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Abstract

This paper reports on a geometrical investigation of de
Finetti’s Dutch Book method as an operational founda-
tion for a wide range of generalisations of probability
measures, including lower probabilities, necessity mea-
sures and belief functions. Our main result identifies
a number of non-limiting circumstances under which
de Finetti’s coherence fails to lift from less to more
general models. In particular our result shows that rich
enough sets of events exist such that the coherence
criteria for belief functions and lower probability col-
lapse.
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terpretation, imprecise probabilities, lower probabili-
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1. Introduction

The research reported in the present paper is rooted in
de Finetti’s foundation of probability [4]. We assume the
reader to be familiar with the approach, and limit ourselves
to recall only the details of the Dutch Book method which
are directly relevant to our contribution.

Suppose that yq,...,y, are elements of SL, the set
of sentences built recursively from a finite set of propo-
sitional variables as usual, which are interpreted as the
events of interest to a bookmaker B. Suppose further that
this interest materialises with the publication of a book
B:yi—Bi,...,w,— B, wherefori=1,...,n, §; €[0,1].
A gambler G then chooses real-valued stakes oy, ..., 0,
and for i = 1,...,n, pays o;B; to B. G will then receive
back o;v(y;) where v(y;) = 1, if y; is true and v(y;) =0
otherwise. Thus, B’s payoffis Y. | 6;(B; — v(¥i)).

This setup is sufficient to put forward an operational
definition of “rational degrees of belief””: the book published
by B is coherent if there is no choice of (possibly negative)
stakes which G can make, exposing B to a sure loss. More
precisely, for every o1,...,0, € R there is a valuation v
such that,

Zn:Gi(ﬁi—v(l//i)) > 0. 1)
i=1
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As shown by de Finetti, coherence is necessary and suf-
ficient for the existence of a finitely additive measure P
that extends, over the boolean algebra of the events, the
assessment 3. That is, there is a probability function P such
that fori=1,...,n P(y;) = Bi.

We consider books defined over generic sets of events.
As shown in [14, 13], the definition of books over boolean
algebras can be generalized to other algebraic structures
that are more suitable to represent many-valued events.
Furthermore, more refined notions of coherence, such as
that of strict coherence, have been recently treated for both
classical and many-valued events in [10].

Over the past decades considerable attention has been
devoted to showing that the criterion captured by (1) can
be used to provide a foundation to a much broader class
of uncertainty measures than probability. The seminal con-
tribution of Walley [16] is a particularly telling example,
as it is largely motivated by concerns entirely analogous
to those of de Finetti: tying uncertainty quantification to
decision-making. Particularly relevant to our contribution
is [17], in which Walley treats sets of desirable gambles, a
model for representing imprecise probabilities.

The connection of these sets with the definition of books
over a set of events is clear but not direct. Desirable gambles
are defined over a finite set of outcomes Q = {®;,...,®,}
such that there is an unknown outcome value belonging to
Q. A gamble over € is a bounded mapping from Q to R, i.e.
X : Q — R. If an agent A accepts a gamble X, then X (@)
is the reward A obtains if the outcome of the experiment
is w;. If £ denotes the set of all gambles defined over Q
and X,Y € .Z, then X > Y means that X (w;) > Y (w;) for
all @; € Q and for at least one @; € Q, X(0;) > Y (o). A
subset Z of .Z is a coherent set of desirable gamble if it
satisfies the following axioms:

D1.0¢ 2.

D2.IfX € Zand X >0, then X € 2.

D3.If X € Z and ¢ € R+, then cX € 9.

D4.IfXcPandY € Z,thenX+Y € .
As consequence of the above axioms we have that if X <
0, then X € 2 (avoiding partial loss). Let & be a set of
gambles on Q. A lower prevision on Z is a functional
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P: 2 — R. For any gamble X in 2, P(X) represents A’s
supremum acceptable buying price for X, i.e. A is willing
to pay P(X)— € with € € R.. for the uncertain reward
determined by X and the outcome of the experiment. A
buying price ¢ for X is acceptable if X — ¢ is desirable. (See
Chapter 3 of [15] and [12] for more details.)

