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Abstract
We extend the domain of imprecise jump processes,
also known as imprecise continuous-time Markov
chains, from inferences that depend on a finite number
of time points to inferences that can depend on the state
of the system at all time points. We also investigate
the continuity properties of the resulting lower and up-
per expectations with respect to point-wise convergent
sequences that are monotone or dominated. For two
particular inferences, integrals over time and the num-
ber of jumps to a subset of states, we strengthen these
continuity properties and present an iterative scheme
to approximate their lower and upper expectations.
Keywords: continuous time, jump process, Markov
chain, imprecise, integral over time, occupancy time,
number of jumps, monotone convergence, dominated
convergence

1. Introduction

Recently, several authors have independently proposed
generalisations of Markovian jump processes—often also
called continuous-time Markov chains—that provide an
elegant way to deal with parameter uncertainty. Whereas a
Markovian jump process is uniquely defined by its rate ma-
trix and initial probability mass function, these ‘imprecise’
generalisations allow for partially specified parameters:
they are defined through sets of rate matrices and/or sets of
initial probability mass functions.

There are two frameworks that obtain similar—to some
extent even equivalent—results. Škulj [19] and Krak et al.
[11] adhere to the framework of imprecise probabilities
[22], while Nendel [15] follows the framework of non-
linear (or convex) expectations—see also [16]. However,
both of these frameworks have crucial shortcomings: that
of Škulj [19] Krak et al. [11] only deals with lower and
upper expectations of variables that depend on the state of
the system at a single time point or a finite number of time
points, respectively, while that of Nendel [15] only deals
with bounded variables that are measurable with respect to
the product σ -algebra. For applications, this implies that for
both of these frameworks, key inferences like (lower and
upper) expected temporal averages, expected occupancy
times, expected hitting times—also called expected first-

passage times—and the expected number of jumps (to a
set) are not included in the domain. Instead of resorting to
heuristics to circumvent this issue [9, 23], our aim here is to
get rid of this problem in a theoretically sound manner, by
suitably extending the domain of imprecise jump processes.

The remainder of this contribution is structured as fol-
lows. In Section 2, we introduce jump processes in general
and Markovian jump processes in particular, and we briefly
introduce imprecise jump processes in Section 3. With
these preliminaries out of the way, we set out to extend
the domain of imprecise jump processes in Section 4. In
Section 5, we take a closer look at integrals over time—
including occupancy times—and the number of jumps to
a set of states, two classes of variables that belong to the
extended domain, and establish methods to approximate
their lower and upper expectations. We put these methods
to the test in Section 6, where we compare our methods to
those of Troffaes et al. [23]. Section 7 concludes this con-
tribution. To adhere to the page limit, we state our results
without proof; the proofs for most of the results—except
for those in Section 5.2—can be found in [7].

2. Jump Processes

A stochastic process is a model of someone’s uncertainty
about (the evolution of) the state of some system over time.
In this contribution, we consider a generic system that
evolves over continuous time whose state assumes values
in a finite set; following Gikhman and Skorokhod [10] and
Le Gall [13]—to name just a few—we call a stochastic pro-
cess for such a system a jump process. We denote the state
space of the system by X ; throughout this contribution,
except in Section 6, X can be any non-empty and finite
set.

2.1. Càdlàg Paths

Because the system evolves in continuous time, an outcome
in the sample space is a path ω : R≥0→X , where ω(t) is
the state of the system at the time point t in R≥0.1 In general,
a path ω can display some pretty erratic behaviour; take,

1. We denote the set of real numbers, non-negative real numbers and
positive real numbers by R, R≥0 and R>0, respectively. Furthermore,
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for example, the path that assumes the state x whenever
the time point t is a rational number and the state y 6= x
otherwise, with x,y in X . In this contribution, we choose to
exclude this erratic behaviour, and we do so as follows: we
only include the path ω in our sample space if (i) it stays in
the new state for some time directly after it changes states,
and (ii) it only changes states a finite number of times over
any finite time horizon. Mathematically, this translates to
requiring that (i) the path ω is continuous from the right at
all time points t in R≥0, and (ii) the path ω has a limit from
the left at all time points t in R>0.2 Whenever the path ω

satisfies these two requirements, it is called a càdlàg path;
see, for example, [3, Section 12] or [13, p. 54]. We collect
all càdlàg paths in the set Ω,3 and this will be our sample
space.

Krak et al. [11] do not (need to) assume càdlàg paths,
but that is simply because this assumption is not relevant
to their setting. However, it is absolutely essential when
extending the domain that all paths in the sample space are
càdlàg, as will become clear in Sections 4 and 5 further on.

