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Abstract

Prediction, where observed data is used to quantify
uncertainty about a future observation, is a fundamen-
tal problem in statistics. Prediction sets with coverage
probability guarantees are a common solution, but
these do not provide probabilistic uncertainty quan-
tification in the sense of assigning beliefs to relevant
assertions about the future observable. Alternatively,
we recommend the use of a probabilistic predictor,
a fully-specified (imprecise) probability distribution
for the to-be-predicted observation given the observed
data. It is essential that the probabilistic predictor is
reliable or valid in some sense, and here we offer a
notion of validity and explore its implications. We also
provide a general inferential model construction that
yields a provably valid probabilistic predictor, with
illustrations in regression and classification.
Keywords: classification; conformal prediction; plau-
sibility contour; random sets; regression

1. Introduction

Data-driven prediction of future observations is a funda-
mental problem. Here our focus is on applications where the
data Z = (X,Y) consists of explanatory variables X € RY,
for some d > 1, and a response variable Y € Y. The two
most common examples of such applications are regression
and classification, where Y is an open and finite subset of
R, respectively. We consider both cases in what follows.
The focus of our investigation is prediction. That is, we
observe a collection 2" = {Z; = (X;,Y;) :i=1,...,n} of
n pairs from an exchangeable process P, a value x;4 for
the next explanatory variables X, and the goal is to
predict the corresponding Y, . By “prediction” here we
mean a Z"-dependent quantification of uncertainty about
the value of Y, 1, given X,,+| = x,,+1. This quantification
of uncertainty is often carried out by producing a suitable
family of prediction sets representing collections of suf-
ficiently plausible values for Y,1; see, e.g., Vovk et al.
(2005), Campi et al. (2009), Kuleshov et al. (2018), and
(11) below. While prediction sets are practically useful,
there are prediction-related tasks that they cannot perform,
in particular, it cannot assign degrees of belief (or betting
odds, etc.) to all relevant assertions A C Y about Y, 1. An
alternative approach is to develop what we refer to here
as a probabilistic predictor, i.e., a fully-specified (impre-
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cise) probability distribution on Y, depending on Z" and
Xn+1, designed to quantify uncertainty about Y, by di-
rectly assigning degrees of belief to relevant assertions;
see (6) below. The most common approach to probabilis-
tic prediction is Bayesian, where a prior distribution for P
is specified and uncertainty is quantified by the posterior
predictive distribution of Y11, given Z" and X, 11 = X+1.
Other non-Bayesian approaches leading to predictive dis-
tributions include Lawless and Fredette (2005), Coolen
(2006), Wang et al. (2012), and Vovk et al. (2018).

The advantage of probabilistic predictors, compared to
prediction sets, is that they provide belief assignments to
all sorts of assertions about Y, 1. So there would be no mo-
tivation to go to the trouble of constructing a probabilistic
predictor in a given application, compared to simply report-
ing prediction sets, unless having these belief assignments
were a high priority. The typical property boasted by prob-
abilistic predictors, however, is that prediction sets derived
from them achieve the nominal coverage probability, at
least approximately. That is, no claims are made about the
validity or reliability of the probabilistic predictor’s belief
assignments. If belief assignments are a priority in appli-
cations, then we ought to have a way to directly assess the
reliability of a probabilistic predictor’s belief assignments.

For prediction problems without explanatory variables,
where only Y71, ...,Y, are observed, Cella and Martin (2020)
introduced a notion of validity for probabilistic predictors.
Roughly, their validity condition requires that the event
“the probabilistic predictor, depending on the observed data,
assigns a relatively high degree of belief to A and Y, ¢ A”
has relatively low probability; a more precise statement
is given in Definition 1 below. It turns out this notion of
validity has some important consequences, including some
constraints on the mathematical structure of the probabilis-
tic predictor. Indeed, our analysis indicates that in order
for a probabilistic predictor to achieve validity in realistic
applications, it must be an imprecise probability. The main
goals of this paper are

* to develop an analogous validity property for predic-
tion in supervised learning applications;

* to investigate the consequences of validity;

* to provide a construction of a probabilistic predictor
that achieves thie validity property;

* and to illustrate it in regression and classification.
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The probabilistic predictor we construct here is largely
based on the general construction of a valid inferential
model (IM) as described in Martin and Liu (2013, 2015c).
The setup in the aforementioned references assumes a para-
metric family of distributions for Y or for ¥ given X—the
prediction problem under such assumptions was addressed
in Martin and Lingham (2016). Here, however, we aim to
avoid such parametric assumptions and, for this, we use par-
ticular extension of the so-called generalized IM approach
developed in Martin (2015, 2018). The basic idea is that a
link—or association—between observable data, quantities
of interest, and an unobservable auxiliary variable with
known distribution can be made without fully specifying
the data-generating process. Like the conformal prediction
approach of Vovk et al. (2005) and others, we establish this
association using only the assumption of exchangeability,
hence we can avoid any parametric model assumptions.
There is also an interesting connection between conformal
prediction and our proposed solution.