Lower previsions are subject to coherence constraints in-
spired by (1). In particular, a positive linear combination of
acceptable gambles should never result in A losing money
independently of the outcome of the experiment. This gen-
eralisation of de Finetti’s criterion is known in the area as
avoiding sure loss and can be formalised as follows. For
everyi=1,...,nand X; € 9, we should have

n
sup Z
weQ =1

[Xi(w) — P(X;)] > 0.

@)

If we understand the set of possible outcomes as the events
of a book, we have that every outcome of the experiment
over Q corresponds to a valuation v such that v(@;) = 1, if
the result of the experiment is @; and v(@;) = 0 otherwise.
This last property does not hold for a generic book, i.e. on
assignments on an arbitrary subset of the whole algebra of
events.

Coherent books and desirable gambles share much con-
ceptual ground. Mathematically though, criteria (1) and (2)
are clearly distinct: the former is defined over all the events
of the book, while the latter asserts that there is at least
one ® € Q such that A has positive gain if @ is the result
of the experiment. Moreover, the requirement of avoiding
partial loss which follows from the axioms of coherent
desirable gambles is more general than, and cannot be re-
duced to, de Finetti’s criterion. For in this case, A’s gain is
negative regardless of the outcome of the experiment, i.e.
fori =1,...,n whenever the experiment’s outcome is ®;,
A must pay X (®;) to the bookmaker.

The methodological framework we adopt in this paper
is rooted in the geometric perspective put forward by Paris
in [14], whose key results show how geometrical tools can
be used to generalise de Finetti’s method to non-boolean
events and, more importantly for the present paper, to non
(finitely) additive measures of uncertainty. We can also find
connections with the geometric perspective presented in
[2, 3]. By using a geometric approach similar to Paris’s
we will recall in Section 3 results on the characterization
of books that can be extended to probabilities, normalized
necessity measures, and belief functions. Then, in Section
4, we will tackle the same extendability problem but in the
more general setting of lower probabilities. There we prove
our main result to the effect that partial assignments on
events exists for which it is impossible to tell whether they
are coherent in the sense of lower probability theory but fail
coherence according to belief functions. Thus, in logical
terms, our result suggests that there are non negligible limits
to the expressive power of coherence.
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2. Background on Uncertainty Measures

We shall assume the reader acquainted with basic notions
and results of (finitely additive) probability theory. In partic-
ular, since we will only consider measures on finite boolean
algebras, we shall often identify a probability measure P on
an algebra A with the distribution p obtained by restricting
P on the atoms of A.

As for the other uncertainty measures we will deal with
in the next sections, it is convenient to recall some basic
definitions and results that we will take from [1, 6, 11, 12].

As we have already declared, we will only consider fi-
nite, and hence atomic, boolean algebras as the domain for
uncertainty measures. Boolean algebras will be understood
as described in the signature {A,V,—, L, T} and their el-
ements will be denoted by lower-case greek letters with
possible subscripts. In particular, atoms of an algebra will
be indicated as oy, 0, . . ..

Definition 1 A normalized necessity measure N on an al-
gebra A is a [0,1]-valued map satisfying the following
equations:

(NI) N(T)=1,N(L)=0;

(N2) N(yi Aya) =min{N(y1),N(y2)}

If © is a normalized possibility distribution on the atoms
or,...,00 of A (i.e., m(a;) € [0,1] and max{n(c;) | i =

1,...,t} = 1), then the map defined as follows is a normal-
ized necessity measure on A

Nw) = A\ (1-7(00) Ay(ay). 3)

>N

1

~.
Il

Furthermore, every normalized necessity measure on A can
be obtained by a normalized possibility distribution as in
(3) above.

Definition 2 A belief function B on an algebra A is a
[0, 1]-valued map satisfying

(BI) B(T) =1, B(L) =0;

(B2) B (\/

forn=1,2,3,....

Y (-1)™*'B </\ l//j)
o}l =i} jel

Belief functions on boolean algebras can be characterized
in terms of mass functions as follows. Let A be any finite
boolean algebra with atoms «,..., 0. A mass function
is a map m that assigns to each subset X of atoms, a real
number such that m(@) =0 and Yy m(X) = 1. Given a mass
function m, the map

B(y) m(X)

XCH{ojlai<wy}
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is a belief function and every belief function on A can be
defined in this way.

