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Abstract

We study the average behaviour of imprecise Markov
chains; a generalised type of Markov chain where local
probabilities are partially specified, and where struc-
tural assumptions such as Markovianity are weakened.
In particular, we prove a pointwise ergodic theorem
that provides (strictly) almost sure bounds on the long
term average of any real function of the state of such
an imprecise Markov chain. Compared to an earlier er-
godic theorem by De Cooman et al. (2006), our result
requires weaker conditions, provides tighter bounds,
and applies to six different types of models.
Keywords: imprecise Markov chain, averages, er-
godic theorem, weak ergodicity, strictly almost surely,
lower and upper expectation

1. Introduction

A Markov chain [5, 10] is a popular and simple type of
probabilistic model for describing the uncertain dynamics
of a system as it evolves in discrete time steps. If a Markov
chain is ergodic, it has the property that the expected value
E(f(X;)|X; = x) of a function f(X;) that depends on the
system’s state X; at time i converges to a limit E..(f) =
lim; 4 E(f(X;)|X1 = x) that is the same for every value x
of the initial state X; that we might start in. The resulting
limit expectation E. then corresponds to what is known as
the limit distribution of a Markov chain.

The importance of this limit distribution and its asso-
ciated expectation E.. is not so much that it describes the
uncertainty about X; for very large i, but rather that it can be
used to characterise the average behaviour of X; over a large
time period. In particular, as follows from the so-called
pointwise ergodic theorem, the time average % LX)
of f will almost surely converge to Ee.(f) as the time hori-
zon n receeds to infinity, where ‘almost surely’ means that
the probability that it does not happen is zero.

Similar observations can be made for imprecise Markov
chains [2, 3, 6, 11, 13, 14]. Loosely speaking, these are
Markov chains of which the transition probabilities that
parametrise them are partially specified, in the sense that
they are only known to belong to some set of probabilities.
Since the probabilities are not exactly known, neither are
the expectations that are derived from them. A typical in-
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ference therefore consists in finding tight bounds on these
expectations, called lower and upper expectations.

By analogy with the precise case, an imprecise Markov
chain is called ergodic if it has a limit upper (and lower)
expectation E.. (and E,,), meaning that E(f(X;)|X; = x)
converges to a limit E..(f) that does not depend on x, and
similarly for E_,. Remarkably, ergodic imprecise Markov
chains also satisfy a pointwise ergodic theorem [3, The-
orem 32]. The time average % ? . f(X;) may not con-
verge now, but will strictly almost surely be eventually
contained in the interval [E,,(f),Ew(f)], in the sense that
limsup, o 2 Y2, f(X;) and liminf, .l Y2, £(X;)
both belong to [E.(f),Ew(f)]. We explain the meaning
of ‘strictly almost surely’ in Section 3, but for now, it suf-
fices to know that for a strictly almost sure event, the upper
probability that it does not happen is zero.

We here improve upon this imprecise pointwise ergodic
theorem in three ways. First, our result only requires weak
ergodicity [13], meaning that E(1 ¥ | £(X;)|X; = x) con-
verges to a limit E,y oo (f) that does not depend on x, and
similarly for E,, ... This property is implied by ergodicity—
in fact, it is strictly weaker. Second, we prove our result for
the interval [E,y o.(f),Eav.(f)], which is always included
in and sometimes much smaller [13, Example 2] than
[E..(f),Ew(f)], thus yielding tighter bounds. And third,
our pointwise ergodic theorem applies to six different types
of imprecise Markov chains, giving it a universal character.

2. Imprecise Markov Chains Unravelled

An imprecise Markov chain [2, 3, 6, 11, 13, 14] is a math-
ematical model for the uncertain evolution of a system’s
state in discrete steps. The steps are indexed by the natural
numbers N (excluding zero), typically thought of as points
in time. At every time point—or every step—i € N, the
state X; is uncertain, but known to take values in a fixed
state space 2 . We assume that .2 is finite.

To describe a subject’s beliefs about the uncertain evo-
lution of the state of a system, an imprecise Markov chain
considers, for every x € 2, a (non-empty) set &2, of prob-
ability mass functions on 2 . From an intuitive point of
view, &, can be thought of as providing partial information
about some ‘true’ probability mass function p, that, to ev-
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ery y € 2, assigns a probability p,(y) that the system will
be in state y in the next step given that it is in state x now.
The probability mass function p,—and hence the probabil-
ity px(y)—is not necessarily known to our subject though.
All that is expressed by the model is that p, belongs to
Py, this is what makes the model imprecise. Similarly, the
subject’s beliefs about the first state X; are also described
by a set of probability mass functions on 2", denoted by
Pa. If P4 and every P, x € 2, each consist of only
a single fully specified mass function, then we obtain the
well-known special case of a (precise) Markov chain.

But there is more to imprecise Markov chains than the
simple intuitive picture that we have painted above. Brows-
ing through the literature on the subject, one will discover
numerous different interpretations and characterisations for
the sets &5 and &2, and various different methods for
turning these local models into a global uncertainty model
that describes the complete evolution of the state of the
system [2, 6]. The differences between these methods can
sometimes be subtle, but they can also lead to fundamen-
tally different inferences and conclusions. We will here
distinguish between six approaches; that is, six types of
imprecise Markov chains. Rest assured though: for our
present purpose of studying the average behaviour of im-
precise Markov chains, we will see that it does not matter
which of these six is considered. The fact that it indeed
doesn’t is one of the contributions of this paper, and gives
our results a universal character.