The remainder of the paper is organized as follows. In
Section 2, the validity property for probabilistic predic-
tors is defined and its consequences are investigated. After
a brief background on the general IM theory, a generic
construction from which the derived probabilistic predic-
tor would be provably valid is given in Section 3. The
specifics of this construction are presented in Section 4,
in the context of regression. In Section 5, we show that
the discreteness of Y in classification problems may cause
the IM random set output, from which the probabilistic
predictor is derived, to be empty with positive probability.
Two possible adjustments are provided, with the one based
on “stretching” the random set being most efficient. Finally,
Section 6 gives some concluding remarks.

2. Prediction Validity

Recall that there is an exchangeable process Z;,Zs, . .., with
distribution P, where each Z; is a pair (X;,Y;) € R? x Y.
Given the observed data Z" and a value x;,;1 of X,,11, the
goal is to reliably predict the corresponding Y, 1. As dis-
cussed in Section 1, one way to perform reliable prediction
is via prediction sets that achieve the nominal coverage
probability. However, the continued interest in the construc-
tion of probability distributions for predicting Y, implies
that prediction-related tasks other than the construction of
prediction sets are practically relevant. In particular, quan-
tifying uncertainty about claims of the form “Y, ;| € A” in
a reliable way ought to be desirable. To formalize this, we
follow Cella and Martin (2020) and define a probabilistic
predictor as a map (2", x) — (IT",TT,,) that takes data z" and
a new feature X, = x to a pair of lower and upper predic-
tive probabilities for the corresponding Y, 1; for notational
simplicity, the probabilistic predictor’s dependence on the
data 7" is encoded in the superscript “n” only. Then uncer-
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tainty quantification about Y, 11, given 7* and X,, 11 = x, is
provided by the function A — (IT*(A),TT, (A)).

We are defining the probabilistic predictor for all n, but it
could be that some minimum sample size is needed in order
to properly define it. For example, if some standardization
procedure is being employed, then it would be necessary
to have n > 2. In what follows, if n is smaller than the
necessary sample size, then we will take the probabilis-
tic predictor to be vacuous, i.e., assign lower and upper
probabilities 0 and 1, respectively, to every assertion.

In principle, it is easy to construct a probabilistic pre-
dictor. However, its practical utility requires that the uncer-
tainty quantification derived from it be reliable in a certain
sense. The particular sense we have in mind is statistical,
but see below for some behavioral consequences. That is,
we require that inferences drawn based on the probabilistic
predictor not be systematically misleading. For example, in
a particular application, with data z” and candidate value
X,+1 = x, suppose II, (A) happened to be small. Then the
data analyst would be inclined to infer “Y,,; ¢ A.” But if it
happened that (Z", X, 1) — ﬁ;ﬁ , (A) had a tendency to be
small even in cases where Y, € A, then this probabilistic
predictor—and, hence, the data analyst using it—would
be making unreliable predictions. To protect the data ana-
lyst from this risk, we impose the following condition on
probabilistic predictors, ensuring that those aforementioned
undesirable events are controllably rare.

Definition 1 The probabilistic predictor (Z",x)
(I, TT}) is valid if

P{ITy,  (A) <,V €A} <a, (1)
forall o €10,1), all ACY, all n > 1, and all distributions
P for the exchangeable process Z,Z,, . . ..

Given the duality between the lower and upper proba-
bilities, i.e., I"(A) = 1 — T, (A°), and the fact that (1) is
required to hold for all A, there is an equivalent definition
of validity in terms of the probabilistic predictor’s lower
probability:

P{lly, (A)>1-0a, Y1 ¢AL < a.

The version in terms of the upper probability is more intu-
itive for us, so that is the one we focus on.

The key point, again, is that validity ensures the proba-
bilistic predictor will not tend to assign small upper proba-
bility to assertions about Y, that happen to be true. Prac-
tically, this ensures that the data analyst is not making
systematically misleading predictions.

The validity condition has implications beyond this no-
tion of “reliability.” In particular, it has some behavioral
consequences in the sense of de Finetti, Walley, and others.
One example of this is the following, a generalization of
the result presented in Cella and Martin (2020).
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To state the result precisely, define

Ba(A)

sup IT, _ (A),

n Xn+1 (
X041

the upper probabilistic predictor evaluated at A, maximized
over all of its data inputs. Then a particularly gross mis-
specification of prediction probabilities is a situation where

Bn(A) < P(Y,4+1 €A), forsomeA. 2)
This leads to sure loss in the sense of, e.g., Condition (C7)
in Walley (1991, Sec. 6.5.2) or Definition 3.3 in Gong and
Meng (2021). Fortunately, as we show below, validity in

the sense of Definition 1 implies no sure loss.

