separable.

Analogously as before, from the proof of this proposition,
it follows that if (A ∪T,R ∪F) is piecewise affine separa-
ble then D := {g ∈L : PLC(g) = 1} for every PLC(·) ∈
PLC(A ∪T,R ∪F), is a convex coherent set of gambles
such that D ⊇A and D ∩R = /0. Vice versa is not true in
general, but it is true for ch(A ∪T ).

It is easy to show moreover that, again similarly as before,
every binary piecewise affine classifier that classifies T
as 1 and F as −1 is characterized by a set of weights
{β j,α j}N

j=1 such that β j 
 0,α j ≥ 0, for all j = 1, ...,N
with at least an αk = 0, k ∈ {1, . . . ,N}.

3.1. Feature Mapping

We can reformulate the previous problem as a linear classi-
fication task in a higher dimensional space, using a feature
mapping similar to the one seen in Section 2.1. We can
indeed define new partitions:

B′ j := {g′ ∈L (Ω′) : g′T ω
′
j ≤ g′T ω

′
k,

for k = 1, . . . ,N, j 6= k}
(10)

with |Ω′|= n+1, ω ′j ∈ Rn+1.
We can then introduce, the feature mapping ψ :=

(ψ1, . . . ,ψN), with ψ j : Rn → Rn+1, defined as ψ j : g→

IB′ j

([
g
1

])[
g
1

]
for every j = 1, . . . ,N. Further, we define

the following classifier, which corresponds to a linear clas-
sifier in the feature space:

LCψ(g) :=

{
1 if ∑

N
j=1(ψ j(g))T β ′j ≥ 0

−1 otherwise.
(11)

for every g ∈ L , with β ′j ∈ Rn+1, for all j = 1, . . . ,N.
We consider both {β ′j}N

j=1 and {ω ′j}N
j=1 as parameters of

LCψ(·). Then we can introduce the following definition.

Definition 9 (Ψ-separability) A pair of sets of gambles
(A,B) is Ψ-separable, if there exists a classifier LCψ(·) of
the type (11), such that LCψ(A) = 1 and LCψ(B) = −1.
In this case, we indicate the set of these classifiers with
LCΨ(A,B).
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We can now state the main result of this section.

Proposition 10 Let (A ,R) be a pair of finite sets of gam-
bles. If (A ∪T,R ∪F) is piecewise affine separable, then
it is also Ψ-separable. Vice versa, if there exists a classi-
fier LCψ(·) ∈ LCΨ(A ∪T,R ∪F) with ω ′j = β ′j, for all
j = 1, ..,N, then (A ∪T,R ∪F) is also piecewise affine
separable.

The proof of Prop. 10 is similar to that of Prop. 5, indeed
it is based on an analogous observation. So, in particular,
the region {g ∈L : LCψ(g) = 1} of a classifier LCψ(·) ∈
LCΨ(A ∪T,R∪F) with ω ′j = β ′j for all j, is, similarly as
before, a convex coherent set D such that D ⊇A and D ∩
R = /0. Moreover, in this case, β ′j ≥ 0, for all j = 1, . . . ,N,
with β ′j,1:n 
 0, 14, with at least a β ′k, k ∈ {1, . . . ,N}, such
that β ′k,n+1 = 0.

Example 2 Consider again Example 1. However now,
suppose explicitly to work with monetary gambles, whose
values represent rewards in thousands of euros. If the agent
has limited financial resources, they can set their maximum
loss to 1 thousand of euros, for example. In this case, it
is no more reasonable thinking that they will respect ax-
iom D3. A more reasonable rationality definition for the
agent, is the one that is based on the axioms D1, D2, D3∗,
D4. Analogously to Example 1, if we introduce a classifier
LCψ(·) of the form (11), characterized by the parameters

ω ′j = β ′j =
[

β j
α j

]
for j = 1, . . . ,4 where values of β j,α j for

every j, correspond to the rows of the following matrices:

β =

 1 0
2
6

1
6

1
6

2
6

0 1

 , α =

[1
0
0
1

]
,

we can verify that LCψ(·) classifies A ∪T as 1 and R ∪F
as −1. Moreover, we have {g : LCψ(g) = 1}= ch(A ∪T )
(see proofs of Prop. 8 and 10). A graphical representation
of ch(A ∪T ) is showed in 2.1 (center).