For each of the six considered models, we will focus
on the corresponding global upper expectation operator.
Such an operator E takes two arguments: an extended
real function f on the set Q := 2N of all infinite state
sequences, and a finite—possibly empty—state sequence
Xt = (X1, ,%,) € Z"; it maps these to a correspond-
ing upper expectation E(f|x;.,) € R:=RU{—oc0, +o0}. An
infinite state sequence @ = (x1,...,%p,...) € Q is called
a path and represents a possible evolution of the sys-
tem, with w; := x; the state at time i € N. Extended real
functions on Q are called variables; we denote the set
of all variables by ¥ (Q) := R™. A finite state sequence
X1 € = Ujen, 2%, with Ny := NU{0}, is called a sit-
uation; it represents a possible (partial) evolution of the
system up to some finite time point n. The empty sequence
is called the initial situation, and will also be denoted by
O = () = x1.0. If the time point 7 is of no importance, we
will sometimes also use s to denote a generic situation.
Situations act as conditional arguments for global upper
expectations, in the sense that E(f|x.,) is interpreted as
the upper expectation of f conditional on the fact that we
observed X| = x1, -+, X, = Xx;.

Besides upper expectations, one can also consider lower
expectations E. These are equivalent to upper expecta-
tions because they are related to them by conjugacy, in
the sense that E(f]x1.,) = —E(—f|x1.,) for all f € 7(Q)
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and x1., € .#. Unconditional lower and upper expectations
correspond to the case n = 0; that is, for any f € ¥'(Q), the
unconditional lower expectation of f is given by E(f) :
E(f|0) = E(f|x1.0), and similarly for E(f). Lower and up-
per probabilities, finally, are also obtained as special cases;
for any event A C Q, its lower and upper probability are
defined by P(A) := E(I4) and P(A) := E(I4), respectively,
where [y € ¥ (Q) is the indicator of A, defined for all ® € Q
by I4(w) = 1if @ € A and I4(w) = 0 otherwise.

2.1. Measure-Theoretic Imprecise Markov Chains

Of the six types of imprecise Markov chains that we will
consider, the first three are most easily explained in terms
of probabilities. For each of them, the local models &
and &, are used to define a different set of so-called com-
patible probability trees. Any such probability tree p, is a
map that associates with each situation x;., € . a prob-
ability mass function py,, € &, , where &, = Pp
and, for n € N, &, = 2, . Any of these probabil-
ity trees p, naturally gives rise to a corresponding con-
ditional probability measure P, simply by positing that
P(Xut1 = y|Xi:n = X1:0) := px,,, () for all x;., € . and all
y € &2, and then subsequently using the conventional exten-
sion theorems; see [16, Section 9]. We do not go into further
detail here, but do want to point out that this approach is
slightly different from the usual measure-theoretic one, in
the sense that our notion of a conditional probability mea-
sure P defines, for each xi.,, € .7, a separate probability
measure P(-|X;., = x1.).

Different choices for the local mass functions p,,  lead
to different probability trees p,, and therefore different con-
ditional probability measures P. We will use P,; to denote
the set of all measures obtained in this way; this is known
as an imprecise Markov chain under epistemic irrelevance.
If we additionally impose that p,, —only depends on x,
and n—that is, if we impose a Markov assumption on the
individual measures—we obtain a subset of Pe;, denoted
by P.; this is known as an imprecise Markov chain under
complete independence.! Finally, if we require that Dx1.,
only depends on x,—that is, if we impose Markovianity
and time-homogeneity on the individual measures—then
we obtain yet a smaller set of measures, denoted by P; and
referred to as an imprecise Markov chain under repetition
independence. A crucial observation is that for each of these
three models, the set &7, from which p,,  is chosen only
depends on x;,, but not on earlier states nor on #; this is an
imprecise version of the Markov (and time-homogeneity)
property that justifies why each of these models is called an
imprecise Markov chain, despite the fact that the individual
measures they consist of may not be Markovian.

1. Some authors call this an imprecise Markov chain under strong in-
dependence [4]; that name is better suited for the convex hull of P;
though [1]. In any case, the difference is not important here since
convexifying P; does not affect its lower or upper expectations.
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The global upper expectations E.;, E.; and Ej; that cor-
respond to the three models P, P.; and P; are defined as
tight upper bounds on the expectations associated with the
probability measures in these respective sets,” and similarly
for lower expectations and lower and upper probabilities.
Again, we refer to [16, Section 9] for more details.

2.2. Game-Theoretic Imprecise Markov Chains

The remaining three types of imprecise Markov chains
that we will consider are more easily expressed in terms of
supermartingales; or to phrase it less technically, in terms of
the possible evolutions of a gambler’s capital as he gambles
in accordance with the subject’s local models.

The starting point for these types of imprecise Markov
chains are not the local models & and &2, themselves,
but rather the associated (local) upper expectations. The
latter are not defined on variables, but on local gambles,
which are real functions on 2. We will denote the set
of all such gambles by ¥(2") and, for all f € 4(Z),
let || f|| :== max,c 2 | f(x)|. Then, for any non-empty set of
probability mass functions & on 2, the associated (local)
upper expectation E 5 is defined by

Eu(f):=sup{ ) f(x)p(x): pe P} forall feG(Z
xex

).
One can easily verify that such an upper expectation is
coherent, meaning that for all f,g € 4(2") and real A > 0:
Cl. minf <Ex(f) < max f;

C2. Ex(f+g) <Ex(f) +Ex(g);
C3. Ex(Af) = 2B (/).