Proposition 2 If (2) holds, then validity in the sense of
Definition 1 fails.

Proof For the assertion A in (2), define
Eu(A, o) = P{TIx  (A) < &, Y, €A},
so that (1) is equivalent to

(A 0)<a V(A a,nP). 3)
Using iterated expectation, by conditioning on (Z",X,,+1),
it is easy to see that &,(A, &) equals

E[1{ITy,, (A) < a}P(Yop1 €A|Z" Xui1)],

where 1{E} is the indicator function of the event E. From
this alternative representation of &,(A, o) in the above dis-
play, it is also clear that

Sn(A, ) = 1{B,(A) < a}P(Yoy1 € A). )
According to (2), there exists an assertion A and a threshold
o such that

Bu(A) < & < P(Yy1 €4).
Then from (4), with this choice of (4, &),
&,,(A,(x) > P(Yn+1 €A)>a.

Then (3) and, hence, (1) fails, so the claim follows. |

This validity implies no sure loss property helps to pro-
vide a behavioral interpretation to validity, which connects
it to the familiar coherence properties in the imprecise prob-
ability literature. In fact, a yet-to-be-settled conjecture is
that the only valid probabilistic predictor with output being

a precise probability distribution on Y is the true condi-
tional distribution, i.e.,

T

I(A) =TT (A) = P(Yor1 €A | Z" X1 =2).
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If this conjecture is true, then this and the fact that the condi-
tional distribution above is generally unavailable—because
P is unknown—implies that valid prediction can only be
achieved by an imprecise probability model. In the context
of statistical inference, the false confidence theorem (Balch
et al., 2019; Martin, 2019) implies that precise probabilities
fail to be valid, and the above conjecture suggests a similar
conclusion in the context of prediction. Moreover, it also
seems that the kinds of imprecise probability models that
can achieve validity in general are very special, namely,
those whose upper probabilities satisfy a consonance prop-
erty; see, e.g., Martin (2021).

3. Inferential Models

The IM approach aims to provide valid, in a sense simi-
lar to that described in Section 2 above, data-dependent
uncertainty quantification about unknown quantities of
interest. It has connections to various other approaches
to statistical inference, some that quantify uncertainties
with ordinary probabilities, e.g., Bayesian inference (Mar-
tin and Liu, 2015a, Remark 4), fiducial inference (Fisher,
1935; Taraldsen and Lindqvist, 2013), generalized fiducial
inference (Hannig et al., 2016); and imprecise probabili-
ties, e.g., Dempster—Shafer theory (Dempster, 2014, 1967,
1968, 2008; Shafer, 1976), other belief function frame-
works (Denceux and Li, 2018; Denceux, 2014). The IM
construction is composed of three steps. The A-step asso-
ciates the observable data and unknown quantity of interest
with an unobservable auxiliary variable whose distribution
is fully known. In the early work on IMs, this association
was usually a complete description of the data-generating
process. However, Martin (2015, 2018) showed that this
can be actually generalized. Suitable functions relating
the three aforementioned components, namely observable
data, unknown quantity of interest and auxiliary variable,
is all that is needed in the A-step. The P-step introduces
a random set that aims to predict or guess the unobserved
value of the auxiliary variable. Easy to arrange properties
of this user-specified random set ensure that the guessing
of the auxiliary variable is done in a reliable way, which
turns out to be fundamental for validity. Next, the C-step
combines the results of the A- and P-steps, yielding a new,
data-dependent random set on the space where the quantity
of interest resides. Finally, this random set’s distribution
determines lower and upper probabilities that can be used
to assign degrees of belief and plausibility to any relevant
assertion about the unknown quantities of interest. Below
we describe the general construction in more detail.

A-step Suppose there exists a real-valued function @, such
that the distribution of ¢,(Z",Z,11) is known, i.e., does not
depend on the unknown P. That distribution may depend on
n, so denote it by Q. Then associate the observable data
Z" and the yet-to-be-observed Z, | with the unobservable
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auxiliary variable U as follows:

¢n(zn;Zn+l) =U, U~ Qu. 4)

For our case where Z, 1 = (Xp+1,Yu+1) and interest is in
Y,+1, the association defines a set-valued mapping

(Z"xu) = Yi(u)={yeY: ¢,(Z", (x,y)) = u}.

P-step Define a nested random set § (see below) on the
space U of the auxiliary variable U, designed to reliably
contain realizations of U ~ Q,, in the sense (9) below. The
distribution of 8§ will be denoted by Q,, s.

