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Abstract

When dealing with uncertain information, distortion
or neighbourhood models are convenient practical
tools, as they rely on very few parameters. In this
paper, we study their behaviour when such models are
combined and processed. More specifically, we study
their behaviour when merging different distortion mod-
els quantifying uncertainty on the same quantity, and
when manipulating distortion models defined over mul-
tiple variables.

Keywords: neighbourhood models, independence, in-
formation fusion, imprecise probabilities, natural ex-
tension

1. Introduction

Among the several imprecise probability models that are
representable by means of credal sets, distortion models,
defined as a ball around an initial probability, are quite
practical, as their specification requires only a distance and
a bound on it. This makes them instrumental models for
various tasks, such as robustness analysis.

The mathematical properties of such neighbourhood
models heavily depend on the chosen distance. In our recent
works [16, 17], we analysed the polytopes of probabilities
induced by different distances . Yet we did not explore
what happens when dealing with multiple neighbourhood
models. This is what we do in this paper, where we look
at two important tasks: (1) merging models bearing on the
same domain [19]. In particular, we focus on the opera-
tions of conjunction, disjunction and convex mixtures. And
(2) combining models defined on different domains. We
analyse the properties of the distortion models when we
marginalise a joint model, or when we build a joint model
using marginal ones.

The rest of the paper is organised as follows: we first pro-
vide necessary notions and notations in Section 2, and then
investigate in the following sections the behaviour of the
most commonly used models in the literature, when those
are merged or combined, reminding the basics of each dis-
tortion model in the corresponding section. Section 3 deals
with the pari mutuel model [17, 21, 27]; Section 4, with the
linear-vacuous model [11, 16, 27]; Section 5 focuses on the
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constant-odds ratio model [27]; finally Section 6 deals with
the model induced by the total variation distance [10, 27].
Some additional comments are provided in Section 7.

2. Preliminary Concepts

We consider finite possibility spaces, denoted by 2", %
or their product space 2" x #. We denote by Z(Z") the
power set of a space 2, by P(Z") the set of probabil-
ity measures on 2", and by P*(2") the set of probability
measures P satisfying P(A) € (0,1) forany A # 0, 2.

2.1. Imprecise Probabilities

Let us introduce some basic notions from imprecise proba-
bility theory used in this paper; we refer to [1, 24, 27] for
details.

A lower probability on 2 is a function P : Z(X") —
[0,1] that is monotone (A C B implies P(A) < P(B)) and
normalized (P(0) = 0,P(Z") = 1). Its conjugate upper
probability is given by P(A) = 1 — P(A°) forevery AC 2.

To any P, we can associate a closed and convex credal
set:

M (P):={P e P(2) | P(A) > P(A) VAC 27},

and P is called coherent when it is the lower envelope of a
non-empty . (P). All P in this paper will be coherent.

A more general notion than lower probability is that of
lower prevision. A gamble on 2" is a function f : 2" — R,
and the set of all the gambles on 2" is denoted by .Z(.Z").
A lower prevision is amap P : £ (%) — R. The credal set
induced by the lower prevision P is defined as:

AM(P) ={PeP(Z) | P(f) = B(f) VfeZL(Z)}

P is called coherent when P is the lower envelope of .Z (P),
meaning that P(f) = minpc_(p) P(f), where P(f) denotes
the expectation of the gamble f with respect to the proba-
bility measure P.

2.2. Distortion Models

Our focus is on a family of imprecise probability models
usually referred to as distortion models [4, 6, 11]. They can
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arise by considering a neighbourhood model around some
probability measure using some distorting function ¢ and
some distortion factor 6 > 0 (as in [12, 22, 25]), or making
a transformation of a given (lower) probability (as in [5, 7,
23]). We showed [16, Prop.3.2] that the latter approach can
be embedded in the former, hence we will only focus on
that one. Given a distorting function d : P(2") x P(Z") —
[0,00), a distortion parameter & > 0 and a fixed probability
measure Py € P(27), we can define the set of probabilities:

Bj(Ry) ={PeP(Z)|d(PR) < 5}.

Whenever d is convex and continuous, Bf, (Py) is a convex
and closed set of probabilities [16, Prop.3.1]. This means
that if we consider its lower envelope:

P,(f)=min{P(f) | PEB(R)} VfeZL(Z),

the credal sets .2 (P,) and BS(Py) coincide, and P, is a
coherent lower prevision.

In [16, 17] we assumed that Py € P*(Z'), i.e. Py is
strictly positive for every non-empty event, and also that o
is small enough such that BS(Py) C P*(%"). In this paper,
we shall also assume that this simplifying hypothesis holds
throughout, and will only recall it when it is necessary. See
[17, Appendix 2] for some additional comments.

2.3. Processing Imprecise Probabilistic Models

The variety of distortion models makes it necessary to have
tools at our disposal that allow to select the best one for
each scenario. In this sense, one desirable property is that
the model is closed under a number of operations of interest.
The ones analysed in this paper are introduced next.

Merging The first operation we shall consider is merging.
By this, we will refer to the procedure where we aggregate
a number of belief models, defined on 2, into a unified
one. These models may arise from the opinion of different
experts or from the use of several data sources, for instance.
We refer to [19, 20, 26] for relevant works on this topic.