4. Positive Additive Coherence
We now consider an even weaker relaxation (see Lemma
22) of the linearity axioms D3:

D3∗∗ if f ∈ D , then f + h ∈ D for each h ∈ T [positive
additivity].

We call a set D that satisfies D1, D2, D3∗∗, D4 a positive
additive coherent set of gambles. With a reasoning analo-
gous to the previous sections, if, given a pair of finite sets
(A ,R), there exists a positive additive coherent set of gam-
bles D , such that D ⊇A and D∩R = /0, the minimal such
set is: ↑ (A ∪{0}) [11], as Lemma 25 proves. It is possible

14. β ′j,1:n denotes the vector containing the first n components of β ′j .

to notice that, geometrically, it corresponds to a union of
orthants centered in the elements of A ∪{0}. Further, also
in this case, it is a deductive closure for A [2]. As usual,
we show that proving if an agent is rational in this sense
is equivalent to solve a binary classification task. Let us
introduce the following definitions.

Definition 11 (PWP classifier) We denote with the term
binary piecewise positive affine (PWP) classifier, a clas-
sifier PWPC(·) defined on L and characterized by the
following discriminant function:

PWPC(g) :=

{
1 if ∃ f j ∈F s.t. g≥ f j,

−1 otherwise,
(12)

for every g ∈L , where F is a finite set of gambles.

Definition 12 ( PWP separability) A pair of sets of gam-
bles (A,B) is piecewise affine positive separable (PWP)
if there exists a PWP classifier PWPC(·), such that
PWPC(A) = 1 and PWPC(B) = −1. In this case we in-
dicate the set of these classifiers with PWPC(A,B).

Note that, for every j, {g≥ f j} defines an orthant centered
at f j, whose border can be expressed as a piecewise affine
function. It can easily be proved (by induction on the ele-
ments of F ) that the decision boundary of (12) is also a
piecewise affine function. We can now state the main result
of this section.

Proposition 13 Given a pair of finite sets of gambles
(A ,R), there exists a positive additive coherent set D ,
such that D ⊇ A and D ∩R = /0, if and only if (A ∪
T,R ∪F) is PWP separable.

Also here, if (A ∪ T,R ∪ F) is PWP separable then
D := {g ∈ L : PWPC(g) = 1} for every PWPC(·) ∈
PWPC(A ∪T,R ∪F), is a positive additive coherent set
such that D ⊇A and D ∩R = /0. Vice versa is not true in
general, but it is true for ↑ (A ∪{0}).

4.1. Feature Mapping

In this section, we will prove that, also in this case, the
previous problem can be reformulated as a linear classifi-
cation task in a higher dimensional space. Let {ζi, j} with
i = 1, ..,n, j = 1, ..,N denote another partition of L = Rn

defined as follows:

ζi, j := {g ∈L (Ω) : (gi−ω
j

i ) = max
k

(min
l
(gl−ω

k
l ))}

(13)
with ω j ∈ Rn, j = 1, ...,N. We can introduce the feature
mapping ρ := (ρ1, . . . ,ρN), with ρ j : Rn→ R2n defined as:

ρ j,i(g) :=

{
Iζi, j(g)gi if i = 1, ...,n
Iζi−n, j(g) otherwise
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for every g ∈L and j = 1, . . . ,N. Further we define the
following classifier, which corresponds to a linear classifier
in the feature space:

LCρ(g) :=

{
1 if ∑

N
j=1(ρ j(g))T β ′j ≥ 0

−1 otherwise.
(14)

for every g ∈L , with β ′j ∈R2n. We consider both {β ′j}N
j=1

and {ω j}N
j=1 as parameters of LCρ(·). Similarly as before,

we can introduce the following definition.