[bounds]
[subadditivity]

[nonnegative homogeneity]

In the particular case of an imprecise Markov chain, we
associate with every situation x;., € . such a local up-
per expectation Ey, :==Eg,_ on%(2"). Just like the set
., this local upper expectation Ey,  only depends on
the last state x,,; this is the same imprecise Markov property
that we discussed before, and to which imprecise Markov
chains owe their name. Alternatively, we could also use
local upper expectations Exl;n that are specified directly,
without any reference to &7, , as long as they are coherent
and satisfy the imprecise Markov property. They are then
not necessarily interpreted in terms of probabilities, but
can be given a direct behavioural interpretation in terms of
prices for gambles [3]; for example, En(f) would then be
the infimum selling price for the uncertain payoff f(X;).

2. Following standard measure-theoretic practices, the lower and upper
expectation of a variable f € #'(Q) is only defined if f is measurable
and Lebesgue integrable for every measure in the considered set. This
restriction can be removed though by considering lower and upper
Lebesgue integrals; this is also explained in [16]. In any case, for our
present purposes, this is not essential since all the inferences that we
will consider are measurable and Lebesgue integrable.
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Regardless of the interpretation, the concept that turns
local upper expectations into global game-theoretic up-
per expectations is that of a supermartingale. The idea
is that a gambler—called Skeptic in this game-theoretic
context [9]—will gamble on the values of the subsequent
states of the process in such a way that our subject—called
Forecaster—expects him to lose (or at least not gain) money.
As Skeptic gambles, his capital will evolve, and this evolv-
ing capital is described by a supermartingale.

In particular, a supermartingale is a real function .# on
7 such that Skeptic’s capital .# (x;.,) in each situation
X1, € 7 is at least as high as his (upper) expected capital
at the next time point n+ 1. That is, for any x;., € ., a
supermartingale ./ satisfies

(1

where we use .# (x1.,,-) to denote the gamble in ¥ (2")
whose value in x,+1 € £ is given by . (x1.,+1). We fo-
cus on supermartingales that are bounded below, meaning
that there is some real B > 0 such that .# (x;.,) > —B for
all x1., € .. This expresses that Skeptic is able to borrow
at most a finite amount of capital. A non-negative super-
martingale with .2 ((J) = 1 is called a test supermartingale.
Now, for any variable f € ¥ (Q), the game-theoretic up-
per expectation Epp.(f) is the lowest—or, more correctly,
infimum—starting capital .# (OJ) of all the bounded below
supermartingales .# that eventually hedge f, in the sense
that liminf.#Z > f, with liminf.#Z € ¥ (Q) defined by

Exlzn (%(xl:m )) < %(xl:n%

liminf Z (@) := limJirnf///((ol;n) for all @ € Q.
n—y—t-o0

More generally, for any situation x;., € .#, the conditional
game-theoretic upper expectation Eqy, (f|x1.,) of f is the
infimum capital .# (x;.,) in the situation x;., that allows
Skeptic to hedge f on all paths that start with xp., [3, 15]:

Embr(f|xl:n) = inf{///(xl;”) s M€ Mipr,
(Vo € Q) liminf.Z (0) > f(0)},

with M, the set of all supermartingales that are bounded
below (and real)—the bold letters clarify our choice of
notation—and Q, = {0 € Q: ., =x1.,} the set of all
paths that start with x1.,,.

The two other types of game-theoretic upper expecta-
tions that we will consider are defined completely anal-
ogously; the only difference is that the set of super-
martingales M, is replaced by a slightly different one.
For Eb,, we consider the subset My, of all bounded
supermartingales—so supermartingales that are, besides
bounded below, also bounded above [15]. For Egpe, we
replace M, with the superset M, of all extended real
supermartingales that are bounded below [9, 15]: extended
real-valued functions on . that satisfy Equation (1) and
are bounded below. Care should be taken though because
the operator E,,, in Equation (1) is only defined for local
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gambles, which are real-valued, whereas .# (x;.,, -) is now
a function on 2" that can also take the value -+oo. This
can be dealt with by suitable extending the domain of E,,,
using limit arguments [15, 16].

2.3. So How Do They All Relate?

For a fixed choice of the local models &7 and £2,, we here
considered three measure-theoretic global upper expecta-
tions (Ey;, E¢; and Eg;) and three game-theoretic ones (Eppe,
Emprand Eppp). In that particular order, these models are
ranked from most precise—or least conservative—to most
imprecise—or most conservative.

Proposition 1 Forall f € ¥ (Q) and s € .7, we have that

Eri(f|s) < Eci(f|s) < Eei(f|s)
< Embe(f15) < Embr(f]5) < Embb(f1s).

Proof The first two inequalities follow from the fact that
Py C P C Pei. The last two inequalities follow from the
fact that Mpe 2 Mppr 2 M. The third inequality is a
special case of [16, Corollary 19]. |

Due to conjugacy, the opposite inequalities are true for
lower expectations. Analogous inequalities hold for lower
and upper probabilities: it suffices to apply the results for
lower and upper expectations to indicators of events.