2.2. Cylinder Events

Let us identify some events—that is, subsets of the sample
space Ω—that play an essential role in our analysis. The
most elementary events are those that depend on the state
of the system at a single point in time. For any time point t
in R≥0 and any state x in X , we denote the event that ‘the
state of the system at time t is x’ by

{Xt = x} := {ω ∈Ω : ω(t) = x}.

In a similar fashion, we let

{Xt ∈ B} := {ω ∈Ω : ω(t) ∈ B}=
⋃
x∈B

{Xt = x}.

for any subset B of X ; in line with this notation, we let Xt
be the projector defined by

Xt(ω) := ω(t) for all ω ∈Ω.

To simplify the notation regarding events that depend
on more than a single time point, we avail ourselves of the
notational conventions used by Krak et al. [11, Section 2.1].
A sequence of time points is a finite sequence of increas-
ing time points, that is, a sequence (t1, . . . , tn) in R≥0 of
arbitrary length—with n in N—such that t1 < · · ·< tn. For
the sake of brevity, we denote a generic sequence by u or
v. We collect all sequences of time points in Une, and let
U := Une ∪{()}, where () denotes the empty sequence.
We denote the first and last time points of a non-empty
sequence of time points u = (t1, . . . , tn) by minu := t1 and

N denotes the natural numbers (or positive integers) and R := R∪
{−∞,+∞} the extended real numbers.

2. We bestow the state space X with the discrete topology.
3. This is known as the Skorokhod space.

maxu := tn, respectively. A statement of the form maxu < t
is taken to be trivially true whenever u is the empty se-
quence (). For u and v in U , we write u 4 v whenever v
only contains time points in or succeeding u, in the sense
that every time point t in v belongs to u or to [maxu,+∞);
note that () 4 v for all v in U . For any sequence of time
points u = (t1, . . . , tn) in Une, we let Xu be the set of all
n-tuples xu = (xt1 , . . . ,xtn) of states in X . If u is the empty
sequence (), then we let Xu = X() denote the singleton
containing the empty tuple, denoted by x().

Fix some v = (t1, . . . , tn) in Une. Then we let Xv be the
projector defined by

Xv(ω) :=
(
ω(t1), . . . ,ω(tn)

)
for all ω ∈Ω.

Furthermore, for any B⊆Xv, we let

{Xv ∈ B} := {ω ∈Ω : (ω(t1), . . . ,ω(tn)) ∈ B};

an event of this form is usually called a cylinder event.
In order to reduce the number of edge cases, we also let
{X() = x()} := Ω =: {X() ∈X()}.

For any u in U , Krak et al. [11, Section 4.2] let Au be
the set of events that consists of the cylinder events for all
sequences v with time points in or succeeding u:

Au :=
{
{Xv ∈ B} : v ∈U ,u 4 v,B⊆Xv

}
.

Crucially, Au is an algebra of events.

2.3. Coherent Conditional Probabilities

In order to deal with conditioning in an unambiguous man-
ner, Krak et al. [11] resort to the framework of coherent con-
ditional probabilities. What follows is a brief introduction
to coherent conditional probabilities; we refer to [1, 6, 17]
for a more detailed exposition. To keep our exposition
simple, we will define coherent conditional probabilities
through the related notion of full conditional probabilities.
In the following definition, and throughout the remainder
of this contribution, we denote the set of all events by 2Ω

and let 2Ω
ne := 2Ω \ {∅} be the set of all events that are

non-empty.

Definition 1 A full conditional probability P is a real-
valued map on 2Ω × 2Ω

ne such that, for all A, B in 2Ω

and C, D in 2Ω
ne,

P1. P(A |C)≥ 0;

P2. P(A |C) = 1 if C ⊆ A;

P3. P(A∪B |C) = P(A |C)+P(B |C) if A∩B =∅;

P4. P(A∩D |C) = P(A |D∩C)P(D |C) if D∩C 6=∅.

Note that (P1)–(P3) simply state that P(•|C) is a probabil-
ity charge—a ‘finitely additive probability measure’ [see
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22, Definition 1.15]—and that (P4) is a multiplicative ver-
sion of Bayes’s rule. We use the adjective full because the
domain of P is 2Ω× 2Ω

ne. Next, we move to conditional
probabilities whose domain is a subset of 2Ω×2Ω

ne.

Definition 2 A coherent conditional probability P is a
real-valued map on C ⊆ 2Ω×2Ω

ne that can be extended to
a full conditional probability on 2Ω×2Ω

ne.