Definition 3 A lower probability P on an algebra A is a
monotone [0, 1]-valued map satisfying

(L1) P(T)=1,P(L)=0;

(L2) For all natural numbers n,m,k and all y1,...,y,, if
Hw,...,w,} Y is an (m,k)-cover of (¢, T)!, then k+
mP(@) = YL, P(yi).

Although the definition above does not make clear
why those measures are called lower probabilities, [1,
Theorem 1] characterizes them as follows: Let P :
A — [0,1] be a lower probability and call .#(P)
{P : A — [0,1] | Pisaprobability function and Vy
A,P(y) < P(y)}. Then, for all y € A,

€

P(y) =min{P(y) | P € .Z(P)}.

Lower probabilities are more general than belief func-
tions. The following result characterizes those lower proba-
bility that are belief functions.

Remark 4 A lower probability P on an algebra A is a
belief function iff P satisfies (B2), namely
>

P(V vn) Y Y  (=ptle (/\ %) )
i=1 =1{IC{1,....n}:|J|=i} =Y

foralln=1,2,....

The following, which is an immediate consequence of
the above characterization, gives a minimal algebraic re-
quirement to distinguish belief functions and lower proba-
bilities. It will be useful to justify our main result and its
consequences that we will show in Section 4.

Corollary 5 Let A be a boolean algebra. Then, every
lower probability on A is a belief function iff A has two
atoms.

Proof Assume ¢, o be the unique atoms of A and let P
be a lower probability on A. Discarding trivial cases, let
us focus on the non-trivial events of A: @; and o,. Then,
P(ay Vo) =P(T)=1and P(a;)+P(0) —P(a1 Nop) =
P(ay)+P(ap) —P(L)=P(0q)+P(0). Moreover o and
oy are disjoint, so P(0) + P(a) < 1, whence (4) is satis-
fied.

Conversely, assume that A has more than two atoms.
Then the claim just follows from Example 2 below. |

1. An element @ of a boolean algebra A is said to be covered m times by
amultiset {{y1,..., ¥, }} of elements of A if every homomorphisms
of A to {0,1} that maps ¢ to 1, also maps to 1 at least m proposi-
tions from v, ..., ¥, as well. An (m,k)-cover of (@, T) is a multiset
{{w1,..., ¥, }} that covers T k times and covers @ n+ k times.
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Let us close this section observing that, although the alge-
bra with two atoms does not distinguish lower probabil-
ities and belief functions, it does distinguish probability
functions from normalized necessities and both probability
and necessities from belief functions. Indeed, it is easy to
see that the necessity N whose possibility distribution 7
maps 7(o) = m(0p) = 1 cannot be a probability function
and the probability function P given by the distribution
p(ay) = p(an) = 1/2 does not define a normalized neces-
sity measure. Moreover, the mass assignment m that maps
m({ay,0p}) =1 and the rest of subsets to 0 gives a be-
lief function that is neither a probability, nor a normalized
necessity.

3. A Geometric View on Coherence and
Extendibility

Let ¥ = {y1,...,y,} be a finite set of events (i.e., ele-
ments of a finite boolean algebra A). Let us denote by
V = {vi,...,v} the finite set of all possible homomor-
phisms of A to the boolean chain on the two-element set
{0,1}. For every j=1,...,z, call e; the binary vector

vi(yn) € {0,1)".

Given this basic construction, we can characterize in geo-
metric terms the extendability problem for books on ¥ to
finitely additive probability measures, normalized necessity
measures and belief functions. The unique further ingredi-
ent is the notion of Euclidean convex hull €6(X) of a subset
X C R, that reduces to co(X) in case X is finite, and the
less common tropical convex hull of X (see [5]) that we
recall in the next.

ej=(j(v),..., ®)

Definition 6 Ler x;,...,x, € [0,1]". The tropical hull of
the X;’s is the subset cop 4 (Xi,...,X;) of all points 'y of
[0,1]" for which there exist parameters Ay,...,A € [0,1]
such that Nj_y A; = 1 and

t
y= /\ Aji+x;.
j=1

The symbol A stands for the minimum and + for the or-
dinary addition in the tropical semiring (R, A, +). Given
Ae0,1]andx € [0,1]", A +x= (A +x1,...,A+x,) and
the \ operator is defined component-wise.