For all but the third inequality, the inequalities in Proposi-
tion 1 can become strict [4, 7, 8, 15]. For the third inequality,
this is—as far as we know—an open question.

That said, for specific types of variables, some of the
inequalities in Proposition 1 do turn into equalities. For ex-
ample, for bounded real variables—that is, f € ¥'(2") for
which there is some real B > 0 such that —B < f < B—the
three game-theoretic global upper expectations coincide.

Proposition 2 [15, Proposition 36] For any f € ¥ (Q)
that is bounded and any s € ., we have that

Embe(f|s) :Embr(ﬂs) :Embb(fls)‘

These equalities can be extended to include E; if we
moreover restrict ourselves to variables that are finitary:
functions f on Q that only depend on a finite number of
states X;, meaning that there is some n € N and a real
function g on 2" such that f(®) = g(w;.,) for all ® € Q.

Proposition 3 For any f € ¥ (Q) that is real and finitary
and any s € ., we have that

Eei(ﬂs) :Embe(ﬂs) :Embr(ﬂs) :Embb(f|s)~

Proof The first equality corresponds to [16, Proposi-
tion 21]. Since finitary real variables are bounded because
of 2" is finite, the other two follow from Proposition 2. l

Other examples of types of variables for which some of
the inequalities in Proposition 1 turn into equalities can be
found in, among others, References [4, 6, 7, 12].
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3. Almost Sure Events

In (precise) measure-theoretic probability theory, an event
A C Q is almost sure if it has probability one, or equiva-
lently, if its complement A® := Q\ A has probability zero.
Similarly, in an imprecise probability context, we call an
event almost sure if its complement has upper probability
zero [3, 17]. Since we here consider six global upper ex-
pectations, and hence six types of upper probabilities, we
distinguish between six notions of almost surely.

Deﬁnition 4 We say that an event A C Q is Ei-almgst sure
if Pri@c) = 0. We adopt similar definitions for Pe;, Pei,
Prbe, Pmbr and P,

Our next result shows how these notions are related.
Corollary 5 For any event A C Q, we have that
Fmbb (AC) =0& Fmbr(Ac) =0& Fmbe(Ac) =0
:>Fei( C) =0 :>Pci( C) =0 =>Fri(Ac) =0.

Proof Since l4c is a bounded variable, the equivalences
follow from Proposition 2. The implications hold because

Fmbe(AC) > Fei(AC) > FCi( c) > ﬁri( C) 2 0’

where the last inequality holds because P(A¢) > 0 for all P
in P, and the first three follow from Proposition 1. |

So we see that P-almost sure is the weakest notion and
that the three strongest notions of almost surely are the
game-theoretic ones that correspond to Pype, Py and Prypp,.
These last three are furthermore equivalent.

Besides these different types of almost sure events, we
will also consider strictly almost sure events: events whose
complement is deemed so rare that it is possible for Skeptic
to start with capital one and, without borrowing, gamble in
such a way that he becomes infinitely rich along every path
not included in the event (even though our subject expects
that Skeptic’s capital will not increase) [3, 17].

Definition 6 We say that an event A C Q is strictly al-
most sure if there is a (real) test supermartingale M such
that lim .4 (@) = +e for all © € A®, with lim.#Z (®) =
limy, 4o '//<w1:n)~

This strict version of almost surely is stronger than each
of the six others we have considered.

Proposition 7 If an event A C Q is strictly almost sure,
then it is also Pyyy-almost sure. The same is true for Py,
Pube, Pei, Pei and Py;.

Proof If A is strictly almost sure, using the terminology
of [3], A® is strictly null. Using [3, Proposition 4], this
implies that A is a null event, in the sense that Py (A¢) = 0.
The result now follows from Corollary 5. |

Furthermore, finite intersections of strictly almost sure
events are strictly almost sure themselves.
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Lemma 8 Consider two strictly almost sure events A, B C
Q. Then ANB is strictly almost sure as well.

Proof Since A and B are strictly almost sure, there are
test supermartingales .#Z4 and .#p that converge to +oo
on Q\ A and Q\ B, respectively. It can easily be verified
that ./ = Y (/s + p) is then a test supermartingale that
converges to +e0 on Q\ (ANB) = (Q\A)U(Q\ B). Hence,
ANB is strictly almost sure. |

4. Weak Ergodicity

The pointwise ergodic theorem that we will present in Sec-
tion 5 applies to imprecise Markov chains that are weakly
ergodic. This property, which is implied by—and hence
more generally applicable than—ergodicity, was recently
introduced for Ej;, E; and E.; [13]. We here extend this
concept t0 Empe, Embr and Eppp.

Definition 9 An imprecise Markov chain with global up-
per expectation Ey; is weakly ergodic if, for all f € 9(Z),
the limit

exists and is equal for all x € 2. Similar definitions apply
for Ecp elr Embc: Embr and Embb

For the global upper expectations E;;, E¢; and E;, we
have recently shown that these notions of weak ergodicity
are equivalent, and that the resulting limit values Eay o (f)
are identical [13]. They depend solely on the local models
. In particular, they are completely determined by the
upper transition operator T: ¢(2°) — ¢(2") that, with
every gamble f € 4(2"), associates a new gamble 7 f on
% defined by T f(x) :==Eg (f) forallx € 2.