Important to emphasise here is that simply demanding that
(P1)–(P4) hold on the domain C is in general not suffi-
cient to guarantee that the conditional probability P can
be extended to a full conditional probability. A necessary
and sufficient condition for the existence of such an exten-
sion can be found in [17, Theorem 3], but we refrain from
stating it here because of its technical nature. It suffices to
understand that this so-called coherence condition has an
intuitive betting interpretation, hence explaining the use of
the adjective coherent, and that checking this condition is
usually more convenient than explicitly constructing a full
conditional extension. Another strong argument for using
coherent conditional probabilities is that they can always
be coherently extended to a larger domain [17, Theorem 4].

2.4. Jump Processes as a Special Case

Krak et al. [11, Definition 4.3] define a jump process as a
coherent conditional probability with domain

D :=
{
(A |Xu = xu) : u ∈U ,A ∈Au,xu ∈Xu

}
, (1)

where we write (A |Xu = xu) instead of (A,{Xu = xu}).

Definition 3 A jump process P is a coherent conditional
probability on D . We let P be the set of all jump processes.

Every jump process P in P induces a (conditional) expec-
tation operator EP. To define EP, we fix some conditioning
event {Xu = xu}, with u in U and xu in Xu. Because P(•|
Xu = xu) is a probability charge on Au by (P1)–(P3), it
corresponds to an expectation operator EP(•|Xu = xu) that
is defined on the set of Au-simple variables in the usual
way: through the Dunford integral [22, Definition 8.13], or
equivalently, through natural extension [22, Theorem 8.15].

A variable is a map on Ω that takes values in the (ex-
tended) reals. To characterise the Au-simple variables, we
let IA : Ω→ R denote the indicator of an event A in 2Ω,
which is a variable that assumes the value 1 on A and 0
elsewhere. A variable f : Ω→R is then Au-simple if it has
a representation of the form f = ∑

n
k=1 akIAk for some n in

N, a1, . . . , an in R and A1, . . . , An in Au; whenever this is
the case, the expectation of f conditional on {Xu = xu} is

EP( f |Xu = xu) :=
n

∑
k=1

akP(Ak |Xu = xu).

This way, the expectation EP has domain

JS := {( f |Xu = xu) : u ∈U ,xu ∈Xu, f ∈ Su},

where Su denotes the set of real variables that are Au-
simple and where we favour writing ( f |Xu = xu) instead
of ( f ,{Xu = xu}), as in Equation (1).

Because every event in Au depends on the state of the sys-
tem at a finite number of time points in or succeeding u, it is
easy to see that the same holds for every Au-simple variable.
Consequently, these variables have a convenient representa-
tion, given that we introduce some additional notation. For
any real-valued function f on Xv, we let f (Xv) := f ◦Xv
denote the function composition of f after Xv; thus, f (Xv)
is a real variable.

Lemma 4 Consider some u in U and some real vari-
able f : Ω→ R. Then f is Au-simple if and only if there
is some v in Une with u 4 v and a real-valued function g
on Xv such that f = g(Xv).

2.5. Markovianity and Homogeneity

In general, specifying a jump process is a non-trivial task.
For this reason, it is customary to assume the following two
simplifying properties.

Definition 5 A jump process P is Markovian—or, alterna-
tively, has the Markov property—if for all t in R≥0, all ∆

in R>0, all x,y in X , all u in U such that maxu < t and
all xu in Xu,

P(Xt+∆ = y |Xt = x,Xu = xu) = P(Xt+∆ = y |Xt = x).

We denote the set of all Markovian jump processes by PM.

Definition 6 A Markovian jump process P is homoge-
neous if for all t in R≥0, ∆ in R>0 and x,y in X ,

P(Xt+∆ = y |Xt = x) = P(X∆ = y |X0 = x).

We denote the set of all homogeneous Markovian jump
process by PHM.

Under a mild continuity condition, a homogeneous
Markovian jump process P is uniquely characterised by
two parameters: its initial probability mass function πP and
its rate matrix QP [11, Theorem 5.4]. The initial probability
mass function πP : X → [0,1] is defined by

πP(x) := P(X0 = x) for all x ∈X ; (2)

the rate matrix QP is the |X | × |X | real-valued matrix
whose (x,y)-component is defined by

QP(x,y) := lim
∆↘0

P(X∆ = y |X0 = x)− I(x,y)
∆

, (3)

where I denotes the identity matrix. Conversely, any com-
bination of a probability mass function π and a rate ma-
trix Q—that is, a matrix with non-negative off-diagonal
components and rows that sum to zero—characterises a
unique homogeneous Markovian jump process Pπ,Q [11,
Corollary 5.3].
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3. Imprecise Jump Processes

One is not always able to or willing to specify precise
values for the characterising parameters of a homogeneous
Markovian jump process. In this contribution, we suppose
that instead of a single probability mass function π and
rate matrix Q, we have a non-empty set M of probability
mass functions and a non-empty and bounded set Q of rate
matrices. It then makes sense to consider the set

PHM
M ,Q :=

{
Pπ,Q : π ∈M ,Q ∈Q

}
of homogeneous Markov jump processes that are charac-
terised by an initial probability mass function π in M and
a rate matrix Q in Q. This is a first example of an imprecise
jump process, which is a non-empty set P ⊆ P of jump
processes.