Now, for ey, ..., e, being defined as above from the formu-
las y;’s in W, let us consider the following sets:

1. Py =co(ey,...,e), where co denotes the usual Eu-
clidean convex hull;

2. My =cop(er,...,e), where cop . is as in Defini-
tion 6;
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3. Py =co(N)y), where, in this case, being .4y usually
uncountable, o denotes the topological closure of the
Euclidean convex hull co.

The following theorem recalls known results that have
been proved in [4, 7, 8]

Theorem 7 Let ¥ = {y,..., W, } be a finite set of events
and let B : ¥ — [0,1] be a book. Then,

1. B extends to a probability measure iff
(B(w1),--.B(Yn)) € Pw;

2. B extends to a normalized necessity measure iff

(ﬁ(WI)avﬁ(Wn)) € JKF;

3. B extends to a belief function iff (B(y1),...,B(W)) €
Py.

It is worth noticing that the previous characterization also
allows to easily distinguish the uncertainty measures ap-
pearing in the theorem above. Indeed, assume the set of
events ¥ we start with is not frivial, i.e., it neitheris { T, L}
on which all uncertainty measures coincide, nor it is itself
a boolean algebra on which all uncertainty measures can
be easily distinguished. In general, Zy and A are both
strictly included in By (i.e., Py C By and Sy C PBy)
and this is expected because belief functions are strictly
more general than both probabilities and normalized neces-
sity measures. For the same reason, it is easy to see that
Py and My are usually incomparable. The next example
clarifies this situation.

Example 1 Let A be the boolean algebra of 8 elements
and 3 atoms {a,0,03} and consider the non-trivial
set of events ¥ = {y,yr, w3} C A where Y1 = o V 0,
vy =V o3 and Y3 = o V 03. The algebra A has 3 ho-
momorphisms to {0,1}. Computing the points e|,e;,€e3 as
in (5), we hence obtain

e =(1,0,1);e,=(1,1,0);e3 =(0,1,1).

The subsets Py, My and Py are hence as in Figures 1, 2
and 3 respectively. Notice that, although ¥ does not coin-
cide with the whole algebra A, it allows to distinguish those
books that are either extendible to a probability or a nor-
malized necessity, from those extendible to belief functions.
Indeed both Py and Ny are strict subsets of P.

The question we raise is hence if similar results on the
possibility of distinguishing uncertainty theories, via coher-
ence, still hold when we consider more general uncertainty
models and in particular lower probabilities. A partial yet
surprising result will be presented in the next section in
which we will study if coherence is sufficiently robust to
distinguish lower probability from belief functions.
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Figure 1: The polytope Py.
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Figure 2: The tropical polytope . Kp.
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Figure 3: The polytope By.
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4. On Coherent Books: From Belief
Functions to Lower Probabilities

This section aims to show that, in general, the geometric
characterization of coherence we presented in Theorem 7
seems not to be sufficiently robust to distinguish books that
are extendible to lower probabilities from those that are
extendible to belief functions.

As it will appear clear in a while, a major role in this
sense is played by the chosen set of events ¥ C A (the
domain of the boolean algebra with start with). Due to what
we proved in Corollary 5, we will henceforth assume that
A has a number of atoms strictly greater than 2.

Proposition 8 For every algebra A and for every subset
Y of A, if PyN My £ Py and Py N Ny # Ny, then
<@\y C By al’lde/Ky C By.

Proof For every algebra A and for every subset X of A,
Py C By and Ny C ABx. Then, assume that Py N NSy #
Py and Py N My # Np. We have to prove that hence the
above inclusions are proper.

