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Abstract
When dealing with uncertain information, distortion
or neighbourhood models are convenient practical
tools, as they rely on very few parameters. In this
paper, we study their behaviour when such models are
combined and processed. More specifically, we study
their behaviour when merging different distortion mod-
els quantifying uncertainty on the same quantity, and
when manipulating distortion models defined over mul-
tiple variables.
Keywords: neighbourhood models, independence, in-
formation fusion, imprecise probabilities, natural ex-
tension

1. Introduction

Among the several imprecise probability models that are
representable by means of credal sets, distortion models,
defined as a ball around an initial probability, are quite
practical, as their specification requires only a distance and
a bound on it. This makes them instrumental models for
various tasks, such as robustness analysis.

The mathematical properties of such neighbourhood
models heavily depend on the chosen distance. In our recent
works [16, 17], we analysed the polytopes of probabilities
induced by different distances . Yet we did not explore
what happens when dealing with multiple neighbourhood
models. This is what we do in this paper, where we look
at two important tasks: (1) merging models bearing on the
same domain [19]. In particular, we focus on the opera-
tions of conjunction, disjunction and convex mixtures. And
(2) combining models defined on different domains. We
analyse the properties of the distortion models when we
marginalise a joint model, or when we build a joint model
using marginal ones.

The rest of the paper is organised as follows: we first pro-
vide necessary notions and notations in Section 2, and then
investigate in the following sections the behaviour of the
most commonly used models in the literature, when those
are merged or combined, reminding the basics of each dis-
tortion model in the corresponding section. Section 3 deals
with the pari mutuel model [17, 21, 27]; Section 4, with the
linear-vacuous model [11, 16, 27]; Section 5 focuses on the

constant-odds ratio model [27]; finally Section 6 deals with
the model induced by the total variation distance [10, 27].
Some additional comments are provided in Section 7.

2. Preliminary Concepts
We consider finite possibility spaces, denoted by X , Y
or their product space X ×Y . We denote by P(X ) the
power set of a space X , by P(X ) the set of probabil-
ity measures on X , and by P∗(X ) the set of probability
measures P satisfying P(A) ∈ (0,1) for any A 6= /0,X .

2.1. Imprecise Probabilities

Let us introduce some basic notions from imprecise proba-
bility theory used in this paper; we refer to [1, 24, 27] for
details.

A lower probability on X is a function P : P(X )→
[0,1] that is monotone (A ⊆ B implies P(A) ≤ P(B)) and
normalized (P( /0) = 0,P(X ) = 1). Its conjugate upper
probability is given by P(A) = 1−P(Ac) for every A⊆X .

To any P, we can associate a closed and convex credal
set:

M (P) := {P ∈ P(X ) | P(A)≥ P(A) ∀A⊆X },

and P is called coherent when it is the lower envelope of a
non-empty M (P). All P in this paper will be coherent.

A more general notion than lower probability is that of
lower prevision. A gamble on X is a function f : X → R,
and the set of all the gambles on X is denoted by L (X ).
A lower prevision is a map P : L (X )→R. The credal set
induced by the lower prevision P is defined as:

M (P) = {P ∈ P(X ) | P( f )≥ P( f ) ∀ f ∈L (X )}.

P is called coherent when P is the lower envelope of M (P),
meaning that P( f ) =minP∈M (P) P( f ), where P( f ) denotes
the expectation of the gamble f with respect to the proba-
bility measure P.

2.2. Distortion Models

Our focus is on a family of imprecise probability models
usually referred to as distortion models [4, 6, 11]. They can
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arise by considering a neighbourhood model around some
probability measure using some distorting function d and
some distortion factor δ > 0 (as in [12, 22, 25]), or making
a transformation of a given (lower) probability (as in [5, 7,
23]). We showed [16, Prop.3.2] that the latter approach can
be embedded in the former, hence we will only focus on
that one. Given a distorting function d : P(X )×P(X )→
[0,∞), a distortion parameter δ > 0 and a fixed probability
measure P0 ∈ P(X ), we can define the set of probabilities:

Bδ
d (P0) = {P ∈ P(X ) | d(P,P0)≤ δ}.

Whenever d is convex and continuous, Bδ
d (P0) is a convex

and closed set of probabilities [16, Prop.3.1]. This means
that if we consider its lower envelope:

Pd( f ) = min
{

P( f ) | P ∈ Bδ
d (P0)

}
∀ f ∈L (X ),

the credal sets M (Pd) and Bδ
d (P0) coincide, and Pd is a

coherent lower prevision.
In [16, 17] we assumed that P0 ∈ P∗(X ), i.e. P0 is

strictly positive for every non-empty event, and also that δ

is small enough such that Bδ
d (P0)⊆ P∗(X ). In this paper,

we shall also assume that this simplifying hypothesis holds
throughout, and will only recall it when it is necessary. See
[17, Appendix 2] for some additional comments.

2.3. Processing Imprecise Probabilistic Models

The variety of distortion models makes it necessary to have
tools at our disposal that allow to select the best one for
each scenario. In this sense, one desirable property is that
the model is closed under a number of operations of interest.
The ones analysed in this paper are introduced next.

Merging The first operation we shall consider is merging.
By this, we will refer to the procedure where we aggregate
a number of belief models, defined on X , into a unified
one. These models may arise from the opinion of different
experts or from the use of several data sources, for instance.
We refer to [19, 20, 26] for relevant works on this topic.

In this paper, we shall focus on the three most fundamen-
tal merging procedures: those of conjunction, disjunction
and convex mixture. If we model our beliefs in terms of two
credal sets M1,M2, they will produce the sets M1∩M2,
M1∪M2 and εM1 +(1− ε)M2 = {εP1 +(1− ε)P2|Pi ∈
Mi} with ε ∈ [0,1], respectively.