Definition 14 (P-separability) A pair of sets of gambles
(A,B) is P-separable, if there exists a classifier LCρ(·) of the
type (14), such that LCρ(A) = 1 and LCρ(B) =−1. In this
case, we indicate the set of these classifiers as LCP(A,B).

We can now state the main result of this section.

Proposition 15 Let (A ,R) be a pair of finite sets of gam-
bles. If (A ∪T,R ∪F) is PWP separable, then it is also
P-separable. Vice versa, if there exists a classifier LCρ(·) ∈
LCP(A ∪T,R ∪F) with β ′j,i > 0 and ω

j
i = −β ′j,i+n

β ′j,i
15 for

all i, j , then (A ∪T,R ∪F) is also PWP separable.

The proof is based on the following observation, analo-
gous to the previous ones:

g ∈ {PWPC(g) = 1} ⇐⇒ max
j
(min

i
(gi− f j

i ))≥ 0

⇐⇒
N

∑
j=1



Iζ1, j

(g)g1
...

Iζn, j
(g)gn

Iζ1, j
(g)

...
Iζn, j

(g)




T 
1
...
1
− f j

1...
− f j

n

≥ 0.

if ζi, j = {g ∈ L : (gi− f j
i ) = maxk(minl(gl − f k

l ))}, for
all i, j, where f j are the parameters of the PWP classifier
PWPC(·). Also here the region {g ∈L : LCρ(g) = 1} of
a classifier LCρ(·) ∈ LCP(A ∪T,R∪F) with β ′j,i > 0 and

ω
j

i =−
β ′j,i+n

β ′j,i
for every i, j, is, similarly as before, a positive

additive coherent set D such that D ⊇A and D ∩R = /0.

Example 3 Consider again Example 1, but in this case
we assume a positive additive rational agent, i.e. an agent
who respects rationality axioms D1, D2, D3∗∗, D4 (but
not necessarily D3 or D3∗). Analogously to Example 1
and 2, if we introduce a classifier LCρ(·) of the form (14),
characterized by the parameters ω

j
i = −β ′j,i+n/β ′j,i, and

β ′j, i = 1,2, j = 1, . . . ,3 defined in the following way:

β
′
1 =

[ 1
1
1
−2

]
, β

′
2 =

[1
1
0
0

]
, β

′
3 =

[ 1
1
−2
1

]
,

15. These constraints are not so restrictive. Indeed, it is computationally
simple to verify if there exists such a classifier in this situation. It is
sufficient to find a PWP classifier with F ⊆ (A ∪{0}) that classifies
A ∪T as 1 and R ∪F as −1.

it classifies A ∪ T as 1 and R ∪ F as −1.16 Moreover,
{g : LCρ(g) = 1} =↑ (A ∪{0}) (see proofs of Prop. 13
and 15 ).

5. Lower Previsions and Preferences
Consider a generic feature map χ = (χ1, . . . ,χN), with χ :
Rn 7→RM with M≥ n. From every classifier LCχ(·) defined
as:

LCχ(g) :=

{
1 if ∑

N
j=1(χ j(g))T β ′j ≥ 0

−1 otherwise.
(15)

for every g ∈ L , with β ′j ∈ RM , for all j = 1, . . . ,N we
can induce a preference relation on gambles of the original
space Rn and therefore a lower and an upper prevision.

Definition 16 Given a classifier LCχ(·) defined as in (15),
we say that f %LCχ

g with f ,g ∈ Rn, if LCχ( f −g) = 1. In
this case, for every gamble g ∈ Rn, we call the following
values:

PLCχ
(g) := sup{c ∈ R : LCχ(g− c) = 1},

PLCχ
(g) := inf{c ∈ R : LCχ(c−g) = 1},

respectively the generalized lower and the generalized
upper prevision of g.