C-step Combine the results of the A- and P-steps to get a
new, data-dependent random set

Yi®) = (J Yi(w) = {y € Y: 6u(Z", (x,)) € 8}.

ues

And the distribution of this new random set determines the
probabilistic predictor for Y, 11, i.e.,

O (A) = Qus{Yy(8) A}

T (6)
HX(A) = Qn,S {Y;L(S) NA 7’5 @}

Remark 3 If Y}(8) is empty with positive Q,g-
probability, then some adjustment to the probabilistic pre-
dictor in (6) is needed. This will be relevant for the classifi-
cation problem in Section 5.

The above construction is abstract for the purpose of
generality. The challenge is in identifying the function ¢,.
Specific constructions will be given in Sections 4-5 be-
low. Other examples were explored previously in Martin
and Lingham (2016) where P was assumed to belong to
a specified parametric family of distributions. The addi-
tional structure provided by the parametric family makes it
possible to borrow much of the theory in Martin and Liu
(2015¢). Here, however, no parametric assumptions about
P are being made, so different techniques are required. The
remainder of this section investigates the general properties
of the abstract prediction IM construction above.

The random set § is assumed to be nested in the sense
that, for any two sets in its support, one is a subset of the
other. As a consequence, the derived probabilistic predictor
is a consonant plausibility function (Shafer, 1976, Ch. 10)
or, equivalently, a possibility measure (Dubois and Prade,
1988), which means it is completely determined by its
corresponding plausibility contour function. That is, define

7! (y) = Qus{Y%(8) 2y}, @)

Then the probabilistic predictor’s upper probability can be
equivalently written as

IT;(A) = supm} (y),
yEA

yeY.

ACY. ®)
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This alternative expression is important for at least two
reasons. First, since the plausibility contour is an ordinary
function, which makes it relatively easy to visualize and
compute with compared to a set-function. Second, the con-
sonance property appears to be fundamental to achieving
validity both in the inference and prediction contexts; see,
for example, Martin (2021).

It remains to establish that the probabilistic predictor
resulting from the above construction is, in fact, valid. This
requires stating the required conditions on 8 more precisely.
Since the cases in the following sections involve an auxil-
iary variable U that is discrete, we will focus on the discrete
case. For the corresponding theory when U has a continu-
ous distribution, see Martin and Liu (2015c¢). First, define
the random set’s containment function

fu)=Qus(82u), ucl.

Then the required link between Q, and Qg is that

if U ~ Qu, then £(U) ~ Unif(J,11), 9)

where J,, 1 = {1,...,n,n+ 1}, so that the uniform distribu-
tion on the right is of the discrete variety.

Theorem 4 [f the random set § in the above construc-
tion satisfies (9), and if Y}(8) is non-empty with Q, s-
probability 1 for P-almost all (Z",x), then the plausibility
contour (7) that characterizes ﬁ;l via (8) satisfies

P{rx,., (Yur1) <o} <o, (10)

where the P-probability is with respect to the joint distribu-
tion Of (Zn,ZrH,l ), with Zn+] = (Xn+] ,Yn+1 )

Proof First, for Z" and Z,11 = (X,41,Yu+1), set U =
0u(Z",Z,+1). Then it is easy to see that

Yy, (8) 2w < S3U.

The Q,, s-probability of the left- and right-hand side events
ismy (Yu41) and f(U), respectively, so these two random
variables—the first as a function of (Z",Z,4) ~ P and the
second as a function of U ~ Q,,—have the same distribution.
Equation (9) states that f(U) is uniform and, therefore, so
is 7y | (Ya41), which proves the claim. [ |

Corollary 5 Under the conditions of Theorem 4, the prob-
abilistic predictor in (6) is valid in the sense of Definition 1.
Proof Take any A C Y and note that, by (8),

(T, (A) < a.Ypp €A} = i (Y1) < .

Therefore, since the right-hand side has P-probability less
than o from (10), the validity property follows. |
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Two brief remarks concerning Theorem 4 and its conse-
quences. First, the non-emptiness condition is not necessary
for validity, but some adjustment is needed to the definition
in (6), as mentioned in Remark 3, to address this. We will
discuss this in Section 5. Second, note that the property
(10) is stronger than the notion of validity in Definition 1.
In fact, (10) is analogous to the familiar property satisfied
by p-values, a key element to most, if not all, methods for
inference and prediction with frequentist error rate guar-
antees. Naturally, there is another important consequence
concerning the coverage probability of prediction regions.

Given o € [0,1], use the plausibility contour (7) that
characterizes the IM output in (6) to define a 100(1 — &t)%
prediction plausibility set

Pa(x) ={yeY:m(y)> o} (11)
Then the following prediction coverage probability result
follows immediately from Theorem 4.

Corollary 6 The prediction plausibility set defined in (11)
is a genuine 100(1 — o) % prediction set in the sense that
it satisfies P{P% (Xy+1) D Yot} > 1 — .