In terms of the lower probabilities associated with these
sets, it should be noted that, while M1∪M2 is not convex
in general, its lower envelope, that coincides with the lower
envelope of its convex hull ch(M1∪M2), is given by P :=
min{P1,P2}, where P1,P2 denote the lower envelopes of
M1,M2, respectively.

In contrast, while M1∩M2 is convex, its lower envelope
P will dominate in general max{P1,P2}. A sufficient condi-
tion for the equality is precisely the convexity of M1∪M2,
as shown in [28, Thm.6].

Finally, εM1 + (1− ε)M2 is always convex, and its
lower envelope is such that P := εP1 +(1− ε)P2.

Marginal and Joint Models Another relevant scenario
is the restriction of the model to a smaller domain or its
extension to a larger one. We shall focus on the case where
our possibility space is the product X ×Y of two finite
spaces. In that case, we may move from the joint model to
the marginals, or viceversa.

Marginalisation In the first case, given a joint model
PX ,Y defined on the space X ×Y , we can consider the
marginal models PX and PY , defined on X and Y , re-
spectively. Their corresponding credal sets M

(
PX
)

and
M
(
PY
)

are formed by the X - and Y -projections of the
probability measures in M

(
PX ,Y

)
, respectively.

Independent products Conversely, we may start from
two marginal models PX and PY on domains X and
Y , respectively, and build a joint model on X ×Y that is
compatible with them. When the sources are assumed to
be independent, this leads us to consider an independent
product. Among the many possible choices [8], we consider
here the strong product of PX and PY , that we shall denote
PX �PY . It is the lower envelope of the credal set

M
(
PX
)
�M

(
PY
)
=
{

PX×PY | PX∈M
(
PX
)
, PY∈M

(
PY
)}

,

where PX × PY is the probability obtained from the
marginals PX and PY by stochastic independence. The
strong product PX �PY and its conjugate PX

�PY sat-
isfy the following properties for every A⊆X ,B⊆ Y :

PX �PY (A×B) = PX (A) ·PY (B)

PX
�PY

(A×B) = PX
(A) ·PY

(B). (1)

Natural extension of marginal models We may also con-
sider the most conservative joint model on X ×Y with
marginals PX and PY , imposing no dependence assump-
tion whatsoever. This corresponds to natural extension
[13, 27] E of the coherent lower probability P that is
defined on {A×Y : A ⊆ X } ∪ {X × B : B ⊆ Y } by
P(A×Y ) = PX (A) and P(X ×B) = PY (B). It can be
equivalently obtained as the lower envelope of the credal set
E (PX ,PY ) given by those probabilities whose marginals
are compatible with PX and PY :{

P ∈ P(X ×Y )
∣∣ PX∈M

(
PX
)
, PY∈M

(
PY
)}

. (2)

The associated coherent lower and upper probabilities on
events C ⊆X ×Y are

E(C) = inf
P∈E (PX ,PY )

P(C), E(C) = sup
P∈E (PX ,PY )

P(C). (3)

Our next proposition gives the expression of E,E on Carte-
sian products of events:
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Proposition 1 Let PX and PY be two coherent lower
probabilities on X and Y , respectively, with conjugates
PX and PY . Then for any A⊆X ,B⊆ Y :

E(A×B) = max
{

PX (A)+PY (B)−1,0
}
, (4)

E(A×B) = min
{

PX
(A),PY

(B)
}
. (5)

2.4. Aim of the Paper

Our goal in this paper is to complement the analysis per-
formed in [17, Sec.5] by investigating the behaviour of
different families of distortion models (pari mutuel, linear
vacuous, constant odds ratio, total variation) under the pro-
cedures described in Sec. 2.3. Specifically, we shall tackle
the following problems:

Merging We first consider two distortion models
Bδ1

d

(
P1

0
)

and Bδ2
d

(
P2

0
)

in some specific family. We analyse
whether their conjunction Bδ1

d

(
P1

0
)
∩Bδ2

d

(
P2

0
)
, their disjunc-

tion Bδ1
d

(
P1

0
)
∪Bδ2

d

(
P2

0
)

or their mixture εBδ1
d

(
P1

0
)
+(1−

ε)Bδ2
d

(
P2

0
)

belong to the same family, in the sense that it is
equal to Bδ ∗

d

(
P∗0
)

for some appropriate δ ∗ and P∗0 .

Marginalisation Given a distortion model Bδ
d

(
PX ,Y

0

)
with associated lower prevision Pd , we want to know
whether the marginal models PX

d and PY
d correspond to

distortion models of the same family on X and Y , re-
spectively. In other words, we want to know if M

(
PX

d

)
=

Bδ
d

(
PX

0
)

and M
(
PY

d

)
= Bδ

d

(
PY

0
)
.

Independent products Consider two distortion models
Bδ

d

(
PX

0
)

and Bδ
d

(
PY

0
)

with the same distortion parame-
ter, and an assumption of independence. We want to know
whether the joint model that gathers this information be-
longs to the same family. We may consider two approaches
for determining this joint model:

• Combine PX
0 and PY

0 into a joint and distort it. In this
way, we obtain the distortion model Bδ

d

(
PX ,Y

0

)
. We

shall denote by PX ×Y and PX ×Y the resulting lower
and upper probabilities.

• Consider the distortion models Bδ
d

(
PX

0
)

and Bδ
d

(
PY

0
)

and combine them using the strong product, leading
to the credal set M

(
PX
)
�M

(
PY
)
⊆ P∗(X ×Y )

with associated lower and upper probabilities PX �

PY and PX
�PY .

We wonder whether the credal sets Bδ
d

(
PX ,Y

0

)
and the

convex hull of M
(
PX
)
�M

(
PY
)

coincide, or in case
they do not, if there is an inclusion relationship between
them.

Natural extension We consider two marginal distortion
models BδX

d

(
PX

0
)

and BδY
d

(
PY

0
)
, and wonder whether we

can give a simple expression of E (PX ,PY ), E and E and
also whether E (PX ,PY ) is also a distortion model of the
same family. For the sake of simplicity, in this part we
assume that δX = δY := δ .