In this paper, we shall focus on the three most fundamen-
tal merging procedures: those of conjunction, disjunction
and convex mixture. If we model our beliefs in terms of two
credal sets .#1,.#>, they will produce the sets .#| N.#>,
MU Mo and €41 + (l - 8)//2 = {£P1 + (1 — S)PQ‘PZ‘ €
M} with € € [0, 1], respectively.

In terms of the lower probabilities associated with these
sets, it should be noted that, while .#] U .#5 is not convex
in general, its lower envelope, that coincides with the lower
envelope of its convex hull ch(.#) U.#5>), is given by P :=
min{P,,P,}, where P, P, denote the lower envelopes of
M, M, respectively.

In contrast, while .#| N.#, is convex, its lower envelope
P will dominate in general max{P;, P, }. A sufficient condi-
tion for the equality is precisely the convexity of . U .#>,
as shown in [28, Thm.6].
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Finally, e.#1 + (1 — €).#, is always convex, and its
lower envelope is such that P := P, + (1 — €)P,.

Marginal and Joint Models Another relevant scenario
is the restriction of the model to a smaller domain or its
extension to a larger one. We shall focus on the case where
our possibility space is the product 2" x & of two finite
spaces. In that case, we may move from the joint model to
the marginals, or viceversa.

Marginalisation In the first case, given a joint model
B% 7 defined on the space 2 x %, we can consider the
marginal models 2‘7 and BW, defined on 2" and %/, re-
spectively. Their corresponding credal sets .Z (BQ) and
A (P”) are formed by the 2 - and % -projections of the

probability measures in .2 (P +?'), respectively.

Independent products Conversely, we may start from

two marginal models P? and P? on domains 2" and
% , respectively, and build a joint model on 2" x % that is
compatible with them. When the sources are assumed to
be independent, this leads us to consider an independent
product. Among the many possible choices [8], we consider

here the strong product of E“’T and BWJ, that we shall denote
PZ K P? 1tis the lower envelope of the credal set

M (PR (PY) = {P” <P | PPt (P”), PPt (P”)},

where P* X P? is the probability obtained from the
marginals P and P? by stochastic independence. The

strong product P* X P? and its conjugate P” ®P” sat-
isfy the following properties for every A C 2 ,BC ¥

=7

_p?
=P” (A)-P”(B).

P” ®P” (A x B) (1)
Natural extension of marginal models We may also con-
sider the most conservative joint model on .2~ x % with
marginals P and P? , imposing no dependence assump-
tion whatsoever. This corresponds to natural extension
[13, 27] E of the coherent lower probability P that is
defined on {AXx % :AC Z}U{Z xB:BC ¥} by
P(Ax %) =P”*(A) and P(2 x B) = P? (B). It can be
equivalently obtained as the lower envelope of the credal set
&(P? ,P”) given by those probabilities whose marginals
are compatible with B% and E’y:

{Per(z <o) |PPe.a(p”) PPe.a(P”)} @

The associated coherent lower and upper probabilities on
events C C 2" X % are

E(C)

E(C)= inf P(C),

su P(C).
o o] p P(C)

Pe&(P? PY)

3)

Our next proposition gives the expression of E, E on Carte-
sian products of events:
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Proposition 1 Let P? and P? be two coherent lower
probabilities on 2~ and %, respectively, with conjugates

P” and P”. Then foranyAC 2 ,BC U :

|ty

“
(&)

(A x B) = max {P* (A) +P” (B) — 1,0},
(4 x B) =min {P” (4),P” (B)}.

|

P

2.4. Aim of the Paper

Our goal in this paper is to complement the analysis per-
formed in [17, Sec.5] by investigating the behaviour of
different families of distortion models (pari mutuel, linear
vacuous, constant odds ratio, total variation) under the pro-
cedures described in Sec. 2.3. Specifically, we shall tackle
the following problems:

Merging We first consider two distortion models
BS‘ (Pol) and BSZ (Poz) in some specific family. We analyse
whether their conjunction B! (P}) N B (P2), their disjunc-
tion B! (R) UB% (P2) or their mixture eB]! (P}) + (1 —
S)BSZ (P¢) belong to the same family, in the sense that it is
equal to BS* (P(;‘ ) for some appropriate §* and P;.

Marginalisation Given a distortion model BS(P;"”")

with associated lower prevision P,;, we want to know
whether the marginal models Bd% and B;J correspond to
distortion models of the same family on 2" and %/, re-
spectively. In other words, we want to know if .2 (P")

By (Fy") and 4 (P]) = By(F).

Independent products Consider two distortion models
BS(Py”) and BS(Py) with the same distortion parame-
ter, and an assumption of independence. We want to know
whether the joint model that gathers this information be-
longs to the same family. We may consider two approaches
for determining this joint model:

* Combine P(f[ and ng into a joint and distort it. In this
way, we obtain the distortion model BS (PO“% g) We

shall denote by P *? and P77 the resulting lower
and upper probabilities.

« Consider the distortion models B (P;” ) and B3 (P)
and combine them using the strong product, leading
to the credal set //Z(B%) E///(B@) CPHZ x¥)
with associated lower and upper probabilities P# X
P? and P’ xp”.