Let us consider the case in which χ coincides with a
feature mapping φ defined as in Section 2.1. Given a
Φ-separable pair of sets (A ,R), from every classifier
LCφ (·) ∈ LCΦ(A ∪T,R∪F), we can induce a preference
relation, and consequently a generalized lower and a upper
prevision, on Rn. In particular, the following result is valid.

Proposition 17 Let (A ,R) be a pair of finite sets of gam-
bles. If there exists a classifier LCφ (·) ∈ LCΦ(A ∪T,R ∪
F) with ω j = β ′j, for all j = 1, . . . ,N, then there exists a
coherent set of gambles D (i.e. a set of gambles satisfying
D1, D2, D3, D4), such that:

f %LCφ
g ⇐⇒ f −g ∈D , (16)

for every f ,g ∈ L . Moreover, if f − g ∈ (A ∪ T ), then
f %LCφ

g and if f −g ∈ (R ∪F), then ( f 6%LCφ
g). In par-

ticular, it follows that for every g ∈L :

PLCφ
(g) = P(g), (17)

where P(g) := sup{c ∈ R : g− c ∈D} for every g ∈L , is
the standard coherent lower prevision of g associated to D .

The proof follows immediately from the proofs of Prop. 3
and 5. It follows then that the preference relation %LCφ

, in
this case, satisfies the following properties.

16. The coefficients β ′j of (12) can be determined by solving a simple
mixed-integer linear programming problem.
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R1. −1 6%LCφ
0 [Avoiding Sure Loss];

R2. If f ≥ g then f %LCφ
g, for any f ,g ∈L (Ω) [Mono-

tonicity];

R3. If f %LCφ
g and λ > 0 then λ f %LCφ

λg, for any f ,g∈
L (Ω) [Positive homogeneity];

R4. If f %LCφ
g and g %LCφ

h then f %LCφ
h, for any

f ,g,h ∈L (Ω) [Transitivity];

R5. If f +δ %LCφ
g for every δ > 0 then f %LCφ

g, for any
f ,g ∈L (Ω) [Continuity];

R6. f %LCφ
g if and only if f − g %LCφ

0, for any f ,g ∈
L (Ω) [Cancellation].

We can prove similar results for the other cases.

Proposition 18 Let (A ,R) be a pair of finite sets of gam-
bles. If there exists a classifier LCψ(·) ∈ LCΨ(A ∪T,R ∪
F) defined as in (11) with ω ′j = β ′j, for all j = 1, . . . ,N,
then there exists a convex coherent set of gambles D (i.e. a
set of gambles satisfying D1, D2, D3∗, D4), such that:

f %LCψ
g ⇐⇒ f −g ∈D , (18)

for every f ,g ∈ L . Moreover, if f − g ∈ (A ∪ T ), then
f %LCψ

g and if f −g ∈ (R ∪F), then ( f 6%LCψ
g).

In this case, R1, R2, R5, R6 remains satisfied. Instead,
R3 and R4 can be replaced by:

( f %LCψ
g, h %LCψ

l)⇒ α f +(1−α)h %LCψ
αg+(1−α)l

for any α ∈ [0,1], f ,g,h, l ∈L (Ω),

that implies, in particular, the convexity axiom of [17].

Proposition 19 Let (A ,R) be a pair of finite sets of gam-
bles. If there exists a classifier LCρ(·)∈ LCP(A ∪T,R∪F)

with β ′j,i > 0 and ω
j

i =
β ′j,i+n

β ′j,i
, for all i = 1, . . . ,n, j =

1, . . . ,N, then there exists a positive additive coherent set of
gambles D (i.e. a set of gambles satisfying D1, D2, D3∗∗,
D4), such that:

f %LCρ
g ⇐⇒ f −g ∈D , (19)

for every f ,g ∈ L . Moreover, if f − g ∈ (A ∪ T ), then
f %LCρ

g and if f −g ∈ (R ∪F), then ( f 6%LCρ
g).

Also in this case, R1, R2, R5, R6 are still satisfied.