Note that, although Bδ
d

(
PX

0
)

and Bδ
d

(
PY

0
)

are included
in P∗(X ) and P∗(Y ), respectively, we cannot guarantee
that E

(
PX ,PY

)
is included in P∗(X ×Y ).

In the sections that follow, we consider a number of
distortion models and analyse their behaviour under the
previous operations.

3. Pari Mutuel Model
The first model is the pari mutuel model (PMM, for short):

Definition 2 Given a probability measure P0 and a dis-
tortion factor δ > 0, the associated pari mutuel model is
determined by the following lower and upper probabilities:

PPMM(A) = max{(1+δ )P0(A)−δ ,0},
PPMM(A) = min{(1+δ )P0(A),1} ∀A⊆X .

Since by assumption P0 ∈ P∗(X ) and PPMM(A)> 0 for all
A 6= /0, the previous expressions simplify to:

PPMM(A) = (1+δ )P0(A)−δ , PPMM(A) = (1+δ )P0(A)

for every A 6= /0,X , and taking the trivial values 0 and 1
for /0 and X , respectively.

The pari mutuel model is equivalent [16, Thm.4.1] to the
credal set Bδ

dPMM
(P0) where dPMM : P∗(X )×P∗(X )→

[0,∞) is the distorting function given by

dPMM(P,P0) = max
A⊂X

P0(A)−P(A)
1−P0(A)

.

3.1. Merging

Let us first study how the PMM behaves under merging.

Conjunction Given two models Bδ1
dPMM

(P1
0 ) and

Bδ2
dPMM

(P2
0 ), it was established in [15, Prop.12] that their

intersection is non-empty iff

∑
x∈X

min
{
(1+δ1)P1

0 ({x}),(1+δ2)P2
0 ({x}),1

}
≥ 1.

In that case, the intersection is given by the model
Bδ∩

dPMM
(P∩0 ), where

δ
∩ =

(
∑

x∈X
min

{
(1+δ1)P1

0 ({x}),(1+δ2)P2
0 ({x})

})
−1,

P∩0 ({x}) =
min

{
(1+δ1)P1

0 ({x}),(1+δ2)P2
0 ({x})

}
1+δ∩

∀x ∈X .
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Disjunction Regarding the disjunction, the convex hull
of Bδ1

dPMM
(P1

0 )∪Bδ2
dPMM

(P2
0 ) will not be in general a PMM,

as we show in the following example.

Example 1 Consider P1
0 = (0.5,0.3,0.2),P2

0 =
(0.3,0.5,0.2) and δ1 = δ2 = 0.1. Then the associ-
ated PMMs PPMM1

,PPMM2
and their disjunction P∪ are

given in the following table:

{x1} {x2} {x3} {x1,x2} {x1,x3} {x2,x3}
PPMM1

0.45 0.23 0.12 0.78 0.67 0.45
PPMM2

0.23 0.45 0.12 0.78 0.45 0.67
P∪ 0.23 0.23 0.12 0.78 0.45 0.45

If it was M
(
P∪
)
= Bδ

dPMM
(P0) for some P0,δ , then we

would obtain

∑
x∈X

P∪({x}) = 0.58 = 1−2δ ⇒ δ = 0.21;

on the other hand, the equalities

0.45 = P∪({x2,x3}) = (1+δ )P0({x2,x3})−δ

0.35 = P∪({x2})+P∪({x3}) = (1+δ )P0({x2,x3})−2δ

mean that it should be δ = 0.1. Thus, P∪ is not a PMM. �

Interestingly, this disjunction has a unique undominated
outer approximation that is a PMM (see [14, Prop.7]). It is
given by the model Bδ∪

dPMM
(P∪0 ) such that:

δ
∪ =

(
∑

x∈X
max

{
(1+δ1)P1

0 ({x}),(1+δ2)P2
0 ({x})

})
−1,

P∪0 ({x}) =
max

{
(1+δ1)P1

0 ({x}),(1+δ2)P2
0 ({x})

}
1+δ∪

∀x ∈X .

This is the most informative PMM including the credal set
Bδ1

dPMM
(P1

0 )∪Bδ2
dPMM

(P2
0 ).

Convex mixture The mixture operation was studied
in [15, Sec.6.1], where it was shown that the convex mix-
ture of two PMMs is again a PMM Bδε

dPMM
(Pε

0 ), where
1+δε = ε(1+δ1)+(1− ε)(1+δ2) and ∀x ∈X :

Pε
0 ({x}) =

ε(1+δ1)P1
0 ({x})+(1− ε)(1+δ2)P2

0 ({x})
1+δε

.

3.2. Multivariate Setting

Let us now look at the behaviour of the PMM in a multi-
variate setting.

Marginalisation In [15, Sec.6.2], it was shown that the
marginal lower probability PX obtained from a joint PMM
Bδ

dPMM

(
PX ,Y

0

)
is again a PMM Bδ

dPMM

(
PX

0
)

with PX
0 the

marginal probability of PX ,Y
0 on X and the same distor-

tion factor.

Independent products When building a joint model from
marginal ones PX

0 and PY
0 under the assumption of inde-

pendence, it can be seen that there is no dominance re-
lationship between PX ×Y

PMM (combine through stochastic
independence and then distort) and PX

PMM �PY
PMM (distort

then combine through strong independence). To see this,
note that on the one hand for the Cartesian product of events
A×B, it holds that:

PX ×Y
PMM (A×B) = (1+δ )PX

0 (A)PY
0 (B)≤

(1+δ )PX
0 (A)(1+δ )PY

0 (B) = PX
PMM �PY

PMM(A×B),

where the inequality is strict whenever we consider non-
trivial events A,B, i.e. PX

0 (A),PY
0 (B)∈ (0,1). On the other

hand, for events E that are not products, the relationship be-
tween PX ×Y

PMM (E) and PX
PMM �PY

PMM(E) can be the reverse
one, as we show in the next example:

Example 2 Let X = {x1,x2}, Y = {y1,y2}, the prob-
ability measures PX

0 and PY
0 given by: PX

0 ({x1}) =
0.3,PX

0 ({x2}) = 0.7,PY
0 ({y1}) = PY

0 ({y2}) = 0.5 and let
δ = 0.1. Given E1 = {(x2,y2)}c, it holds that:

PX ×Y
PMM (E1) = 0.715 > PX

PMM �PY
PMM

(
E1
)
= 0.6985.