We wonder whether the credal sets BS (PO%"@) and the
convex hull of .#Z (Bgl) X .4 (B{'y ) coincide, or in case
they do not, if there is an inclusion relationship between
them.
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Natural extension We consider two marginal distortion
models B37 (P ) and Bg'”/ (Poy ), and wonder whether we
can give a simple expression of & (B% , B‘@), E and E and
also whether & (£/ ,Bw‘/) is also a distortion model of the
same family. For the sake of simplicity, in this part we
assume that 69 = 0x := 0.

Note that, although B3 (P;* ) and B3 (P”) are included
in P*(£2") and P*(%), respectively, we cannot guarantee
that & (P* ,P”) is included in P*(2" x %).

In the sections that follow, we consider a number of
distortion models and analyse their behaviour under the
previous operations.

3. Pari Mutuel Model
The first model is the pari mutuel model (PMM, for short):

Definition 2 Given a probability measure Py and a dis-
tortion factor & > 0, the associated pari mutuel model is
determined by the following lower and upper probabilities:

Ppyp(A) = max{(1+8)Ry(A) — 8,0},
FPMM(A) :mm{(l —I—(S)Po(A), 1} VACZ.

Since by assumption Py € P*(2") and Ppyg,(A) > 0 for all
A # 0, the previous expressions simplify to:

Ppyn(A) = (1+8)Py(A) =8,  Prum(A) = (1+38)Py(A)

for every A # 0, 2", and taking the trivial values O and 1
for @ and 2, respectively.

The pari mutuel model is equivalent [16, Thm.4.1] to the
credal set BgPMM (Py) where dpyyr : P*(27) x P*(Z") —
[0,0) is the distorting function given by

Ry(4) ~ P(4)

d P.Py) =
pym (P, Py) = max 1—R(A)

ACE

3.1. Merging
Let us first study how the PMM behaves under merging.

Conjunction Given two models BSIL . (P)) and
B® (POZ), it was established in [15, Prop.12] that their

. dPMM . . .
intersection is non-empty iff

Y, min{(1+8)F ({x}), (1 +&)P3({x}),1} > L.
xe&
In that case, the intersection is given by the model
B% (P), where

dpmm

8" = ( %mm{(l+51)P&({x}),(1+52)P§({x})}> -1

min {(1+8) P ({x}), (1 + &)PF({x})}

1450 Vxe 2.

Py ({x}) =
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Disjunction Regarding the disjunction, the convex hull
of B (P1YUB% (P2) will not be in general a PMM,

dpmm N 0. dpypy N 0
as we show in the following example.

Example 1  Consider P} (0.5,0.3,0.2),P¢
(0.3,0.5,0.2) and &6 = & = 0.1. Then the associ-
ated PMMs Ppyyy, , Ppyy, and their disjunction PY are
given in the following table:

| P} {x) o) {xew) {os) (o)
Pppg | 045 023 012 078 067 045
Ppyy, | 023 045 012 078 045 067
PY 1023 023 0.12 0.78 0.45 0.45
. U\ _ pé
If it was .///(B ) =By, (Py) for some Py, 0, then we

would obtain

Y PU({x})=0.58=1-28 = § =0.21;
xeZ

on the other hand, the equalities

0.45 = BU({Xz,X3}) =1+8)P({x2,x3})—0
0.35 = PP({x}) + PP ({x3}) = (14 8) Po({x2,x3}) — 28

mean that it should be 8§ = 0.1. Thus, PV is not a PMM. ¢

Interestingly, this disjunction has a unique undominated
outer approximation that is a PMM (see [14, Prop.7]). It is

given by the model Bg‘leM (Py) such that:

87 = ( %max{(1+51)Pd({x}),(l+52)P02({x})}> -1,
max {(1+81)Py ({x}), (1+ &) P ({x}) }

U _ g
Py ({x}) = 50 Vxe 2.
This is the most informative PMM including the credal set

1)

BdJIDMM (P(} U B‘%’MM (Pg)

Convex mixture The mixture operation was studied
in [15, Sec.6.1], where it was shown that the convex mix-
ture of two PMMs is again a PMM BS?MM (F§), where
148 =¢e(1+8)+(1—¢)(1+8&)andVxe Z:

e(1+8)R ({x}) + (1 —&)(1+ &) F5 ({x})

P () = 5

3.2. Multivariate Setting

Let us now look at the behaviour of the PMM in a multi-
variate setting.

Marginalisation 1In [15, Sec.6.2], it was shown that the
marginal lower probability P# obtained from a joint PMM

5 TN s S ajoit o2
By, (Py 7 )isagaina l;l\/in By, . (P) with P the

marginal probability of F;
tion factor.

on £ and the same distor-
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Independent products When building a joint model from
marginal ones P(;%f and szl under the assumption of inde-
pendence, it can be seen that there is no dominance re-
lationship between P7,%” (combine through stochastic
independence and then distort) and Pz, X Py, (distort
then combine through strong independence). To see this,
note that on the one hand for the Cartesian product of events
A X B, it holds that:

Poi (4 B) = (1+ 8B (AR (B) <

(14 8)B (A)(1+ 8)PY (B) = Poyyy R Ppmyys (A x B),

where the inequality is strict whenever we consider non-

trivial events A, B, i.e. B;* (A), Py (B) € (0,1). On the other

hand, for events E that are not products, the relationship be-
S5 XY 2 4

tween Ppyy, (E) and Ppyyys X Ppyyps(E) can be the reverse

one, as we show in the next example:

Example 2 Let 2" = {x;,x2}, % = {y1,y2}, the prob-
ability measures Py’ and Py given by: Py ({x1}) =
0.3,P7 ({x2}) =0.7,B ({»1}) = P ({y2}) = 0.5 and let
6 =0.1. Given E| = {(x2,y2)}", it holds that:

=X XY
PPMM (El)

Therefore, there is not a dominance relationship between
p}?}:ﬁl@ and ﬁg,,M X F;Z/MM. ¢

Natural extension of marginal models Consider the
lower and upper probabilities that are the lower and upper
envelopes of BgPMM (P(‘)%-) and BSPMM (Po@ ) Using Eqgs. (4)
and (5), we obtain

Epum(A x B) =min{1,(1+8)min{ Py’ (A),Fy (B)}}, (6)

Epyy(A x B) = max{ (1+8) (P (A)+P) (B)—1) — 6,0}.)
(7

These are similar to the expressions of Def. 2. Even if

Eqgs. (6) and (7) are only valid for events of the type A x B,
one may think that the natural extension is related to a
PMM. Our next result shows that such a connection exists.
Theorem 3 Let BSPMM (PO%) and BSPMM (ng ) be Vtwo
PMM with associated lower probabilities Piy; and Poyy,.
Then, the credal set of the natural extension defined in
Eq. (2) can be expressed as:

= 0.715 > Poyyns B Ppyas (Er ) = 0.6985.

& (P Phaana)={P € B(2Z x #)IP < (14 8)E s po }:
equivalently, for every C C 2 X ¥,
Epym(C) = min {(1+ 5)EP09!',;>57 ()1},

where EPQ,’_’ po corresponds to the upper envelope of the

credal set in Eq. (2) applied to the particular case of precise
marginals PO% ,Pg] .

This result shows that the procedures of natural extension
and the distortion produced by the PMM commute, in the
sense illustrated in Fig. 1.
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0 Eq. 3) -
Py Ry Epo py
s
min{l,(l +6)EP(]J&"PS‘V}
Y Eq. 3) _ 1 Thm. 3
Povives Pram Epum

Figure 1: Graphical representation of the computation of
the natural extension of two PMMs.

4. Linear Vacuous Mixtures

Our next model is the so-called €-contamination model, or
linear vacuous mixture (LV, for short):

Definition 4 Given a probability measure Py and a distor-
tion factor § € (0,1), its associated linear vacuous mixture
is given by the following conjugate lower and upper proba-
bilities VA # 0, Z":

Pry(A) =(1-8)P(A), Pry(A)=(1-38)P(A)+,

with BLV(Q) :FLV(Q)) = OandBLv(%) :FLV(%) =1

This model, studied in [27] and [16, Sec.5], has been
used for instance in robust statistics [11]. The credal set
M (Pyy) coincides [16, Thm.5.1] with BSLV (Py), where
dry - P*(Z) x P*(Z") — [0,00) is the distorting function
given by [16, Thm.5.1]:

P(A) = P(A)

diy (P,Py) =
LV( ) 0) max PO(A)

A#0

Let us analyse the behaviour of the LV model under the
different operations introduced in Sec. 2.3.

4.1. Merging
We first look at the behaviour of LV models under merging.

Conjunction Similarly to the PMM, the intersection of
two LV models (when non-empty) is again a LV model.

Proposition 5 Given two distortion models Bgi v (Py) and
1) . .
BZZV (Pg), the set B dlLV (P)) ﬂBgiV (Pg) is non-empty iff

Y, max {(1 -8B} ({x}). (1- 8B ({x)} < 1.

xeZ

In that case, this conjunction is the LV model generated by

§M=1- %maX{(l —81)F ({x}), (1 - &)P5 ({x}) }
max {(1— 8P ({x}), (1 - &)PF({x}) }

—sn Vxe 2.

Py'({x}) =
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Disjunction Regarding the disjunction, the convex hull
of BSZV (P)U Bjiv (P2) will in general not be a LV model,
not even when 8; = &, as we show in the next example.

Example 3 Consider the same probabilities and distor-
tion factors as in Ex. 1. The associated LV models Pyy, , Pyy,

and their disjunction Py, are:

| fa) {n) (s} {xw) (o) (o)
Puy, | 045 027 0.8 072 0.63 0.45
Py, 027 045 0.18 0.72 0.45 0.63
Py, | 027 027 018 072 0.45 0.45

If there was some probability measure Py and 6 > 0 such
that M (Ppy) = BSLV (Py), then it would be

Py ({x1,22}) = (1= 8)Py({x1,32}) = Py ({x1}) + Piy ({x2}),

which does not hold. As a consequence, the disjunction
BY (P)) uB® (P?) does not produce a LV model. ¢

dry dry
This disjunction has a unique undominated LV outer
approximation, since by [14, Prop.8] this holds for any

given credal set. It is given by the model BS;V (Py') where

8 =1~ ( %_min{(l —80)R ({x}).(1 —&)Pg({x})}> ;
min {(1—8)F) ({x}), (1 - &) ({x}) }
1—-46v

Py ({x}) = Vxe 2.