It is important to point out that the kind of validity being
considered here is marginal, which is easiest to understand
in the context of Corollary 6. That is, the conditional cover-
age probability of the prediction set is

Xn41 > P{?Zz(er»l) S Y1 ‘XnJrl :xn+l}a

a function of x,,11. Then the validity property implies that
the expected value of this function, with respect to the
marginal distribution of X, under P, is at least 1 — «.
This marginal coverage guarantee, of course, says nothing
about the conditional coverage at any particular x,4 values.
Conditional validity is both challenging and practically
relevant, and we discuss this briefly in Section 6.

4. Probabilistic Prediction in Regression

Recall that the A-step requires the specification of a
real-valued function ¢,, such that the distribution of
0,(Z",Z,11) is known. Towards this, given Z"*! =
(Z",Z,+1) consisting of the observable (Z", X, ) and the
yet-to-be-observed Y, 1, consider first a transformation
7"+l 17+ defined by
T=Y(Z""\Z), i€Jp, (12)
where Z"T! = 7"+1\ {(¥;,X;)}, and P is a suitable real-
valued function that compares Y; to a prediction derived
from ZT{l at X;, being small if they agree and large if
they disagree. For example, to each Zﬁl, one could fit a
linear or non-linear regression model to get an estimated
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mean response [1"]"

absolute residual

(X;) and take T; as the corresponding

T = |Y; - p ()

s 1€ Tn1 (13)

The critical property of W is that it be symmetric in the
elements of its first vector argument. This symmetry guar-
antees that the assumed exchangeability in Z;,2;,... is
preserved when Z"*! get mapped to T7"*!. As T; depends
on the entire data Z"*!, we will write 7;(Z"*!) where neces-
sary to highlight that dependence. In regression, where the
Y;’s are continuous and ¥ is non-constant on sets of Y"1
with positive P-probability, like the one in (13), so that there
are no ties, a well-known consequence of exchangeability
of T1,...,T,+1 is that their ranks are marginally distributed
according to Unif(J,4), the discrete uniform law on J,, ;.
Having identified a function of (Z",Z,1) whose distri-
bution is known, we can complete the A-step of the IM
construction by writing a version of (5) as follows:

r(Tn+l) :U7 U~ Unif(JrH»l)a (14)

where r(-) is the ascending ranking operator. The choice
of 7,4 instead of any of the other 7;’s in (14) is simply
because 7).+ is the one that holds the to-be-predicted value,
Y,+1, in special status. Note that, while it appears this ex-
pression only depends on T}, 1, it does implicitly depend
on all the 7;’s and, hence, all of zn through the ranking
procedure. In summary, to complete the A-step, the only
task for the data analyst is the specification of W.

For the P-step, the specification of a nested random set
targeting the unobserved realization of the auxiliary vari-
able U, introduced above, is needed. Consider

S={1,2,....0}, U ~Unif(Jps1). (15)

It is straightforward to show that this random set satisfies
the critical calibration property (9). Moreover, this choice
also makes intuitive sense, as S always includes the value
1. This is desirable given the ascending ranking operator in
(14) because it implies values of Y, that make the residual
T,+1 small will be assigned high plausibility.

Finally, in the C-step, 8 is combined with the u-indexed
collection of sets

() = {1 17 (T (1) = u}

that arise from the association (14). Here and below, note
that z'*! consists of the observed 7 values with z,,| =
(Xn+1,Yn+1) appended to it. The particular combination, as
described in the previous section, leads to the following
data-dependent random subset of Y:

(8) = {ns1 : r(Thia (1)) < T}

Itis easy to see that Y | (8)’s corresponding contour func-
tion for ¥,,4 1 is given by

Yn

*n+1

Yn

*n+1

(16)

n)’;l,l+1 (Vns1) = Qn,S{Y)’:nH (8) > yn+1}
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> (T (27))}

=Py{U >
1 n+1
ZI{T n+1 > Ty (n+1)}. (17)

:n—i-l

As Yy (8)is both nested and non-empty, its contour func-
tion above is all that is needed to define a probabilistic
predictor and, consequently, quantify uncertainty about any
assertion A C Y of interest. For example, an upper proba-
bility about A would be given by (8), which can easily be
approximated by

—n Y

- ~ max T
Tntl ( yonagridandinA 7t

).

Validity of the probabilistic predictor derived in this Sec-
tion is a direct consequence of Theorem 4. Consequently,
this probabilistic predictor satisfies (1), so we are guar-
anteed that the assignment of small (large) upper (lower)
probabilities that happen to be true (false) will be control-
lably rare, which prevents the data analyst from making
systematically misleading predictions.