Therefore, there is not a dominance relationship between
PX ×Y

PMM and PX
PMM �PY

PMM . �

Natural extension of marginal models Consider the
lower and upper probabilities that are the lower and upper
envelopes of Bδ

dPMM

(
PX

0
)

and Bδ
dPMM

(
PY

0
)
. Using Eqs. (4)

and (5), we obtain

EPMM(A×B) = min
{

1,(1+δ )min
{

PX
0 (A),PY

0 (B)
}}

, (6)

EPMM(A×B) = max
{
(1+δ )

(
PX

0 (A)+PY
0 (B)−1

)
−δ ,0

}
.

(7)

These are similar to the expressions of Def. 2. Even if
Eqs. (6) and (7) are only valid for events of the type A×B,
one may think that the natural extension is related to a
PMM. Our next result shows that such a connection exists.

Theorem 3 Let Bδ
dPMM

(
PX

0
)

and Bδ
dPMM

(
PY

0
)

be two
PMM with associated lower probabilities PX

PMM and PY
PMM .

Then, the credal set of the natural extension defined in
Eq. (2) can be expressed as:

E
(
PX

PMM ,PY
PMM

)
=
{
P ∈ P(X ×Y )|P≤ (1+δ )EPX

0 ,PY
0

}
;

equivalently, for every C ⊆X ×Y ,

EPMM(C) = min
{
(1+δ )EPX

0 ,PY
0
(C),1

}
,

where EPX
0 ,PY

0
corresponds to the upper envelope of the

credal set in Eq. (2) applied to the particular case of precise
marginals PX

0 ,PY
0 .

This result shows that the procedures of natural extension
and the distortion produced by the PMM commute, in the
sense illustrated in Fig. 1.
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PX
0 ,PY

0
EPX

0 ,PY
0

PX
PMM,PY

PMM EPMM

min
{

1,(1+δ )EPX
0 ,PY

0

}
Eq. (3)

Eq. (3) Thm. 3

Figure 1: Graphical representation of the computation of
the natural extension of two PMMs.

4. Linear Vacuous Mixtures

Our next model is the so-called ε-contamination model, or
linear vacuous mixture (LV, for short):

Definition 4 Given a probability measure P0 and a distor-
tion factor δ ∈ (0,1), its associated linear vacuous mixture
is given by the following conjugate lower and upper proba-
bilities ∀A 6= /0,X :

PLV (A) = (1−δ )P0(A), PLV (A) = (1−δ )P0(A)+δ ,

with PLV ( /0) = PLV ( /0) = 0 and PLV (X ) = PLV (X ) = 1.

This model, studied in [27] and [16, Sec.5], has been
used for instance in robust statistics [11]. The credal set
M (PLV ) coincides [16, Thm.5.1] with Bδ

dLV
(P0), where

dLV : P∗(X )×P∗(X )→ [0,∞) is the distorting function
given by [16, Thm.5.1]:

dLV (P,P0) = max
A6= /0

P0(A)−P(A)
P0(A)

.

Let us analyse the behaviour of the LV model under the
different operations introduced in Sec. 2.3.

4.1. Merging

We first look at the behaviour of LV models under merging.

Conjunction Similarly to the PMM, the intersection of
two LV models (when non-empty) is again a LV model.

Proposition 5 Given two distortion models Bδ1
dLV

(P1
0 ) and

Bδ2
dLV

(P2
0 ), the set Bδ1

dLV
(P1

0 )∩Bδ2
dLV

(P2
0 ) is non-empty iff

∑
x∈X

max
{
(1−δ1)P1

0 ({x}),(1−δ2)P2
0 ({x})

}
≤ 1.

In that case, this conjunction is the LV model generated by

δ
∩ = 1− ∑

x∈X
max

{
(1−δ1)P1

0 ({x}),(1−δ2)P2
0 ({x})

}
,

P∩0 ({x}) =
max

{
(1−δ1)P1

0 ({x}),(1−δ2)P2
0 ({x})

}
1−δ∩

∀x ∈X .

Disjunction Regarding the disjunction, the convex hull
of Bδ1

dLV
(P1

0 )∪Bδ2
dLV

(P2
0 ) will in general not be a LV model,

not even when δ1 = δ2 as we show in the next example.

Example 3 Consider the same probabilities and distor-
tion factors as in Ex. 1. The associated LV models PLV1

,PLV2
and their disjunction P∪LV are:

{x1} {x2} {x3} {x1,x2} {x1,x3} {x2,x3}
PLV1

0.45 0.27 0.18 0.72 0.63 0.45
PLV2

0.27 0.45 0.18 0.72 0.45 0.63
P∪LV 0.27 0.27 0.18 0.72 0.45 0.45

If there was some probability measure P0 and δ > 0 such
that M

(
PLV
)
= Bδ

dLV
(P0), then it would be

P∪LV ({x1,x2}) = (1−δ )P0({x1,x2}) = P∪LV ({x1})+P∪LV ({x2}),

which does not hold. As a consequence, the disjunction
Bδ1

dLV
(P1

0 )∪Bδ2
dLV

(P2
0 ) does not produce a LV model. �

This disjunction has a unique undominated LV outer
approximation, since by [14, Prop.8] this holds for any
given credal set. It is given by the model Bδ∪

dLV
(P∪0 ) where

δ
∪ = 1−

(
∑

x∈X
min

{
(1−δ1)P1

0 ({x}),(1−δ2)P2
0 ({x})

})
,

P∪0 ({x}) =
min

{
(1−δ1)P1

0 ({x}),(1−δ2)P2
0 ({x})

}
1−δ∪

∀x ∈X .