Convex mixture The mixture of two LV models, that is,
the credal set BSEV (F§) for a given € € (0,1) can be estab-
lished through a reasoning similar to the one made for the
PMM in [14, Sec.5.1]. In particular, using in a straightfor-
ward way results established in [19] for probability inter-

vals, Bgzv (F§) is described by the constraints
e(1=81)F ({x}) +(1-e)(1 - &)y ({x}) < P({x}) Vxe 2.
We deduce that 1 — 0, = €(1—0;)+ (1 —€)(1 — &) and

e(1-8)R ({x}) + (1 —&)(1 - )P ({x})
1—0

F5({x}) =

4.2. Multivariate Setting

Let us now look at the multivariate setting.

Marginalisation 1t is easy to prove that the marginal
model of a joint LV is again a LV model:

the distortion  model

) and its induced lower prevision Ppy.

Proposition 6 Consider

S VARS
BdLV (P 0
Then, the marginal model Bf‘[, induces the model

ng (PO%) with P()ﬁ/ the ma}’ginal of'PO;%',@ on .
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Independent products Regarding the problem of going
from marginal models P(f'l/f ,Pg)’/ to joint ones, we can first
notice that on Cartesian products of events,

Py (AxB) = (1-8)F (AR (B) >
(1-8)F" (A) (1~ 8)RY (B) = Pify RP (A x B),

where last equality follows from the factorization property
in Eq. (1). We may then wonder if Bff,xg/ > Bﬁ; @BZ, in
general. The next example shows that this is not the case,
hence that we have no dominance relation between the joint
models B}?{,X‘@ and BL%V &Bg,.

Example 4 Let us continue with Ex. 2. Given the event
Ey = {(x2,y2)}, we obtain

P/ (Ey) = 0.585 < P}, WPy (E1) = 0.5985,
s (pZ YN . i
and therefore By (Py" ") is not included in the convex

hull of A (Pf,)) .2 (PYy,). ¢

Natural extension of marginal models
and (5) when 09 = 84 = &, we get

Using Eqgs. (4)

E;v(A x B)=(1 — §)max {Pg”*’(A) +PY(B)— ﬁm} . (8
Ew(AxB)=(1—8)min{P’ (A),Py’ (B)} +8. 9)

The expressions in Egs. (8) and (9) are somewhat similar to
the lower and upper probabilities of a LV model. However,
unlike what happened in the case of the PMM, the equality
Eny=01- S)EP(,)Q"ng does not hold:

Example 5 Consider the same spaces and probability
measures as in Ex. 2, and take 6 = 0.2. Then Eq. (8) gives

Epy({x2} x {»}) = max{0.8-0.7+0.8-0.5— 1,0} =0,

while EP(S% P(;y({xg} x {y2}) =max{0.7+0.5—1,0} =0.2,
meaning that (1 — S)Epoy-fgy({xz} x {y2})=0.16. ¢

5. Constant Odds Ratios

We next consider the constant odds ratio model (COR, for
short):

Definition 7 Given a probability measure Py and a distor-
tion factor 8 € (0,1), the associated constant odds ratio
model is the coherent lower prevision Pcog that, on any
gamble f, is defined as the unique solution of the equation:

(1=8)Py((f — Pcor(f)) ") = Po((f = Ro(f)) "), (10)

where g7 = max{g,0} and g~ = max{—g,0}.
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While Eq. (10) does not have a explicit expression, the
restriction to (indicators of) events of the constant odds
ratio can be more easily computed as:

(1-8)R(A)

caZ.
—em) EF

Pcop(A) = (11)
The constant odds ratio was given a behavioural interpreta-
tion in [27, Sec.2.9.4]. We refer to [2, 3, 22, 25] for some
applications of this model, and to [16, Sec.6] for a de-
tailed study. When Py € P*(Z") and J is small enough,
the credal set .# (Pcor) coincides with [16, Thm.6.1]
B . (Po), where dcog : P*(27) x P*(27) — [0,%0) is the
distorting function given by [16, Thm.6.1]:

{I_P(A)'PO(B)

P(B)-Py(A)
Also, the credal set .# (Pcor) can be expressed as [27,
Sec.3.3.5]:

A (Peor) = {P eP(2)|

dcor(P,Py) = AH}}%

P(A)Py(B) g
RAIPE) >(1-6) VA,BQ[}. (12)

5.1. Merging

Conjunction Unlike the PMM and LV models, the inter-
section of two COR models cannot be expected to be a
COR model in general, as next example shows.

Example 6 Consider the model .#\ = BS]COR

(P}) with
P} =(0.5,03,0.2) and 8 =02, and .t = By, (P})
such that P} = (0.35,0.3,0.35) with & = 0.5. From
Egq. (12), the ratio P{x1})/P({x3}) is constrained by the in-

equalities

Plnd) o, o PUx))
P({xs}) = ~ P({x3})
respectively for .#\ and ;. From this, it follows that any
P € 4\ N\ #> must satisfy the constraint iggg }}'; =2. As
a consequence, the credal set .M\ N .#> has at most two
extreme points. Since in [16, Prop.6.2] it was proved that
a COR model has 2" — 2 extreme points, where n is the
cardinality of &, it follows that .4\ N .#, is not a COR
model, as it has less than 2" — 2 = 6 extreme points. ¢

3.125 >

>0.5,

Disjunction  Similarly, the disjunction of two COR mod-
els will not produce a COR model in general, not even
when 8; = &,, as we show in our next example.