For illustration, consider the following example. Let
X1,...,X, beiid Unif (0, 1), with n = 200, and let Y1,...,Y,
be 1ndependent where ¥; = u(X;) 4 0.1¢g;, where f(x )
sin®(27x3), and ¢&1,...,€, are iid from a Student-t distri-
bution with df = 5. Figure 1 displays the data, the true
regression function p(x) and the fitted regression curve
f1(x) based on a B-spline with 12 degrees of freedom. A
95% prediction band is also displayed, derived by (11) and
Xp41 taking values along the observed x>

We end this section pointing out an important connection
between the prediction IM developed here and the power-
ful conformal prediction presented in Vovk et al. (2005)
and summarized in Shafer and Vovk (2007). The careful
reader may have recognized the W function in the A-step of
our construction as the so-called non-conformity measure,
an essential component in the conformal prediction frame-
work. Moreover, the basic output from the IM construction
presented below is the plausibility contour in (17), which
is precisely conformal prediction’s p-value or transducer.
The theory in Vovk et al. (2005) takes this conformal trans-
ducer, which satisfies the property (10) in Theorem 4, and
constructs a prediction set as in (11) with the prediction
coverage probability property as in Corollary 6. Apparently
it was recognized only recently (Cella and Martin, 2020)
that the conformal prediction output could be converted into
a valid probabilistic predictor in the sense of Definition 1,
one that can make valid belief assignments, by treating
the transducer as the contour of a consonant plausibility
function via (8). We refer to this probabilistic predictor
construction generically as “conformal + consonance,” and
all it requires is that the conformal transducer 7} satisfy
the properties of a contour function, namely, that

sup ¢ (y) = 1, (18)
y

for all (Z",x).
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Panel (a):Data and the plausibility contours at
selected values of x. Panel (b): Data, the true
mean curve (heavy line), the fitted B-spline re-
gression curve (thin line), and the 95% pointwise
prediction band.

Figure 1:

This is easy to verify in cases like regression where Y is a
continuous random variable. Indeed, for the W function in
(13), the supremum is attained at y = {1" o +1)( x). In other
cases, like in classification where Y is discrete, the “confor-
mal + consonance” construction is not so straightforward.
We discuss these considerations next in Section 5.

5. Probabilistic Prediction in Classification

In Section 4, we found that the A-step boils down to the
specification of a suitable real-valued, exchangeability-
preserving function ¥, which Vovk et al. (2005) refer as a
non-conformity measure. In binary classification problems,
a ¥ function like in (13) can also be used here by encoding
the two possible values of ¥; by two different real numbers.
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However, when Y has more than two labels and they are
not in an ordinal scale where the assignment of different
numbers to them is justified, there is no natural way to mea-
sure the distance between labels. Consequently, we cannot
measure how wrong a prediction is—it is simply right or
wrong (Shafer and Vovk, 2007). To circumvent this, Vovk
et al. (2005) suggest the following non-conformity measure
based on the nearest-neighbor method for classification:

minjeg, . \(iyy,=y, (X, Xi)
minjeg, \fiyyy, d(XG,Xi)

w(zM 7)) = (19)

where d is the Euclidean distance. In words, ‘I’(Zﬁ1 Zi)
is large if X; is close to an element in Xfi“ with a label
different from Y; and far from any element in X f?l with
label equal to ¥;. If both the numerator and the denominator
in (19) are 0, Shafer and Vovk (2007) recommend taking
the ratio also to be 0. Other nonconformity measures suit-
able for classification problems can be found in Vovk et al.
(2005); Shafer and Vovk (2007).

Two factors were fundamental to the specification of
the association (14) in Section 4, namely the identifica-
tion of W, so that Z"*! can be mapped to 7! preserving
exchangeability, and the continuity of the 7;’s. In classifi-
cation, however, the Y;’s are not continuous, so there could
be ties in the 7;’s. Consequently, their ranks would be no
longer uniform distributed on J,,1. Luckily, when ties are
possible, r(T;,+1) is stochastically no larger than when ties
are not possible. Therefore, following the general argu-
ments in Martin and Liu (2015b, Sec. 5), the association
(14) can still be used in these situation.

Having identified the appropriate association, the IM
construction proceeds analogously to that in the previous
section: the A-step is completed by writing (14), the ran-
dom set (15) is chosen in the P-step to target the unobserved
realization of the auxiliary variable U, and, in the C-step,
the ingredients in the A- and P-steps are combined to get
YY (8) in (16), a data-dependent random subset of Y.
However, due to the discreteness of Y, it is possible that
Y?Y | (8) is empty with positive Q, s-probability. As dis-
cussed in Section 3, in these cases, some adjustment to
the probabilistic predictor in (6) is necessary to avoid both
violations to the validity condition and counter-intuitive
cases where the realized prediction set happens to be empty.
There is a sense in which empty prediction sets could be
meaningful, but we defer this discussion to Section 6.