Convex mixture The mixture of two LV models, that is,
the credal set Bδε

dLV
(Pε

0 ) for a given ε ∈ (0,1) can be estab-
lished through a reasoning similar to the one made for the
PMM in [14, Sec.5.1]. In particular, using in a straightfor-
ward way results established in [19] for probability inter-
vals, Bδε

dLV
(Pε

0 ) is described by the constraints

ε(1−δ1)P1
0 ({x})+(1−ε)(1−δ2)P2

0 ({x})≤ P({x}) ∀x ∈X .

We deduce that 1−δε = ε(1−δ1)+(1− ε)(1−δ2) and

Pε
0 ({x}) =

ε(1−δ1)P1
0 ({x})+(1− ε)(1−δ2)P2

0 ({x})
1−δε

.

4.2. Multivariate Setting

Let us now look at the multivariate setting.

Marginalisation It is easy to prove that the marginal
model of a joint LV is again a LV model:

Proposition 6 Consider the distortion model
Bδ

dLV

(
PX ,Y

0

)
and its induced lower prevision PLV .

Then, the marginal model PX
LV induces the model

Bδ
dLV

(
PX

0
)

with PX
0 the marginal of PX ,Y

0 on X .
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Independent products Regarding the problem of going
from marginal models PX

0 ,PY
0 to joint ones, we can first

notice that on Cartesian products of events,

PX ×Y
LV (A×B) = (1−δ )PX

0 (A)PY
0 (B)≥

(1−δ )PX
0 (A)(1−δ )PY

0 (B) = PX
LV �PY

LV (A×B),

where last equality follows from the factorization property
in Eq. (1). We may then wonder if PX ×Y

LV ≥ PX
LV �PY

LV in
general. The next example shows that this is not the case,
hence that we have no dominance relation between the joint
models PX ×Y

LV and PX
LV �PY

LV .

Example 4 Let us continue with Ex. 2. Given the event
E1 = {(x2,y2)}c, we obtain

PX ×Y
LV (E1) = 0.585 < PX

LV �PY
LV
(
E1
)
= 0.5985,

and therefore Bδ
dLV

(
PX ,Y

0

)
is not included in the convex

hull of M
(
PX

LV
)
�M

(
PY

LV
)
. �

Natural extension of marginal models Using Eqs. (4)
and (5) when δX = δY = δ , we get

ELV (A×B)=(1−δ )max
{

PX
0 (A)+PY

0 (B)− 1
1−δ

,0
}
, (8)

ELV (A×B)=(1−δ )min
{

PX
0 (A),PY

0 (B)
}
+δ . (9)

The expressions in Eqs. (8) and (9) are somewhat similar to
the lower and upper probabilities of a LV model. However,
unlike what happened in the case of the PMM, the equality
ELV = (1−δ )EPX

0 ,PY
0

does not hold:

Example 5 Consider the same spaces and probability
measures as in Ex. 2, and take δ = 0.2. Then Eq. (8) gives

ELV ({x2}×{y2}) = max{0.8 ·0.7+0.8 ·0.5−1,0}= 0,

while EPX
0 ,PY

0
({x2}×{y2})=max{0.7+0.5−1,0}= 0.2,

meaning that (1−δ )EPX
0 ,PY

0
({x2}×{y2}) = 0.16. �

5. Constant Odds Ratios

We next consider the constant odds ratio model (COR, for
short):

Definition 7 Given a probability measure P0 and a distor-
tion factor δ ∈ (0,1), the associated constant odds ratio
model is the coherent lower prevision PCOR that, on any
gamble f , is defined as the unique solution of the equation:

(1−δ )P0
(
( f −PCOR( f ))+

)
= P0

(
( f −P0( f ))−

)
, (10)

where g+ = max{g,0} and g− = max{−g,0}.

While Eq. (10) does not have a explicit expression, the
restriction to (indicators of) events of the constant odds
ratio can be more easily computed as:

PCOR(A) =
(1−δ )P0(A)
1−δP0(A)

∀A⊆X . (11)

The constant odds ratio was given a behavioural interpreta-
tion in [27, Sec.2.9.4]. We refer to [2, 3, 22, 25] for some
applications of this model, and to [16, Sec.6] for a de-
tailed study. When P0 ∈ P∗(X ) and δ is small enough,
the credal set M (PCOR) coincides with [16, Thm.6.1]
Bδ

dCOR
(P0), where dCOR : P∗(X )×P∗(X )→ [0,∞) is the

distorting function given by [16, Thm.6.1]:

dCOR(P,P0) = max
A,B6= /0

{
1− P(A) ·P0(B)

P(B) ·P0(A)

}
.

Also, the credal set M (PCOR) can be expressed as [27,
Sec.3.3.5]:

M (PCOR) =

{
P ∈ P(X ) | P(A)P0(B)

P0(A)P(B)
≥ (1−δ ) ∀A,B⊆X

}
. (12)

5.1. Merging

Conjunction Unlike the PMM and LV models, the inter-
section of two COR models cannot be expected to be a
COR model in general, as next example shows.

Example 6 Consider the model M1 = Bδ1
dCOR

(P1
0 ) with

P1
0 = (0.5,0.3,0.2) and δ1 = 0.2, and M2 = Bδ2

dCOR
(P2

0 )

such that P2
0 = (0.35,0.3,0.35) with δ2 = 0.5. From

Eq. (12), the ratio P({x1})/P({x3}) is constrained by the in-
equalities

3.125≥ P({x1})
P({x3})

≥ 2, 2≥ P({x1})
P({x3})

≥ 0.5,

respectively for M1 and M2. From this, it follows that any
P ∈M1 ∩M2 must satisfy the constraint P({x1})

P({x3})
= 2. As

a consequence, the credal set M1 ∩M2 has at most two
extreme points. Since in [16, Prop.6.2] it was proved that
a COR model has 2n− 2 extreme points, where n is the
cardinality of X , it follows that M1 ∩M2 is not a COR
model, as it has less than 2n−2 = 6 extreme points. �

Disjunction Similarly, the disjunction of two COR mod-
els will not produce a COR model in general, not even
when δ1 = δ2, as we show in our next example.