Our next result shows that this remains true if we addi-
tionally include Eppe, Empr and Eppp. It makes use of the
concept of a weakly ergodic upper transition operator.

Definition 10 An upper transition operator T is weakly
ergodic if, for all f € G(X"), with

T G(X) =G (X): h—Trh=f+Th,

the limit

Bor(f) = lim [T () )

n——+oop

exists and is equal for all x € .

Proposition 11 An imprecise Markov chain with global
upper expectation Ey; is weakly ergodic if and only if the
corresponding upper transition operator T is weakly er-
godic, and if it is, then Eavm(f) = Ea 7 (f) forall f €
G(Z"). The same holds for E¢i, Bei, Empe, Embr and Eppp.
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Proof That this result holds for E¢; and Es; is explained in
[13, end of Section 4]. [13, Theorem 14] furthermore shows
that the weak ergodicity of 7 is equivalent to T being ‘top
class absorbing’. The result for E,; therefore follows from
[13, Theorem 22]. To see that it also holds for Eppe, Embr
and Epp, observe that it follows from Proposition 3 that
E*(% 1?1 f(Xi)|x) is equal for all € {ei, mbe, mbr,mbb}.
It therefore does not matter whether Definition 9 is applied
to Eei, Embe» Embr O Eqmpp, because the corresponding no-
tion of weak ergodicity, as well as the resulting values of
Eav.(f), will be identical. Since we already know that
Proposition 11 is true for Eg;, it therefore also holds for
Embes Embr and Eqpp. n

So we see that the adopted global upper expectation
becomes irrelevant when it comes to weak ergodicity: we
can simply say that an imprecise Markov chain is weakly
ergodic and then consider the resulting averaged limit upper
expectations Eyy o (f) = E,, 7(f), regardless of the adopted
global model.

In practice, checking if an upper transition operator T—
and hence also an imprecise Markov chain—is weakly
ergodic can be done by verifying whether it is top class
absorbing [13]. If it is, then E,y 7—and hence also Eay co—
can be computed using Equation (2).

5. A Pointwise Ergodic Theorem

With all terminology in place, we can now finally state the
pointwise ergodic theorem that is the subject of this paper.
We start with a one-sided version.

Proposition 12 For a weakly ergodic imprecise Markov
chain and any f € G(XZ), strictly almost surely,
n

limsup — Z
n—+eo N7

f(Xi) < Bavee(f)-

Due to its technical nature, the proof of this result is de-
ferred to Section 7.

To arrive at a two-sided version, the trick is to apply it
to —f as well. This yields a similar result for E,, ..(f) =
—Eav.«(—f), but with the inequality reversed and liminf
instead of limsup. Combined with Lemma 8 and Proposi-
tion 7, we arrive at the main result of this paper: a two-sided
pointwise ergodic theorem for imprecise Markov chains.

Its formulation is deceivingly simple, but we hope that its
strength and universal character are nevertheless apparent.

Theorem 13 For a weakly ergodic imprecise Markov
chain and any f € G(Z'), strictly almost surely,

By (/) < liminf - z FX

n——+oo n;

< limsup - Zf ) < Eay,

n—s+oo 1

oo (f)-
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This result continues to hold if we replace strictly almost
surely by Ppy-almost surely, and similarly for Pypr, Pmbe,
Peu i and Pn

Proof By applying Proposition 12 to f, we find that the
third inequality of the statement is strictly almost sure.
By applying Proposition 12 to —f, we find that, strictly
almost surely, limsup,,_, . % " —f(X) <Bayel(—f) =
—E.y (f)- So the first inequality of the statement is strictly
almost sure as well. Since the second inequality is trivially
true, it follows from Lemma 8 that the stated three inequal-
ities are (jointly) strictly almost sure. The last part of the
theorem now follows directly from Proposition 7. |

The remainder of this paper is devoted to the proof of
Proposition 12. Section 6 presents the two main building
blocks on which this proof relies. The proof itself is given
at the end of Section 7, preceded by some intuition.

6. Two Crucial Supermartingale Inequalities

Our proof for Proposition 12 essentially consists of two
steps. First, we will establish the desired inequality between
limsup,_, .. ¥, f(X;) and Ey o(f) up to an additive
term that is expressed in terms of a supermartingale. The
second step consists in showing that, (strictly) almost surely,
this additive term can be ignored.

The key result that enables the first of these steps is
the proposition below. It uses the weak ergodicity of an
imprecise Markov chain to show that for n large enough,

,Zf

where ./ is a specific supermartingale and A.Z is its so-
called difference. For any real map .# on .7, this dif-
ference A.# is the unique map from . to ¥ (2") that
associates with every xi., € . a local gamble A (x.,),
defined for all x4 € Z by

A.///(xl;n)(an) = %(xlzn-ﬁ-l)

o(f)te+= ZA%XM(HQ(n

— %(xlzn).

Proposition 14 Consider a weakly ergodic imprecise
Markov chain. Then for all f € 9(Z") and € > 0, there is
a real B > €, a supermartingale M with |A.#| < B and
some N € N such that, for all x., € . withn > N,

f(xi) < Eav

n
=1

n—1
,4ﬁ+e+%ZA%@m@My
i=0

n:
i

Our proof for this result uses the following two lemmas,
the first of which we borrow from [3] and the second of
which is a well-known consequence of coherence.