There are two available adjustments to account for the
potentially empty realizations of the random set Yy (8).
The first, and probably most intuitive, is conditioning on
the event that the random set is non-empty, which happens
to be equivalent to Dempster’s rule of combination (e.g.,
Shafer, 1976, Chap. 3). For example, the post-conditioning
plausibility contour is given by

Yn+1 = Qn,S {Y;nﬂ (8) 2 ynt1 | anﬂ (8) # o}
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It is easy to see that conditioning simply rescales the origi-
nal plausibility contour, making it larger at each y,. € Y.
Clearly, if the unadjusted probabilistic predictor is valid,
then this conditioning adjustment—which only inflates its
plausibility contour values—cannot affect its validity. This
inflation does, however, suggest a potential loss of effi-
ciency, e.g., larger prediction sets in (11).

The second adjustment strategy, designed to preserve
validity without sacrificing efficiency, is based on a suitable
stretching of the original random set; see, e.g., Ermini Leaf
and Liu (2012) and Cella and Martin (2019). To see how
this stretching strategy works, start by defining the set

U;lnH - U {r(Tn+l (ZnaZrH»l))} g jnJrl . (20)
Yn+1 €Y
There are only finitely many y, values, and the set Uy |

defined above is just the collection of ranks that are possi-
ble for the given Z" and x,,11. Note that Yy | (8) is empty
if and only if 8 does not intersect with Uy . This con-
flicting situation can be avoided if, instead of 8, we adopt
a stretched random set S, obtained through equipping 8
with a stretching parameter, ¢ > 0, that controls how far §

is stretched toward Uy |

Se={1,2,....,0+e}, U~ Unif(Ju1).

Following Ermini Leaf and Liu (2012), the parameter e is
chosen as the smallest value at which the intersection of S,
and Ujjnﬂ is non-empty, i.e.,

é=min{e:8,NU; A #3}
{min U ~0 if0<minl}

1

0 otherwise.

Consequently, §; would be

{{1,2, .ominU? ) if 0 <minUZ

6=

{1,2,...,0} otherwise.

In summary, in the stretching IM, the IM’s original random
setoutput Yy (8) is replaced with Y§  (S,), and the non-
emptiness of Yy  (S.) makes the probabilistic predictor
derived from it valid.

To better understand how the conditioning and stretching
adjustments are done in practice, we consider the data in
Table 1, taken from Agresti (2003, p. 304), corresponding
to the primary food choices and lengths of n = 39 male
alligators caught in Lake George, Florida. Assume the 40th
caught alligator is two meters long, i.e., X,,+1 = 2. The goal
is to predict Y,,4 1, its primary food choice.

Note that
{I} with probability 0.1
{I,F} with probability 0.2
Yﬁm (8)= . . (21
{I,F,0} with probability 0.3
1% with probability 0.4.
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Length (m) Choice | Length (m) Choice
1.30 I 1.80 F
1.32 F 1.85 F
1.32 F 1.93 I
1.40 F 1.93 F
1.42 I 1.98 I
1.42 F 2.03 F
1.47 I 2.03 F
1.47 F 2.31 F
1.50 I 2.36 F
1.52 I 2.46 F
1.63 I 3.25 (0]
1.65 (0] 3.28 (0]
1.65 (0] 3.33 F
1.65 I 3.56 F
1.65 F 3.58 F
1.68 F 3.66 F
1.70 I 3.68 (0]
1.73 (0] 3.71 F
1.78 F 3.89 F
1.78 O

Table 1: Primary food choice (I, invertebrates; F, fish; O,

other) and lengths (in meters) for n = 39 male
alligators (Agresti, 2003, p. 304).

The corresponding plausibility contour, as given in (7), is
represented by the solid lines in Figure 2(a). By threshold-
ing it at any o > 0.6 we obtain 100(1 — )% prediction
sets that are empty, which is undesirable.

The plausibility contour, conditioned on (21) # & is
easy to evaluate, and is represented by the dashed lines
in Figure 2(a). To calculate the plausibility contour under
the stretching approach, we obtain, after some calculations,

Ur | ={17,21,20}. AsminU?} | =17,
o [L2. Ty 0 <17
“1{1,2,...,0} otherwise.
where U ~ Unif(1,2,...,40). Therefore,
{I} with probability 0.5
Y? (8e)=4{{I,F}  with probability 0.2

{I,F,0} with probability 0.3,

and the dotted lines in Figure 2(a) illustrate its correspond-
ing plausibility contour. Note, first, that empty prediction
sets are eliminated with both the conditioning and the
stretching adjustments. Second, for any o, the 100(1 — @)%
prediction sets derived from the stretching adjustment are
no larger than the corresponding ones derived from the
conditioning adjustment, which indicates that the former is
no less efficient than the latter. Another way to see this is
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Panel (a): Plausibility contours in Equation (7),
derived from an IM construction with no ad-
justment (solid lines), conditioning adjustment
(dashed lines) and stretching adjustment (dotted
lines). Panel (b): Upper and lower probabilities
for the singleton assertions {1}, {F} and {O} de-
rived from an IM construction with the condition-
ing adjustment (solid lines) and the stretching
adjustment (dashed lines).