Example 7 Consider P1
0 = (0.4,0.3,0.3), P2

0 =
(0.3,0.4,0.3) and δ1 = δ2 = 0.1. Using Eq. (11),
the associated COR models PCOR1

,PCOR2
and their

disjunction P∪ are given in the following table:

{x1} {x2} {x3} {x1,x2} {x1,x3} {x2,x3}
PCOR1

3/8 27/97 27/97 21/31 21/31 27/47

PCOR2
27/97 3/8 27/97 21/31 27/47 21/31

P∪ 27/97 27/97 27/97 21/31 27/47 27/47
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recalling also that P∪ = min{PCOR1
,PCOR2

}. If P∪ was
a COR model, i.e. M

(
P∪
)
= Bδ

dCOR
(P0) for some P0 and

δ , since P∪({x1}) = P∪({x2}) = P∪({x3}), it must hold
that P0({x1}) = P0({x2}) = P0({x3}) = 1

3 . But in that case,
regardless of the value of δ , P∪ must take the same value
for all the events of cardinality two, a contradiction.

This example also allows us to show that P∪ does not
have a unique undominated outer approximation in terms
of COR models. For instance, both COR models induced
by PA = (31/80,31/80,18/80), PB = (35/124,35/124,27/62), δA =
121/310 and δB = 1

2 outer approximate P∪, and it can be
checked that no COR model is both included in BδA

dCOR
(PA)

and BδB
dCOR

(PB) and outer approximates P∪. �

We therefore conclude that the COR model is neither
preserved by conjunction nor by disjunction, and also that
its disjunction has not a unique undominated outer approxi-
mation.

Convex mixture As for the previous models, given the
fact that two COR models Bδ1

dCOR
(P1

0 ) and Bδ2
dCOR

(P2
0 ) are

described by the same set of constraints over P(A)/P(B), their
convex mixture is a credal set described by the constraints

P(A)
P(B)

≥ ε(1−δ1)
P1(A)
P1(B)

+(1− ε)(1−δ2)
P2(A)
P2(B)

.

However, the next example demonstrates that such con-
straints will not lead, in general, to a COR model.

Example 8 Consider P1
0 =(1/4,1/4,1/2),P2

0 =(1/2,1/4,1/4)
and δ1 = δ2 = 0.5. Using Eq. (11), the associated COR
models PCOR1

,PCOR2
and their average P0.5 are:

{x1} {x2} {x3} {x1,x2} {x1,x3} {x2,x3}
PCOR1

1/7 1/7 1/3 1/3 3/5 3/5

PCOR2
1/3 1/7 1/7 3/5 3/5 1/3

P0.5 5/21 1/7 5/21 7/15 3/5 7/15

Should P0.5 be the lower probability of a COR model
Bδ0.5

dCOR
(P0.5

0 ), it would be P0.5
0 ({x1}) = P0.5

0 ({x3}) = p,
hence P0.5

0 ({x2}) = 1− 2p. Using this observation and
Eq. (11) on events {x1} and {x1,x3}, we should have
δ0.5 = 13/28 and p = 7/19, and applying again Eq. (11) with
these values on {x2} would give P({x2}) = 75/467, which
is close but not equal to the value 1/7 reported in the table
above. �

5.2. Multivariate Setting

Marginalisation As for the PMM and LV models, we
can show that the marginal distribution of a joint constant
odds ratio model is also a constant odds ratio model.

Proposition 8 Consider the distortion model
Bδ

dCOR

(
PX ,Y

0

)
and its induced lower prevision PCOR.

Then, the marginal model PX
COR induces the credal set

Bδ
dCOR

(
PX

0
)

with PX
0 the marginal of PX ,Y

0 on X .

Independent products Consider now the marginal mod-
els Bδ

dCOR

(
PX

0
)

and Bδ
dCOR

(
PY

0
)
. Regarding the problem of

going from marginal models PX
0 ,PY

0 to joint ones, we can
first notice that on Cartesian products of events, we have

PX ×Y
COR (A×B)≥ PX

COR �PY
COR(A×B).

We can then wonder if PX ×Y
COR (C)≥ PX

COR �PY
COR(C) for

any event C ⊆X ×Y . The next example shows that this
is not the case, and therefore that there is no dominance
relation between PX ×Y

COR and PX
COR �PY

COR.

Example 9 Consider our running Ex. 2. Given E2 =
{(x1,y1),(x2,y2)}, we obtain PX ×Y

COR (E2) = 0.4737 <

PX
COR �PY

COR(E2) = 0.4883. Therefore, the convex hull of
M (PX

COR)�M (PY
COR) is not included in Bδ

dCOR

(
PX ,Y

0

)
.

We conclude that both approaches for building a joint inde-
pendent model are not related in general.

Natural extension of marginal models We have already
mentioned that there is not an explicit expression for the
lower/upper prevision of the COR model in gambles (see
Eq. (10)), and it can only be given for events (see Eq. (11)).
This complicates the computation of the natural extension
of this model. In addition, even if we consider only the
values in events, this model is more difficult to handle than
the PMM or the LV.

Applying Eqs. (4) and (5) to the lower and upper en-
velopes of Bδ

dCOR
(PX

0 ) and Bδ
dCOR

(PY
0 ), we get the follow-

ing forms on Cartesian products A×B, for A ⊆X and
B⊆ Y :

ECOR(A×B) = (1−δ )min

{
PX

0 (A)

1−δPX
0 (A)

,
PY

0 (B)

1−δPY
0 (B)

}
.