Example 7  Consider Pi (0.4,0.3,0.3), P?
(0.3,0.4,0.3) and 8 = & = 0.1. Using Eq. (11),
the associated COR models Pcog, ,Pcor, and their
disjunction PV are given in the following table:

| ) {xm} {s} {xow) {xaowa) {ox)
Pcor, | 3/8  27fo1 27jo1  21/31 21/31 27/47
Pcor, | 27/91 38 27/ 21/31 27/47 21/31
PV | 27/97 27/97 27/97 21/31 27/47 27/47
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recalling also that P = min{Pcog,,Pcor, }- If P” was
a COR model, i.e. 4 (P") = BSCOR (Py) for some Py and
8, since PY({x1}) = P’ ({x2}) = PY({x3}), it must hold
that PBy({x1}) = PBh({x2}) = Po({x3}) = % But in that case,
regardless of the value of 8, PY must take the same value
for all the events of cardinality two, a contradiction.

This example also allows us to show that P does not
have a unique undominated outer approximation in terms
of COR models. For instance, both COR models induced
by Py = (31/80,31/80, 18/80), Pp = (35/124,35/124,27/62), Op =
121/310 and 8 = 5 outer approximate P", and it can be
checked that no COR model is both included in BS/C‘OR (Py)

and BSB
COR

(Pg) and outer approximates P". ¢

We therefore conclude that the COR model is neither
preserved by conjunction nor by disjunction, and also that
its disjunction has not a unique undominated outer approxi-

mation.

Convex mixture As for the previous models, given the
fact that two COR models Bg' (Py) and Bgz (P3) are
i COR K COR .
described by the same set of constraints over P(4)/p(B), their
convex mixture is a credal set described by the constraints
P(A) Pi(A) P (A)
P(B) Pi(B) Py (B)’

However, the next example demonstrates that such con-
straints will not lead, in general, to a COR model.
Example 8 Consider PO1 = (1/a,1/4, 1/2),P02 = (1/2,1/4,1/4)
and 8 = 6, = 0.5. Using Eq. (11), the associated COR
models Pcog, s Pcor, and their average P%3 are:

| {1} {x} {x} {w) {xix) {oxa)

>e(1-61) +(1—g)(1-8)

Pcog, | V1 V113 /3 35 35
Peog, | '3 V111 3/s 35 1/3
POS | st 17 sj s 3/ 7/15

Should P° be the lower probability of a COR model

BSOC'ZR(P(())'S), it would be Pg's({xl}) = P(())'S({x3}) =p,

hence PY>({x2}) = 1 —2p. Using this observation and
Eq. (11) on events {x1} and {x,x3}, we should have
00.5 = 13/28 and p = 7/19, and applying again Eq. (11) with
these values on {x,} would give P({x»}) = 75/467, which
is close but not equal to the value 1/7 reported in the table

above. ¢

5.2. Multivariate Setting

Marginalisation As for the PMM and LV models, we
can show that the marginal distribution of a joint constant
odds ratio model is also a constant odds ratio model.

Proposition 8 Consider the distortion  model
o g
BSCOR (PO‘Z’J) and its induced lower prevision Pcop.

Then, the marginal model B’C%R induces the credal set

BSCOR (PO% ) with P(;%' the marginal of PO%"@/ on Z.

128

Independent products  Consider now the marginal mod-
els BSCOR (Pd% ) and BSCOR (sz/ ) Regarding the problem of
going from marginal models PO%,POW to joint ones, we can
first notice that on Cartesian products of events, we have

XX @ %
Peor (AXB) > Pror®Pcor(A < B).

We can then wonder if P2,%” (C) > P2, X P2x(C) for

any event C C 2" x %'. The next example shows that this

is not the case, and therefore that there is no dominance
: XY z W

relation between Ptor and P¢op X Peog-

Example 9 Consider our running Ex. 2. Given E; =
{(x1,71),(x2,¥2)}, we obtain BCQ;EJ’//(EZ) = 04737 <

PZor R PZoR(E2) = 0.4883. Therefore, the convexﬂhz:}ll of
M (PLoR) R (P2R) is not included in BSCOR (POI"/).

We conclude that both approaches for building a joint inde-
pendent model are not related in general.

Natural extension of marginal models We have already
mentioned that there is not an explicit expression for the
lower/upper prevision of the COR model in gambles (see
Eq. (10)), and it can only be given for events (see Eq. (11)).
This complicates the computation of the natural extension
of this model. In addition, even if we consider only the
values in events, this model is more difficult to handle than
the PMM or the LV.

Applying Egs. (4) and (5) to the lower and upper en-
velopes of BSCOR (Py) and BSCOR (PY), we get the follow-
ing forms on Cartesian products A x B, for A C 2" and

R (4) Py (B)

BC%:
1-8P (A) 16P57/(B)}’
(1=K (B) 1_0}.