Lemma 15 Let .# be a real supermartingale. Then for
alln € Ny and x1., € Z1.n:

M (x1:p) > inf liminf Z (o).
weQ

“1in

Proof Since .# is a (real) supermartingale, —.# is a
submartingale in the sense of Reference [3]. The result
therefore follows from [3, Lemma 1]. |

Lemma 16 A real map .# on . is a supermartingale if
and only if, for all x1., € .7, By, (A (x1:1)) < 0.

Proof This follows from the definition of a supermartingale
and the fact that, for all x;.,, € .%,

Exl:n ('/%(Xl;m )) = Exlzn (%(-xl:n) +A%(x1:n))

= M (x1:n) +Exl:n (AA (x1:0)),

where the second equality is an instance of the constant
additivity of coherent upper expectations [18, 2.6.1(c)]. B

Proof of Proposition 14. We know from Proposition 11
that T is weakly ergodic and that Eyy o (f) = Eav 7(f). Fur-
thermore, for all n € N and x € 2", we know from [13,
Lemma 40] that min f < %[Tf”ilf] (x) < max f. Hence,
using Definition 10, we see that Eay .(f) is a real num-

ber.
Next, forallx € 2 andn € N, let
mbr( Zf >

Definition 9 then tells us that lim, e Eay,(f]x) =
Eav(f) for all x € 2. Therefore, and since 2 is fi-
nite and Euy .(f) is real, there is some m € N such that
|Eav.eo(f) = Bavm(f1x)] < €/2 for all x € 2. For each
x € X, since Eay o (f) is real, this implies that Eay  (f]x)
is real as well. Applying the definition of E,, this im-
plies that there is, for all x € 27, a real supermartin-
gale ./, such that #,(x) < Eaym(f]x) +¢/4 and, for all
o € Q,, liminf.Z,(®) > m): 1 f(@;). Hence, for all
X1 € Z1:ms1, it follows from Lemma 15 that

Euv n(f|x

My, (X1:m1) > inf  liminf Z;, (o)

O (X1 41)
1 m
inf W) =— Xi),
wGF(Xl mt1) Zf m ;f( )
and therefore also that
Y A (x10) (xig1) = Moy (X1mi1) — A, (x1)
i=1
1 & — €
> — i *Eavm -
_mi;f(x) m(flx1) 2
> LY f) Bl - 5. @)
il m xl av,oo 2 .

Now let .# be the unique real map on .7 that satisfies
A(0) =0, A (0) =0 and

AM (X1 msk) = mAM,,  (Xne1:m+k)
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forall £ € No, k€ {1,...,m} and x|y € 2 Mk Using
Lemma 16, we see that this map .# is a supermartingale
because .#, is a supermartingale for each x € 2, and
because Eq(A.#(0)) = Eq(0) < 0 due to C1. Now let

B = max{ A, (zix)| : ke {1,....m}, 214 € %;k},

which clearly provides a uniform bound for A.#, in the
sense that [A.#| < B'. Then for B := max{B',2¢}, we have
that B > € and |A.#| < B. Furthermore, for any 7i € N and
Xlomie1 € 21 we have that

l mii

— ZA/// X1 l)(xz+1)

1 n—1
=— Y Y A (Xvmesi) Gmesirr)
mn 2o =1
1 -1 m
= — Z mA,//lmel (xm£+1 m1/+k) (xm(+k+1)
mn ;12 k=1
1 i—1
==z Z ( Z A%xmﬂl (xmé+1:m€+k)(xml+k+l))
niZo M=
1tz — £
> = (* f(xméJrk) Eav w(f) - 7)
= \m I;l 2
1 m — €
:%Zf(xz) EaV,w(f)—E’ (5)

using Equation (4) for the inequality. Now let N € N be
any natural number such that Ne > 8m || f||, Ne > 8mB and
N > m, and consider any n € N such that n > N and any
X1 € X Let 7i be the unique 71 € N such that mii < n <
mii +m. Then on the one hand, we find that

n 1 mil

1
anxl *7foz

“ G L s 5 o
< (m )mn\|f||+ (n—ma) | f]
=2

=) s =22 el < 2

where the first equality holds because n > mii, the first

inequality because == > 1 (since n > mii) and — || f|| <

mn n

F(x;) <|If]l, and the second inequality because n < m7i+m.

On the other hand, we also find that

n—1

7ZA'/% X1: 1)(x1+1 - = ZA% X1: 1)(x1+1)

20
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(L — 7) ZA./// X1: ,)(x,+1)

mn

_ZA%<D)(XI)_; i A (x1:) (Xig1)
i=mii+1

1 1 1 .
< (——f)mnB—i— (n—mi)B
mi n

~2(1- )

where the first equality holds because n — 1 > mii (since
n > mii), the first inequality because ﬁ > % (again since
n > mii) and |A.#| < B, and the second inequality because
n < mii +m. If we combine these two inequalities with
Equation (5), we find that

WUBgZT&
n

1 n
;;f(xl)
AL
< o LS #2711
J L
< ) A (x1:0) (xi1) + Bav o (f) + 5 +2 |71
i=1
n—1
S% AM (x1:)(xip1) +2—B

= € m
+Eav,°°(f) + 5 +2; ||f|| )

which implies that

n nl

Z A% xl l)(-xl+1 ) +Eav,oo(f) + €

because ne > Ne > 8m/|| f|| and ne > Ne > 8mB. [ |

A crucial feature of this result is that .# has uniformly
bounded differences, in the sense that |A.#| < B for some
B € R. The reason why this is important is that it allows
us to build a new supermartingale that is positive and that
becomes exponentially large on all paths where the super-
martingale term Z;‘;OI A (X;:;)(Xi+1) in the upper bound
of Equation (3) exceeds €.