ECOR(A×B) = max

{
(1−δ )PX

0 (A)

1−δPX
0 (A)

+
(1−δ )PY

0 (B)

1−δPY
0 (B)

−1,0

}
.

Although these expressions do not seem to resemble a COR
model, we may wonder if, similarly to what happened with
the PMM (see Thm. 3), the equality E

(
PX

COR,P
Y
COR

)
=

BdCOR

(
EPX

0 ,PY
0

)
holds. As we show next, this is not the

case.

Example 10 Consider our running Ex. 2. Given
E3 = {(x2,y2)}, we obtain ECOR(E3) = max{0.6774 +
0.4737 − 1,0} = 0.1511. On the other hand, from
Eq. (4) we have that EPX

0 ,PY
0
(E3) = 0.2, whence

(1−δ )E
PX
0 ,PY

0
(E3)/1−δE

PX
0 ,PY

0
(E3) = 0.1836. Thus, the two

values do not coincide. �

6. Total Variation Model
Given two probability measures P,Q, their total variation
distance is given by

dTV (P,P0) = max
A⊆X

|P(A)−P0(A)|.
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By taking the lower and upper envelopes of the neighbour-
hood model it produces, we obtain the following:

Definition 9 Given a probability measure P0 and a distor-
tion factor δ ∈ (0,1), the total variation model (TV, for
short) is given by the following lower and upper probabili-
ties:

PTV (A) = max{P0(A)−δ ,0} for every A 6= X

PTV (A) = min{P0(A)+δ ,1} for every A 6= /0,

and the trivial values PTV (X ) = 1 and PTV ( /0) = 0.

Since we are assuming that P0 ∈ P∗(X ) and that δ is small
enough so that Bδ

dTV
(P0) ⊆ P∗(X ), the above equations

simplify for every A 6= /0,X to:

PTV (A) = P0(A)−δ , PTV (A) = P0(A)+δ . (13)

We refer to [10], [17, Sec.2], [21, Sec.3.2] and [27,
Sec.3.2.4] for some works on this distortion model.

6.1. Merging

Conjunction and disjunction Our next example shows
that neither the conjunction nor the disjunction of two total
variation models will produce in general a total variation
model.

Example 11 From Eq. (13), the lower probability of a
TV-model satisfies, for any event A such that 0 < PTV (A)≤
PTV (A)< 1, the following equality:

PTV (A)−PTV (A) = (P0(A)+δ )− (P0(A)−δ ) = 2δ .

In particular, since we are assuming that Bδ
dTV

(P0) ⊆
P∗(P0), this equality holds for any A 6= /0,X . Let us use
this to derive that the family of TV models is not closed
under conjunction or disjunction.

Let Bδ1
dTV

(
P1

0
)

be induced by P1
0 = (0.41,0.37,0.22)

and δ1 = 0.12, and Bδ2
dTV

(
P2

0
)

be determined by P2
0 =

(0.37,0.41,0.22) and δ2 = 0.12. The lower probabilities
PTV1

and PTV2
, their conjunction P∩ and disjunction P∪,

are given in the following table:

{x1} {x2} {x3} {x1,x2} {x1,x3} {x2,x3}
PTV1

0.29 0.25 0.1 0.66 0.51 0.47
PTV2

0.25 0.29 0.1 0.66 0.47 0.51
P∩ 0.29 0.29 0.1 0.66 0.51 0.51
P∪ 0.25 0.25 0.1 0.66 0.47 0.47

For the third line, use that max{PTV1
,PTV2

} is coherent
and therefore coincides with P∩. We observe that

P∩({x1})−P∩({x1}) 6= P∩({x3})−P∩({x3}),

P∪({x1})−P∪({x1}) 6= P∪({x3})−P∪({x3}),

concluding that neither P∩ nor P∪ are TV models. �

The same example allows us to show that the disjunction
does not have a unique undominated outer approximation:

Example 12 Consider the model P∪ from the pre-
vious example, and let us consider the TV models
BδA

dTV
(PA

0 ) and BδB
dTV

(PB
0 ), where PA = (0.31,0.31,0.38),

PB = (0.41,0.41,0.18), δA = 0.28 and δB = 0.16. The
lower probabilities PTVA

,PTVB
are given by:

{x1} {x2} {x3} {x1,x2} {x1,x3} {x2,x3}
PTVA

0.03 0.03 0.1 0.34 0.34 0.41
PTVB

0.25 0.25 0.02 0.66 0.43 0.43

Both PTVA
,PTVB

are outer approximations of P∪TV in the TV
family. If there was a unique undominated outer approxima-
tion of P∪, denoted by Bδ

dTV
(P0) and with associated lower

probability QTV , then PTVA
,PTVB

≤ QTV ≤ P∪, whence
QTV ({x1}) = P∪({x1}) = 0.25,QTV ({x2}) = P∪({x2}) =
0.25,QTV ({x3}) = P∪({x3}) = 0.1. Therefore,

QTV ({x1})+QTV ({x2})+QTV ({x3}) = 1−3δ = 0.6,

whence δ = 0.4/3 and P0 = (0.25+ δ ,0.25+ δ ,0.1+ δ ).
However, this means that:

QTV

(
{x1,x3}

)
= P0

(
{x1,x3}

)
−δ

= 0.35+δ > 0.47 = P∪
(
{x1,x3}

)
,

a contradiction. �

Convex mixture It is rather direct to check that the con-
vex mixture of two TV models Bδ1

dTV

(
P1

0
)

and Bδ2
dTV

(
P2

0
)

is again a TV model, since εP1
TV (A)+ (1− ε)P2

TV (A) =
εP1

0 (A)+(1− ε)P2
0 (A)− εδ1− (1− ε)δ2 are lower proba-

bilities induced by the TV model Bδε

dTV

(
Pε

0

)
with

δε = εδ1 +(1− ε)δ2 and

Pε
0 ({x}) = εP1

0 ({x})+(1− ε)P2
0 ({x}).