The current hypothesis states that there are B, 3, : X —
[0,1] such that B; € Py, By € My, Bi € Ay and B &
Pg. Since Py, NSy C By, one has that f;, B, € By and
therefore Py, NSy C PBy. [ ]

One could expect that, under the same hypothesis, a
similar behaviour lifts to the realm of lower probabilities.
However, as our main result shows, this is not the case.
First, we need the following result where we will indicate
by Ly the set of all books 3 on ¥ that extend to a lower
probability P.

Lemma9 Ler A be a finite boolean algebra and ¥ =
{vi,..., ¥} CA. A book B on¥ belongs to Ly iff there
are Bi,...,B, € Py such that, for all y; € P, B(y;) =
min{B;(yi) | j=1,....n}.

Proof The right-to-left direction is trivial. Let us hence as-
sume that 3 extends to a lower probability P. Let .# (P) =
{P| P(a) > P(a),Va € A} as in Section 2 and then, for all
yieV,

P(yi) = min{P(y;) | P € .Z(P)}.

For all P € . (P), call Bp the (necessarily coherent) book
on ¥ obtained from P by restriction. Then, obviously,

B(wi) = min{Bp(w;) | P € 4 (P)}.

Finally, since ‘¥ is finite, for every y; € ¥ fix a book Bp(;
among the fBp’s such that

Bri (wi) = B(yi) = min{Bp(y;) | P € 4 (P)}.

For every i, ﬁp<i> exists. Then the claim follows since
B(y;) = min{Bp(y;) | P = P(i)}. In other words f =
min{ﬁP(l)7'”aﬁP(k)}' u

In the light of Corollary 5 and previous observation, let us
introduce the following notion of “adequate” set of events
¥ which allows us to discard those cases that we already
know does not allow us to distinguish Ay from L.

Definition 10 Let A be a boolean algebra. A non-empty
subset ¥ of A is said to be adequate if W is a strict subset
of A\{L, T} and the subalgebra Ay of A generated by ¥
has at least 3 atoms.

Then, our main result reads as follows.

Theorem 11 For every algebra A with at least three atoms
there exists an adequate subset ¥ of A such that Pg N
My # Py and Py N My + Ny, but By = L.

Proof Let us assume without loss of generality that
ai,...,0, (n>3) are the atoms of A and let us fix the sub-
set ¥ of A made of the following elements: y; = o1 V 0,
vy =0 Vog and y3 = o V a3. Clearly W is adequate in
the sense of Definition 10.

First, let us show that 2y N Ay # Py and Py N My #
Ny.

Since every belief function is, in particular, a lower prob-
ability, By C Ly. Let B be a book in LAy. We want to
prove that § € Py. Let P be a lower probability on A such
that, forall i = 1,...,3, P(y;) = B(y;). Let us also assume
that P is not a probability, that is to say, that § does not
belong to Py, otherwise, the claim would be trivial.

Now we prove the following.

Fact1 f €M =co(min{e;,e;}, min{ey,e3},min{e;,es},
min{e,e;,e3}).

Proof (of Fact 1). Assume, by way of contradiction,
that B ¢ M. Thus, B € [0,1]3\ M, that is to say, B €
co(er, ez, e3,max{e;,e,es3}). In other words, there exist
11712713714 (with A4 > 0) such that Zi Ai=1and

ﬁ = Aie; + e + Azes +7L4max{e1,e2,e3}.

The expression above is equal to Aje; + Arex + Azes +
max{Ase;,As€2,A4e3} and since a + max{b,c} = max{a+
b,a+ c}, one has

B = max{B1, B2, B3}

where 81 = (A1 +A4)e; + 1rer + Azes, o = Lie; + (A +
As)es + Azes, B3 = Aie; + Azep + (A3 + Ag)es. Thus,
B1, B2, B3 € Py. Letting P, for i = 1,2,3 such that P; ex-
tends f3;, we conclude that 3 extends to an upper probability.
Therefore, by assumption § extends to a lower probabil-
ity. In addition, B extends to an upper probability, thus 3
extends to a probability that is absurd by a previous hypoth-
esis. |

Now, we go back to the proof of the main claim
and we prove that min{e,e,}, min{e;,es}, min{e;,es},
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min{ej,ez,e3} € . The claim is indeed easy to
show by direct computation. For instance, check that
min{e17e2763} = (03070) is (N(Wl)vN(IVZ)?N(W3)) where
N is the necessity measure computed as in (3) and given
by the normalized possibility distribution 7 : o = 1 for all
t=1,...,n

Therefore 3 is a convex combination of points belonging
to .Kp. Hence it extends to a belief function. |

Notice that the above result does not say that if § extends
to a lower probability P, then P is necessarily a belief
function, rather it shows that if B on events Yy, Vs, Y3
extends to lower probability P, then there exists a belief
function Bel that agrees with P on the y;’s but which is
in general different from P on the remaining events in the
algebra. The following example clarifies this claim.