1- 6P (B)
Although these expressions do not seem to resemble a COR
model, we may wonder if, similarly to what happened with
the PMM (see Thm. 3), the equality & (PZog,Poor) =
Buicor (Epogyfgy) holds. As we show next, this is not the
case.

ECOR(A ><B) = (1 S)mm{

(1-8)F (4)
1-8P (A)

ECOR(A X B) = max{

Example 10 Consider our running Ex. 2. Given

E3 = {(x2,y2)}, we obtain Eqpr(E3) = max{0.6774 +

0.4737 — 1,0} = 0.1511. On the other hand, from

Eq. (4) we have that EP(;%"P(;/J(EQ = 0.2, whence

(1*5)EP01’.P67 (E3)/1-8E o o (E3) = 0.1836. Thus, the two
0 "0

values do not coincide. ¢

6. Total Variation Model

Given two probability measures P, Q, their total variation
distance is given by

dry(P,Py) = max |P(A) —Py(A)|.
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By taking the lower and upper envelopes of the neighbour-
hood model it produces, we obtain the following:

Definition 9 Given a probability measure Py and a distor-
tion factor § € (0,1), the total variation model (TV, for
short) is given by the following lower and upper probabili-
ties:

max{Py(A) — 5,0} for every A+ %
min{Py(A) + 8,1} for every A # 0,

Pry(A) =
ﬁTV (A) =

and the trivial values Py (2") = 1 and Pry (0) = 0.

Since we are assuming that Py € P*(2") and that 6 is small
enough so that BSTV (Py) CP*(Z), the above equations
simplify for every A # 0, Z to:

Pry(A) =PRy(A) - (A)+6.

We refer to [10], [17, Sec.2], [21, Sec.3.2] and [27,
Sec.3.2.4] for some works on this distortion model.

8, Prv(A)=h (13)

6.1. Merging

Conjunction and disjunction Our next example shows
that neither the conjunction nor the disjunction of two total
variation models will produce in general a total variation
model.

Example 11 From Eq. (13), the lower probability of a
TV-model satisfies, for any event A such that 0 < Py (A) <
Pry(A) < 1, the following equality:

—Pry(A) = (Py(A)+6) — (P

In particular, since we are assuming that BSTV (Py) C
P*(Ry), this equality holds for any A # 0, Z". Let us use
this to derive that the family of TV models is not closed
under conjunction or disjunction.

Let B} (P)) be induced by P} = (0.41,0.37,0.22)

and 8y = 0.12, and BSZTV (P3) be determined by P§ =
(0.37,0.41,0.22) and & = 0.12. The lower probabilities
Pry, and Pry,, their conjunction P"' and disjunction P,
are given in the following table:

Pry(A) (A)—8)=26.

| {1} {n} {n} {nxd {aax) {xoaxs)
Pry, 029 0.25 0.1 0.66 0.51 0.47
BTVZ 025 0.29 0.1 0.66 0.47 0.51
P71 029 029 0.1 0.66 0.51 0.51
PY | 025 025 0.1 0.66 0.47 0.47

For the third line, use that max{Prv, ,Pry, } is coherent
and therefore coincides with P". We observe that

Pl ) =P () AP ({xs}) — P ({x3}),
P () — PP () # P ({x3}) — PU({x3}),

concluding that neither P nor P are TV models.
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The same example allows us to show that the disjunction
does not have a unique undominated outer approximation:

Example 12 Consider the model P from the pre-

vious example, and let us consider the TV models
B (Py) and BY (PY), where Py = (0.31,0.31,0.38),
Pz = (0.41,0.41,0.18), 84 = 0.28 and 8 = 0.16. The

lower probabilities Pry, , Pry, are given by:

| {1} {w} {o) {w) {xox) (o)
0.03 0.03 0.1 0.34 0.34 0.41
0.25 025 0.02 0.66 0.43 0.43

Pry,
Pry,

Both Pry, , Pry, are outer approximations of Py inthe TV
Sfamily. If there was a unique undominated outer approxima-
tion of P, denoted by B‘s , (Po) and with associated lower

probability Q..,, then PTV Pry, < Qpy < PY, whence

Oy (fni}) = =Pl }) =025 QTV({xz}) P({x}) =
0.25,0,.,({x3}) = P*({x3}) = 0.1. Therefore,

QTV({xl }) +QT\/({x2}) +QTV({X3}) =1-36= 06,

whence 8§ = 04/3 and Py = (0.25+ 5,0.25+ 5,0.1 + 5).
However, this means that:

Oy ({x1,33}) = Po({x1,33}) —
=0.35+8 > 047 = P ({x1,x3}),
a contradiction. ¢

Convex mixture It is rather direct to check that the con-

vex mixture of two TV models B ( ) and BY? 2 (P)
is agaln a TV model, since SPTV( ) +(1— S)P%V (A) =
ePL(A)+ (1 —€)P(A) — €8 — (1 — €)8; are lower proba-
bilities induced by the TV model ng (P ) with

and

(1—e)F5 ({x}).

0 =¢€61+(1—¢)5
Ps({x}) = ey ({x}) +

6.2. Multivariate Setting

Marginalisation It is not difficult to prove that the
marginal of a joint TV model is again a TV model.