Besides PHM
M ,Q, Krak et al. [11] propose two additional

imprecise jump processes PM
M ,Q and PM ,Q that are fully

defined by M and Q, and they do so by including the non-
homogeneous and then the non-Markovian jump processes
that are ‘consistent’ with M and Q. A jump process P
in P is consistent with M if there is a probability mass
function π in M such that

P(X0 = x) = π(x) for all x ∈X ;

note that this condition is inspired by Equation (2). Consis-
tency with Q is motivated by Equation (3), but the formal
definition is rather involved [11, Definition 6.1]. For our
present purposes, it suffices to understand that, essentially,
a process P in P is consistent with Q if, for all t in R≥0, u in
U such that maxu < t and xu in Xu, the rate matrix Qt+∆

t,xu ,
defined for all ∆ in R>0 and x,y in X by

Qt+∆
t,xu

:=
P(Xt+∆ = y |Xt = x,Xu = xu)− I(x,y)

∆
,

comes arbitrarily close to—or is eventually contained in—
Q as ∆ approaches 0. The imprecise jump process PM

M ,Q
then consists of all—not necessarily homogeneous—
Markovian jump processes that are consistent with M
and Q; similarly, PM ,Q consists of all—not necessarily
Markovian—jump processes that are consistent with M
and Q. Note that, by construction,

PM ,Q ⊇ PM
M ,Q ⊇ PHM

M ,Q. (4)

3.1. Lower and Upper Expectations

Every jump process P in PM ,Q corresponds to an expecta-
tion operator EP, and we are interested in (tight) lower and
upper bounds on these expectations. For this reason, we
consider the lower expectation EM ,Q : JS→ R, defined
for all ( f |Xu = xu) in JS by

EM ,Q( f |Xu = xu) := inf{EP( f |Xu = xu) : P ∈ PM ,Q}

and the upper expectation EM ,Q : JS→ R, defined simi-
larly but with a supremum. Note that EM ,Q and EM ,Q are
conjugate, in the sense that, for all ( f |Xu = xu) in JS,

EM ,Q( f |Xu = xu) =−EM ,Q(− f |Xu = xu).

It therefore suffices to study one of the two; we will focus
on the lower envelope EM ,Q. In a similar fashion, Krak
et al. [11, Definition 6.5] define the lower (and conjugate
upper) envelopes of the expectations with respect to PM

M ,Q
and PHM

M ,Q , denoted by EM
M ,Q and EHM

M ,Q , respectively; due
to Equation (4),

EM ,Q(•|•)≤ EM
M ,Q(•|•)≤ EHM

M ,Q(•|•),

and conversely for the upper expectations.
In general, determining these tight lower and upper

bounds on the expectations corresponding to PM ,Q, PM
M ,Q

or PHM
M ,Q is intractable if not impossible, as one would

have to explicitly construct these sets in order to optimise
over them. However, there are particular cases in which
tight lower and upper bounds are relatively easy to obtain.
Crucial is that the set Q has separately specified rows, es-
sentially meaning that we can select the rows of the rate
matrices in Q independently [11, Definition 7.3].

Definition 7 A set Q of rate matrices has separately spec-
ified rows if

Q =
{

Q ∈Q : (∀x ∈X ) Q(x,•) ∈Qx
}
,

where Q denotes the set of all |X | × |X | rate matrices
and where, for all x in X , we let Qx := {Q(x,•) : Q ∈Q}.

Krak et al. [11, Corollary 8.3] show that whenever Q is
convex and has separately specified rows, EM ,Q satisfies a
‘law of iterated lower expectations’—but EM

M ,Q or EHM
M ,Q

may not. This implies that for any ( f |Xu = xu) in JS, the
lower expectation EM ,Q( f |Xu = xu) can be computed up
to arbitrary precision through backwards recursion [see
11, Section 9]. This recursive scheme requires repeated
evaluation of the ‘lower envelope’ Q of Q, which is defined
for any real-valued function f on X and any x in X by

[Q f ](x) := inf

{
∑

y∈X
Q(x,y) f (y) : Q ∈Q

}
.