Example 2 Consider an algebra A with atoms Qy, ..., 04
(t > 3) and probability distributions p1 (o) = g, p1(0n) =
1—gq pi(a) =0foralli#1,2; pr(0r) =g, pr(0) =1~
¢ p2(04) =0 for all i #2,3; p3(on) = 1—¢q, p3(03) =g,
p3(0;) =0 forall i # 1,3 where q is any value 1/3 < g <
1/2. For every j=1,...,3, denote by P; the probability
given by the distribution p and let P the lower probability
such that, for all y € A,

P(y) = min{P;(y) | j=1,2,3}. ©)
Let us consider events Y1 = 01 V 0, W = 0 V 03,3 =
oy V o3 as in the proof of Theorem 11, and the book J3 :
W — q foreveryi=1,2,3.

Since ¢ < 1/2, g < 1—q and hence P(y) = P(y») =
P(y3) = q. Thus, the lower probability P defined as in (6)
extends f.

Furthermore, P is not a belief function. Indeed, P(y;) +
P(y2) +P(y3) —P(yi Ay2) —P(ya Ay3) — P(y1 Ays) +
P(yi Aya Ays). Now, yi Ay Ays = L, whence P(y A
Y2 Ays) = 0 and, by definition of the P’s, P(y1 A yh) =
P(ya Ays) = P(y; Ays) = 0. Therefore, since g > 1/3,
the above expression reduces to P(y1) + P(yn) + P(y3) =
3> 1=P(y1 Vy, V y3) showing that P does not satisfy
(4).

However, the belief function B whose mass assign-
ments that gives m({an}) =m({op}) =m{{az}) = q/2,
m({a,...,0}) =1—3qand m(X) = 0 otherwise, extends
the same book B to A.

We conclude the present paper with the following observa-
tion.

Remark 12 Let us point out a couple of questionable
points that one could reasonably raise in the light of Theo-
rem 11 and the above Example 2.

The first one is the following: our main result shows
that, over that particular subset of formulas ¥ of A, it
is impossible to distinguish books that are extendible to
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lower probabilities from those that are extendible to belief
Sfunctions: Py = L. It is worth remarking that ¥ is not
the unique adequate subset of A on which we can observe
such a behavior. For instance, the same result holds for
P = {061,062, 063}.

This leads to the second observation: one may be tempted
to improve Theorem 11 showing that By = Ly for every
non-trivial subset of A, i.e., every strict subset of A\{L, T }.
However, this is false in most cases. Indeed, take A with
more than 4 atoms, let A’ be any subalgebra of A with more
than 3 atoms and let ¥ be A’ \ { L, T}. Then Corollary 5
shows that By C Ly (strict inclusion) and hence ¥ is a
non-trivial subset of A that distinguishes those sets.

5. Conclusion and Future Work

This paper illustrated how through a geometric characteri-
zation of coherence, books which are extendable to lower
probabilities cannot be distinguished from those which are
extendable to belief functions. To the best of our knowl-
edge, this is a new result. As a consequence we are not at
present able to tell whether the observed phenomenon can
be appreciated also outside the geometric settings.

An interesting question for further investigation is to
characterize the adequate subsets of events of a given alge-
bra A that do not distinguish belief functions from lower
probabilities and provide a geometric characterization of
Ly. In addition, we intend to investigate these subsets of
events considering coherence criteria defined in terms of
(proper) scoring rules.

Finally, following the approach put forward in [9], we
intend to explore the consequences for the betting games
therein defined, of the fact that certain belief functions
cannot be distinguished from lower probabilities.
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