Figure 2:

through the difference between the upper and lower prob-
abilities derived by the respective probabilistic predictors.
Dempster (2008) referred to this gap as the “don’t know”
probability. Of course, between two valid probabilistic pre-
dictors, the one with less “don’t know” is preferred because
it is more efficient. Figure 2(b) shows the upper and lower
probabilities for the singleton assertions {/}, {O} and {F},
for both strategies. Clearly, the stretching strategy leads to
a more efficient probabilistic predictor.

Recall from Section 4 that the probabilistic predictor
derived from the “conformal + consonance” construction
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is valid according to Definition 1, given that the conformal
transducer 7] satisfies (18). In regression problems, this
condition follows naturally from the continuity of ¥, and
the derived probabilistic predictor is equivalent to the one
that would be obtained from an IM construction (assuming
both use the same W function). In classification problems,
however, (18) may not hold because Y is discrete. This
implies the “conformal + consonance” cannot be applied
directly without some adjustment. This is not surprising
given that similar adjustments were needed in the IM con-
struction discussed above too.

A natural adjustment is to force the conformal transducer
to attain the value 1. Consider the two following rescaled
conformal transducers:

* max, 7 (y)’
and
o 1 ify=79,
T =
v () {77:;' (v) otherwise,

where § = argmax, 7} (y) and y € Y. In words, 7} (y) takes
the conformal transducers for the different y € Y and di-
vide them by their maximum, and 7 (y) maintains all the
conformal transducers except for their maximum, which is
assigned the value 1. The fact that both rescaled transducers
reach the value 1 make the probabilistic predictors derived
by them, through (8), valid in the sense of Definition 1. It is
also easy to see that these probabilistic predictors obtained
from 7!(y) and 7" (y) are equivalent to the ones derived
from the IM construction with, respectively, the condition-
ing and the stretching adjustments. This shows that forcing
consonance of the conformal transducer is not an ad hoc
strategys; it is justified by the corresponding operations on
random sets. Moreover, in light of this connection to the
IM’s random set adjustments, we find that the second adjust-
ment to the conformal predictor, i.e., setting the maximum
value equal to 1, is the more efficient adjustment.

6. Conclusion

Here we focused on the important problem of prediction
in supervised learning applications with no model assump-
tions (except exchangeability). We presented a notion of
prediction validity, one that goes beyond the usual coverage
probability guarantees of prediction sets. This condition
assures the reliability of the degrees of belief, obtained
from a imprecise probability distribution, assigned to all
relevant assertions about the yet-to-be-observed quantity
of interest. We also showed that, by following a new vari-
ation on the (generalized) IM construction first presented
in Martin (2015, 2018), this validity property can be easily
achieved. We also noted the connection between this new
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IM construction and the conformal prediction strategy in,
e.g., Vovk et al. (2005), and presented illustrations in both
regression and classification settings.

Exchangeability was crucial to our IM construction, that
is, without exchangeability, we cannot establish the dis-
tribution of the auxiliary variables. While exchangeability
is a relatively weak assumption compared to iid from a
parametric family, there are, of course, situations where
exchangeability is inappropriate, such as time series or spa-
tial applications. Work to develop conformal prediction
methods in non-exchangeable settings is an active area of
current research (e.g., Mao et al., 2020), and it would be
interesting to see what the IM perspective has to offer here.

In Section 3 we noted that the IM construction there
leads naturally to a notion of marginal validity, which is
different (and weaker) than the so-called conditional valid-
ity property. While this is usually framed in the context of
prediction sets, the corresponding definition in the context
of probabilistic predictors is

P{ﬁz(A) < aaYn+1 €A |Xn+1 :)C} <a vxv

and, of course, for all (¢,n,A,P) as before. Given the im-
possibility results in, e.g., Lei and Wasserman (2014), it
seems unlikely that conditional validity can be achieved
by any non-trivial probabilistic predictor. Asymptotic va-
lidity is possible, and some promising ideas are given in
Chernozhukov et al. (2019).

We mentioned in Section 5 that, surprisingly, empty ran-
dom sets may have some practical value. This concerns the
so-called open- versus closed-world view of the prediction
problem. If the world is closed in the sense that all the pos-
sible labels are known, then it makes sense to remove the
empty set cases and, hence, force consonance. However, if
the world is open in the sense that other labels are possible,
then the empty set realization is an indication that the new
object being classified may be of previously-unknown type,
which itself is valuable information. How this open-world
view can be captured by the IM framework developed here
remains an open question.
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