Proposition 17 Consider any real B> 0 and 0 < € < B.
Let M be a supermartingale such that |A#| < B. Then
the function 7 4 on &, defined by

~TT0+

i=0

xln = xl:i)(x1+i)]

for all x1., € .7, is a positive supermartingale with
F.4(0) = 1. Furthermore, for all x., € ., we have that

F.u(x1m) < (3/2)" and
1= 1 n82
= ZA/// x1:) (Xi41) > € = F_g(X1:0) > €xp (@)

niz0
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Proof Since ./ is a supermartingale, —./ is a submartin-
gale in the sense of [3]. This result is therefore a par-
ticular case of [3, Lemma 9]. That result does not ex-
plicitly state the upper bound .Z_4 (x1.,) < (3/2)" though.
To see that this upper bound indeed applies, it suffices
to observe that 0 < € < B and |A#| < B imply that
3 < S A (x1) (x140) < 5. u
Since supermartingales are by definition expected to de-
crease, it is unlikely for them to become exponentially large.
So at least intuitively, we have at this point established that
the supermartingale term in Equation (3) is likely to not ex-
ceed &, or equivalently, that it is likely that % L fX) <
Eav.(f) + 2€. To arrive at Proposition 12, three tasks re-
main: replace 1 Y7, £(X;) by limsup, , o, L ¥1, £(X;),
remove the 2¢, and formalise our intuition by replacmg
the informal notion of ‘likely’ with the formal notion of
‘strictly almost surely’.

7. Proving Proposition 12

To obtain an upper bound for limsup,,_, , ., ,ll Y f(X), we
start by taking the limit superior of (both sides of) Equa-
tion (3). This yields

limsu
n—>+°°p n Zf
_ 1=
< Eave(f) + €+ limsup — ZA//z X1.0)(Xir1).  (6)
n—4o N i=0

Since A.# is uniformly bounded, it follows di-
rectly from Proposition 17 that there is a positive su-
permartingale .% , with initial capital % ,(0O0) = 1
such that limsup.%, , becomes unbounded on all paths
® where limsup, ... Z A (X1.)(Xiy1) exceeds
e. If %, would instead converge to +oo on those
paths, then this Would mean that, strictly almost surely,
limsup,_, o 1 ¥ | f(X;) < Eayv(f) + 2€. So it remains
to replace %y w1th a supermartingale that converges to
+oo if the inequality fails, and to remove the € part.

We start by replacing .%_, with a supermartingale that
converges to an arbitrarily large number on all paths where
the inequality fails. Since .Z_, becomes unbounded on
those paths, this can be achieved by simply keeping .%.
constant as soon as it exceeds some (large) threshold o.

Corollary 18 Fixanyreal B>0,0< & <Band ¢t > 0. Let
M be a supermartingale such that |A.#| < B. Then there
is a positive supermartingale F y o with F_ 4 o(0) = 1
such that F y o(x1:0) < (3/2)" for all xy., € 7 and

n—1
limsup — Z
n—4oo N i=0

A (01:)(041) > €

>
= nETWJ% oc(a)l n) = o,
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forall w € Q.

Proof Let.Z_, be the positive supermartingale from Propo-
sition 17. Then .Z_4(0) = 1 and, for all x;., € .7, we have

that Z_y (x1.,) < (3/2)" and
ffA/// Y1) = € = Fp(xim) > ex ("82)
n & xll Xi+1 M\ X1:n p 42 )
(N

Now let .7 4 o be the real map on . that is equal to
7y until it exceeds or equals o, at which point it re-
mains constant. That is, for all x1., € 7, let F_y o (x1:) ==
e%\(///()Cl;n) if ,%%(xu) < a for all i € {0,...,1’1 — 1},
and let JGZ.///,a(xl:n) = j//,a(x]:nfl) if Fy(x1) >
a for some i € {0,...,n— 1}. To see that .7 ;4 o is
a supermartingale, observe that for all x.,, € .7, ei-
ther Afgl///,lx(xl:n) = Ay///(xl:n) or Aj//,a(xl:n) = 0.
Since % 4 is a supermartingale and E, (0) < 0 be-
cause of Cl1, it therefore follows from Lemma 16 that
Z 4. is indeed a supermartingale. Next, observe that
F.y.ad) =F 4(0) =1, and that for all x., € ., there
is some m < n such that .7y o(x1.n) = Fp(x1:m) <
(3/2)™ < (3/2)". Finally, consider any @ € Q such that
limsup,_, ., % Yo A (o ,)(a),H) > €. Then there are
arbitrarily high m for Wthh o) DA YA (01)(wi11) > €,
and therefore, due to Equatlon (7) arbitrarily high m for
which .7 4 (®1.m) > exp(%5z ). Hence, for any such o,
there is definitely some m € Ny for which .%_; (®.,) > @,
implying that .#_y o (®1.n) = F_ 4 (®1:m) for all n > m and
therefore, that lim,, 4.7z o (@1:n) = F.p (@O1:n) > 0. B