Example 4 Consider again Example 1. As we have seen,
the pair of sets (A ,R) is Φ-, Ψ- and P-separable. The
three classifiers LCφ (·),LCψ(·),LCρ(·) considered in the
previous examples moreover, respect the properties re-
quired by Props. 17, 18 and 19, respectively. In particular,
they induce different preferences relations and different
generalized lower previsions on gambles.

In the following table are summarized the values of the
three generalized lower previsions for g = [2,−1]T , g′ =

0.5g and g′′ = 2g. From these values, it is possible to notice
that PLCψ

(·) and PLCρ
(·) are not coherent lower previsions

(w.r.t. the standard coherence axioms for lower previsions).
PLCφ

(·) instead, coincides with a standard coherent lower
prevision, as proven in Prop. 17.

PLCφ
(·) PLCψ

(·) PLCρ
(·)

g 0 0 0
g′ = 0.5g 0 0 -0.5
g′′ = 2g 0 -1 -1

6. General Nonlinear Classifier
One may wonder what new kinds of applications are possi-
ble once we have redefined desirability as a classification
problem. Here we provide the intuition for a general ap-
proach to define a nonlinear ‘consequence operator’ via a
nonlinear classifier. This would allow us to perform infer-
ences (computing lower previsions and preferences), from
a pair of sets (A ,R), when we do not know the ‘type of
rationality’ of the agent (i.e. we only assume D1, D2 and
D4). To this purpose, we introduce a general feature map-
ping φ̂ = (φ̂1, . . . , φ̂N). Its j-th component φ̂ j : Rn 7→ RM

with M ≥ n, is defined as:

φ̂ ji(g) :=

{
ψ̂ ji(g)gi if i≤ n,
ψ̂ ji(g) otherwise.

for every g ∈ L . We assume that ψ̂ ji for every i, j, is a
scalar function satisfying: (i) for every g, ψ̂ ji(g) ≥ 0, for
all ji and exists kl with l ≤ n, such that ψ̂kl(g)> 0; (ii) it
depends on a vector of parameters θ ∈Rp, p≥ 1, for all j, i.
We then define the following classifier, which corresponds
to a linear classifier in the feature space:

LC
φ̂
(g) :=

{
1 if ∑

N
j=1(φ̂ j(g))T β ′ j ≥ 0

−1 otherwise.
(20)

As usual, we consider both {β ′j}N
j=1 and θ as parameters of

LC
φ̂
(·). We introduce then the following definition.

Definition 20 (Φ̂-separability) A pair of sets of gambles
(A,B) is Φ̂-separable if there exist a classifier LC

φ̂
(·) of the

type (20), such that LC
φ̂
(A) = 1 and LC

φ̂
(B) =−1. In this

case we indicate the set of these classifiers with LC
Φ̂
(A,B).

It is easy to see that, depending on the form of ψ̂ , Φ̂-
separability becomes Φ-separability, Ψ- separability or P-
separability. However, in the previous sections we have
seen that Φ, Ψ,P-separability of a pair (A ∪ T,R ∪F),
where A and R are finite sets of gambles, is not sufficient
to guarantee some form of rationality of the agent who is
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Figure 5.1: Nonlinear classifier for piecewise linearly separable (left) and for non piecewise linearly separable (right)
A ,R.

willing to accept A and reject R (see Prop. 5, 10, 15). Nev-
ertheless, it is possible to see that D = {g : LC

φ̂
(g)= 1}, for

every LC
φ̂
(·) ∈ LC

Φ̂
(A ∪T,R ∪F) is such that D ⊇A ,

D ∩R = /0 and it satisfies D1, D2, D4.17 Further, with
this general family of feature mappings, we are potentially
able to linearly separate in the feature space almost any
pair (A ∪T,R ∪F). So, it can be useful to constrain the
possible feature mappings in such a way that the classifier,
when its parameters are appropriately selected, is able to
‘adapt’ itself to the rationality of the subject. If, for example,
(A ,R) is compatible with a stricter notion of coherence
(for instance the pair (A ∪ T,R ∪ F) is also piecewise
linearly separable), then we would like that our classifier,
when optimized, collapses to a classifier LCφ (·) defined in
(5). We provide an example hereafter to clarify our intent.