6.2. Multivariate Setting

Marginalisation It is not difficult to prove that the
marginal of a joint TV model is again a TV model.

Proposition 10 Consider the distortion model
Bδ

dTV

(
PX ,Y

0

)
and its associated lower prevision PTV . Then,

the marginal model PX
TV induces the credal set Bδ

dTV

(
PX

0
)

with PX
0 the marginal probability of PX ,Y

0 on X .

Independent products Consider now two marginal mod-
els Bδ

dTV
(PX

0 ) and Bδ
dTV

(PY
0 ). On Cartesian products of

events, we have

PX ×Y
TV (A×B) = PX

0 (A)PY
0 (B)−δ 6=(

PX
0 (A)−δ

)(
PY

0 (B)−δ
)
= PX

TV �PY
TV (A×B)

where the last equality follows from the factorization prop-
erty in Eq. (1). We show in our next example that this
inequality can go both ways.
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Example 13 Consider the distortion models Bδ
dTV

(
PX

0
)

and Bδ
dTV

(
PY

0
)

and the distortion factor δ = 0.1. On the
one hand, assume that there are A⊆X and B⊆ Y such
that PX

0 (A) = PY
0 (B) = 0.5. We obtain that:

PX ×Y
TV (A×B) = 0.15 < 0.16 = PX

TV �PY
TV (A×B).

On the other hand, if there are A⊆X and B⊆ Y satisfy-
ing PX

0 (A) = PY
0 (B) = 0.6, we obtain that:

PX ×Y
TV (A×B) = 0.26 > 0.25 = PX

TV �PY
TV (A×B).

Therefore, there is no dominance relationship between the
lower probabilities obtained with the two approaches. �

Natural extension of marginal models Consider now
two TV-models Bδ

dTV

(
PX

0
)

and Bδ
dTV

(
PY

0
)
. Using Eqs. (4)

and (5), we obtain the following expressions on Cartesian
products A×B, for A⊆X and B⊆ Y :

ETV (A×B) = max
{

PX
0 (A)+PY

0 (B)−1,2δ
}
−2δ , (14)

ETV (A×B) = min
{

PX
0 (A),PY

0 (B)
}
+δ . (15)

The lower and upper natural extension have a similar
form as a TV-model. However, the lower and upper bounds
have different distortion parameters, respectively 2δ and
δ . This suggests that, as with the LV and COR mod-
els, the natural extension of the TV model can neither
be expressed as E

(
PX

TV ,P
Y
TV
)
= Bδ

dTV

(
EPX

0 ,PY
0

)
nor as

E
(
PX

TV ,P
Y
TV
)
= B2δ

dTV

(
EPX

0 ,PY
0

)
:

Example 14 We consider the same possibility spaces X
and Y and precise probabilities PX

0 and PY
0 as in Ex. 2.

If we consider for instance the event {(x2,y2)}, we deduce
from Eqs. (14) and (4) that for every δ ∈ (0,0.1)

ETV
(
{(x2,y2)}

)
= EPX

0 ,PY
0

(
{(x2,y2)}

)
−2δ .

On the other hand, if we consider the event {(x2,y2)}c, we
deduce from Eqs. (15) and (5) that

ETV
(
{(x2,y2)}c)= 1−ETV

(
{(x2,y2)}

)
= 0.5−δ while

EPX
0 ,PY

0

(
{(x2,y2)}c)= 1−EPX

0 ,PY
0

(
{(x2,y2)}

)
= 0.5

meaning that we should distort EPX
0 ,PY

0
by δ . We conclude

from this that ETV is not a TV-model. �

7. Conclusions
The variety of distortion models present in the literature
makes it interesting to compare their behaviour under a
number of different perspectives, so as to be able to choose
the most appropriate model in each situation. In this paper,
we have complemented our earlier work in [16, 17] and
compared four different distortion models by determining

(i) if they are closed under conjunction, disjunction or con-
vex mixture; (ii) if they are closed under marginalisation;
(iii) whether there is a unique procedure to build an indepen-
dent product; and (iv) whether the procedures of distortion
and natural extension commute. Tables 1 and 2 summarise
our results. We see that the PMM and LV models are the
most stable, followed by the TV and COR models.

Conjunction Disjunction Unique OA?
PMM YES [15, Prop.12] NO (Ex.1) YES [15, Prop.12]

LV YES (Prop. 5) NO (Ex.3) YES [14, Prop.8]
COR NO (Ex. 6) NO (Ex.7) NO (Ex.7)
TV NO (Ex. 11) NO (Ex.11) NO (Ex. 12)

Table 1: Behaviour under conjunction and disjunction.

Mixture Marginalising Natural extension
PMM YES YES [15, Sec. 6.2.] YES (Thm. 3)

LV YES YES (Prop. 6) NO (Ex. 5)
COR NO (Ex. 8) YES (Prop. 8) NO (Ex. 10)
TV YES YES (Prop. 10) NO (Ex. 14)

Table 2: Behaviour of the neighbourhood models under
mixture, marginalisation and natural extension.

In the case of the natural extension, we should remark
that, strictly speaking, the natural extension of two marginal
PMMs is only a PMM if we regard it as a PMM-distortion
analogue of a lower probability, but not in the sense of
Def. 2; see Thm. 3 for more details.

Our work in this paper may be extended in a number of
ways: on the one hand, we may analyse other distortion
models, such as those based on the Kolmogorov or L1
distances [17], divergences such as Kullback-Leibler [9,
18] or nearly-linear models [7]; we may consider other
models of merging [26] or of independence [8]; and we
may take the approach one step further and investigate
distorted credal sets, considering the ideas put forward by
Moral in [18]. More generally, we could also analyse the
processing of generic distortion models defined through
some function d.
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