Let us now replace Proposition 17 with Corollary 18 in
the reasoning below Equation (6). We then end up with a
positive supermartingale .Z_; o with initial capital 1 that
converges and exceeds a on all paths where the inequality
limsup,_, o L ¥7 | £(X;) < Eav(f) + 2€ does not hold.
To prove Proposmon 12, the only thing left to do is there-
fore to replace & by o0 and € by zero. As we show in our
proof for Proposition 12, this can be achieved simultane-
ously. The key insight is to realise that the € in Proposi-
tion 14—and hence in all our subsequent reasoning—can
be chosen to be arbitrarily small, whereas the ¢ in Corol-
lary 18 can be arbitrarily large. By suitable combining the
supermartingales that correspond to increasingly smaller €
and larger o, we finally arrive at a proof for our main result.

Proof of Proposition 12. Fix any r € N. Then we know
from Proposition 14 that there is a real B > 27", a super-
martingale ./, with |A.#,| < B and some N € N such that

n n—1

av,oo(f)+2_ + - ZA% xl,)(x,H)

0
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forall n > N and x;., € 2", and therefore also,

limsup — Z flay)

n—+oo

< Baveo(f) +27" +limsup — ZA//Z @1:1)(@i1)  (8)

n—+oo 1

for all w € Q. Furthermore, due to Corollary 18 (with
€ =27"and a0 = 2"), we know that there is a positive
supermartingale .%, with .%,(0) = 1, %, (x1.,) < (3/2)" for
all x., € . and, for all ® € Q,

1%
limsup — ZA/// (01:)(@41) >27"

n—yfoo N ; =0
,
= ngr_{lmjr(wl:n) Z 2", (9)
Let & = Y,cn27"%,. This map % on . is well-
defined and positive because every .%, is positive. Fur-
thermore, since we know that for all r € N, .%,.(0) = 1 and
Fr(x1m) < (3/2)" for all x;., € 7, and since ¥, cn27" =1,
it follows that also .% (O0) = 1 and .Z# (x1.,) < (3/2)" for all
X1 € 7. Hence, in particular, .7 is a positive real function
on . with .#(0) = 1. On the other hand, it is also an
extended real supermartingale because of [15, Lemma 12].
So it follows that .% is a positive real supermartingale.
Consider now any path @ € Q such that

limsup — 2:f‘ah Eav.o(f)- (10)

n—y—-o0 I’l —

Then clearly, there is some R € N such that, for all » > R,

limsup — Z Sflo)

n—+oeo 1 i=1

avoo(f) _’_2.27r’

and hence also, using Equation (8),

limsup — Z A (01:)(041)

n—+oo 1

> limsup — Zf@ 27>

n—roo 1 i=

dvoo(f) -

If we combine this with Equation (9), it follows that
lim,—s 4w -7, (1) > 2" for all » > R. Consider now any
m € N. Then

l’zggcfﬁ(wtn) = I;rgi&fre%

27"'§.r(w1:n)

> liminf Z 2~ (R+) &

imint F(Ri) (@1:n)

m—1

_ —(R+i)
= Z 2 Jim g (@r:)

m— m—1

using the positivity of .%, for the first inequality. Since m €
N was arbitrary, it follows that lim,,_, % (®1.,) = 0.
We conclude that we have found a positive real super-
martingale .# with .% ([J) = 1 that converges to +oo on all
paths o € Q that satisfy Equation (10). Due to Definition 6,
this proves Proposition 12. |

8. Conclusion and Future Work

When it comes to studying the average behaviour of im-
precise Markov chains, the main focus has so far been on
ergodic imprecise Markov chains, and the object of interest
has always been the limit upper (or lower) expectation E..
(or E..). With good reason, because, as we explained in
the introduction, these objects provide strictly almost sure
upper and lower bounds on the long-term time averages of
such systems [3, Theorem 32].

The main conclusion of this contribution, however, is
that there is now a second and arguably better option, which
is to instead focus on weakly ergodic imprecise Markov
chains, and to use their averaged limit upper (and lower) ex-
pectation E‘le - (and E Eyy ) These too, as we have shown in
Theorem 13, provide strictly almost sure upper and lower
bounds on the long-term time averages of an imprecise
Markov chain. Since our bounds are at least as tight—
and sometimes significantly tighter [13, Example 2]—and
since the condition of weak ergodicity is more easily sat-
isfied [13], this yields a more powerful approach that is
applicable to more models. Remarkably, it does not even
matter which type of imprecise Markov chain one con-
siders. Our results apply to measure- and game-theoretic
versions alike and, in the measure-theoretic case, for all
main notions of independence considered in the literature.

For these reasons, we think that future work on the av-
erage behaviour of imprecise Markov chains should focus
on weak ergodicity and the corresponding averaged limit
upper and lower expectations. The main practical challenge
is to compute E,y (f). As we have seen in Proposition 11,
Equation (2) provides a possible method. The scalability of
this method remains to be assessed though, and alternative
methods for computing E,y . (f) would be most welcome.
On a more theoretical level, we would like to extend our re-
sults to also include a seventh model: the natural extension
of the local models E,,, [18]. The weak continuity proper-
ties of that model will make a pointwise ergodic theorem
infeasible, we think, but we believe it is possible to prove
a finitary version instead, in the style of the weak law of
large numbers.
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