Proposition 10 Consider the distortion model
2% . . .

BgTV (Pox /) and its as;oczated lower prevision Pry. Then,

the marginal model B;UZV induces the credal set BSTV (P(;g[ )

%

on Z'.

with P(j% the marginal probability OfPO%’

Independent products Consider now two marginal mod-
els BSTV (Py’) and Bgrv (Py). On Cartesian products of
events, we have

PR (AXB) = B (AR (B) -
(R (4) = 8) (R (B) ~8) =

where the last equality follows from the factorization prop-
erty in Eq. (1). We show in our next example that this
inequality can go both ways.

5+

P/, R P2, (A X B)
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Example 13 Consider the distortion models BgTV (Pé% )

and BSTV (Pog ) and the distortion factor § = 0.1. On the
one hand, assume that there are A C 2 and B C % such
that Py (A) = Py (B) = 0.5. We obtain that:

P57 (AxB) =0.15 < 0.16 = P, K P%, (A x B).

On the other hand, if there are A C 2" and B C % satisfy-
ing Py (A) = Py (B) = 0.6, we obtain that:

P Y (Ax B) = 0.26 > 0.25 = P, X P7, (A X B).

Therefore, there is no dominance relationship between the
lower probabilities obtained with the two approaches. 4

Natural extension of marginal models Consider now
) Z ) Y :
two TV-models B dry (PO ) and B dry (PO ) Using Egs. (4)
and (5), we obtain the following expressions on Cartesian
products A X B,for AC Z and BC %
Ery(AxB)=max{F (A)+Py (B)— 1,28} —28,
Erv(AxB) =min{Py’ (A),F (B)} +8.

(14)
(15)

The lower and upper natural extension have a similar
form as a TV-model. However, the lower and upper bounds
have different distortion parameters, respectively 26 and
0. This suggests that, as with the LV and COR mod-
els, the natural extension of the TV model can neither
be expressed as & (Bz%/aﬂ?v) =B} (E P()gg"Pg;/) nor as

dry
& (Pfy.Pfy) =B

dry (EPO% B ):

Example 14 We consider the same possibility spaces 2~
and % and precise probabilities P(‘)%/ and ng as in Ex. 2.
If we consider for instance the event {(x2,y2)}, we deduce
Sfrom Egs. (14) and (4) that for every 6 € (0,0.1)

ETV({(XLJQ)}) :Ep(fﬁp(’)ﬂ’({(xﬁﬂ)}) —26.

On the other hand, if we consider the event {(x2,y2)}¢, we
deduce from Egs. (15) and (5) that

Ery ({(x27)’2)}c) =1 —Frv({(XQ,yz)}) =0.5— 6 while
EP(;%,P(;”/ ({(x273’2)}c) =1 _FPO’Z',Pg’ ({(XL)’Z)}) =05

meaning that we should distort E P PV by 8. We conclude
Sfrom this that Eyy is not a TV-model. 4

7. Conclusions

The variety of distortion models present in the literature
makes it interesting to compare their behaviour under a
number of different perspectives, so as to be able to choose
the most appropriate model in each situation. In this paper,
we have complemented our earlier work in [16, 17] and
compared four different distortion models by determining
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(1) if they are closed under conjunction, disjunction or con-
vex mixture; (ii) if they are closed under marginalisation;
(iii) whether there is a unique procedure to build an indepen-
dent product; and (iv) whether the procedures of distortion
and natural extension commute. Tables 1 and 2 summarise
our results. We see that the PMM and LV models are the
most stable, followed by the TV and COR models.

\ Conjunction Disjunction  Unique OA?
PMM | YES[I5, Prop.12] NO (Ex.1)  YES[I5, Prop.12]
LV YES (Prop. 5) NO (Ex.3)  YES [14, Prop.8]
COR | NO (Ex. 6) NO (Ex.7)  NO (Ex.7)
vV NO (Ex. 11) NO (Ex.11) NO (Ex. 12)

Table 1: Behaviour under conjunction and disjunction.

| Mixture Marginalising Natural extension
PMM | YES YES [15, Sec. 6.2.]  YES (Thm. 3)
LV YES YES (Prop. 6) NO (Ex. 5)
COR | NO(Ex.8) YES (Prop. 8) NO (Ex. 10)
TV YES YES (Prop. 10) NO (Ex. 14)

Table 2: Behaviour of the neighbourhood models under
mixture, marginalisation and natural extension.

In the case of the natural extension, we should remark
that, strictly speaking, the natural extension of two marginal
PMMs is only a PMM if we regard it as a PMM-distortion
analogue of a lower probability, but not in the sense of
Def. 2; see Thm. 3 for more details.

Our work in this paper may be extended in a number of
ways: on the one hand, we may analyse other distortion
models, such as those based on the Kolmogorov or L;
distances [17], divergences such as Kullback-Leibler [9,
18] or nearly-linear models [7]; we may consider other
models of merging [26] or of independence [8]; and we
may take the approach one step further and investigate
distorted credal sets, considering the ideas put forward by
Moral in [18]. More generally, we could also analyse the
processing of generic distortion models defined through
some function d.
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