Example 5 Consider a possibility space of size n = 2.
Then, every gamble g has two components g1 and g2. Con-
sider the feature mapping φ̂(·) whose non-null components
are collected in the following vector:

[g2,Ig1<0(g)g1,Ig1≥0(g)g1,

exp
(
−(g1−r1)

2

σ2
1

)
g1, . . . ,exp

(
−(g1−r|R|)

2

σ2
|R|

)
g1],

where ri denotes the first component of the i-th gamble in
R for i = 1, . . . , |R|. There are |R| parameters, θi = σ2

i ,
which are the variances of the ‘Gaussian’ densities. We
constrain β ′ 
 0 so that LC

φ̂
(T ) = 1 and LC

φ̂
(F) =

−1. Among the classifiers that satisfy LC
φ̂
(A ) = 1 and

LC
φ̂
(R) =−1, we select the one which minimises the ob-

jective function

∑
g j∈A

(
|R|+3

∑
i=1

φ̂i(g j)β
′
i

)
+ γ

|R|+3

∑
i=4

β
′
i , (21)

with γ ≥ 0. Note that ∑
|R|+3
i=1 φ̂i(g j)β

′
i ≥ 0 for g j ∈ A

(coherence constraint). Therefore, by minimizing the first

17. Thanks to the assumptions required on ψ̂ , the problem boils down to
classifying only A and R providing the coefficients β ′j satisfy some
constraints similar to the ones seen in the previous sections.

term in the objective function, we are minimizing the
sum of the distances18 between the points g j ∈ A and
the hyperplane ∑

|R|+3
i=1 φ̂i(g)β ′i = 0. This means we are

looking for the smallest extension in the feature space:
the smallest set compatible with the assessments A . The
second term penalises the coefficients β ′i of the terms
φ̂i(·) involving the gaussian densities. This forces the
classifier to be piecewise linear when (A ∪ T,R ∪ F)
are piecewise linearly separable. The above nonlinear
nonconvex optimisation problem can be solved numerically.
We provide two examples using γ = 100 and A =
{(−0.5,4),(−2.2,5),(−0.8,2.0),(3,−1),(4,−1.2)}.
Figure 5.1 (left) shows a case where R =
{(−1.3,1.75),(1,−2),(4,−3.2)} and so (A ∪ T,R ∪F)
are piecewise linearly separable. The solution of (21) gives
β ′1 = 1,β ′2 = 2.272,β ′3 = 0.33, β ′4 = β ′5 = β ′6 = 0. In Figure
5.1 (right) R = {(−1.3,4.75),(1,−2),(4,−3.2)} and
so (A ∪ T,R ∪F) are not piecewise linearly separable.
The solution of (21) gives β ′1 = 1,β ′2 = 2.272,β ′3 = 0.33,
β ′4 = 3.45,β ′5 = β ′6 = 0 and σ2

1 = 0.038. The lower
prevision of the gamble (−0.5,4) is 0.87 in the first case,
and 0.54 in the second case.

7. Conclusions

We provided a new interpretation of (nonlinear) desirabil-
ity as a classification problem. We have considered three
instances of nonlinear desirability – imprecision, convex
coherence and positive additive coherence – and showed
that they can be expressed within this general framework.
There are several research directions we aim to pursue
in future works: (i) minimum coherence desiderata for
the feature mapping; (ii) marginalisation and condition-
ing. Besides, given the connection between desirability and
Von Neumann-Morgenstern’s axiomatization of rationality
[18, 32, 33], we plan to investigate if this general frame-
work allows us to represent non-expected utility theory.

18. Technically, the distance is (∑
|R|+3
i=1 φ̂i(g)β ′i )/||β ′||, but w.l.o.g. we

can rescale β ′i /||β ′||.
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