The conjugate upper envelope Q is defined by Q f :=−Q f
for any real-valued function f on X .

4. Extending the Domain
The domain JS of the lower expectations corresponding
to PM ,Q, PM

M ,Q and PHM
M ,Q is not rich enough for many

applications: the domain JS only contains variables that
depend on the state of the system at a finite number of time
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points, and many practically relevant inferences correspond
to variables that depend on the state of the system at all time
points in some—possibly unbounded—interval. Examples
of such inferences are occupancy times. In essence, an
occupancy time is the length of time that the system is
in some subset A of X over some interval [s,r]; we will
formally define this variable in Section 5 further on.

So how can we extend the domain of the lower and upper
expectations corresponding to PM ,Q, PM

M ,Q and PHM
M ,Q to

include these general variables? We propose the following
approach: we first extend the domain of the expectation EP
corresponding to every jump process P in PM ,Q to a larger
domain, and subsequently take the lower (and upper) enve-
lope over these extended expectations.

4.1. Extending the Domain of a Jump Process

Consider any jump process P, and recall from Defini-
tion 3 that P is a coherent conditional probability on D .
From Section 2.3, we know that for every conditioning
event {Xu = xu}, P(•|Xu = xu) is a probability charge. We
set out to extend the domain of EP by extending the domain
of EP(•|Xu = xu) for every conditioning event {Xu = xu},
and we will do so with the help of ‘countable additivity’.

Definition 8 A jump process P is countably additive if for
all u in U and xu in Xu, P(•|Xu = xu) is a countably-
additive probability charge on Au, in the sense that for
every sequence (An)n∈N of pair-wise disjoint events in Au
such that A :=

⋃
n∈N An belongs to Au,

P(A |Xu = xu) = ∑
n∈N

P(An |Xu = xu).

Suppose P is a countably additive jump process, and
fix some u in U and xu in Xu. Then by Caratheodory’s
Theorem [2, Theorem 3.1], there is a unique (countably
additive) probability measure Pσ (•|Xu = xu) on the σ -
algebra σ(Au) generated by Au that extends P(•|Xu = xu).
Let Vb denote the set of all extended real variables f : Ω→
R that are either bounded below or bounded above, in the
sense that inf f >−∞ or sup f <+∞, respectively.4 A vari-
able f in Vb is called σ(Au)-measurable if for all α in R,
the level set

{ f > α} := {ω ∈Ω : f (ω)> α}

belongs to σ(Au). We collect all σ(Au)-measurable vari-
ables in Vb in the set Mu. For any variable f in Mu, the
expectation Eσ

P ( f |Xu = xu) can now be defined through
the Lebesgue integral with respect to Pσ (•|Xu = xu) [2,
Section 15]: if f is bounded below, then this integral is
given by the Choquet integral [5, Chapter 5]

Eσ
P ( f |Xu = xu) := inf f +

∫ sup f

inf f
Pσ ({ f >α}|Xu = xu)dα,

4. Requiring that they are either bounded below or bounded above is
not essential, but it does facilitate a more elegant treatment. In most
applications, the variables of interest satisfy this requirement.

where the integral is a—possibly improper—Riemann inte-
gral that always exists because Pσ ({ f > α}|Xu = xu) is a
non-increasing function of α; if f is bounded above (but
not below), then Eσ

P ( f |Xu = xu) := −Eσ
P (− f |Xu = xu),

with − f bounded below.
This way, we obtain an expectation Eσ

P with domain

JM :=
{
( f |Xu = xu) : u ∈U ,xu ∈Xu, f ∈Mu

}
.

Note that JS is contained in JM and that Eσ
P coincides

with EP on JS, so Eσ
P indeed extends EP. The extended

domain JM includes most of the ‘conventional’ (extended)
real variables that are of interest; for example, we will see
in Section 5 further on that JM includes occupancy times.

4.2. Extending the Domain of Imprecise Markovian
Jump Processes

The extension method that we have laid out in Section 4.1
is only relevant to an imprecise jump processes P ⊆ P if
every jump processes P in P is countably additive. The
following result establishes that this is the case for PM ,Q

and therefore, by Equation (4), also for PM
M ,Q and PHM

M ,Q.
Although it might seem a bit underwhelming, we believe
that it is the single most important result in this contribution,
and definitely the most difficult one to obtain.

Theorem 9 Every jump process P in the imprecise jump
process PM ,Q is countably additive.

To appreciate this result, it should be contrasted with the
‘standard’ measure-theoretical approach to continuous-time
stochastic processes. On that approach, one starts off with
the set of all sample paths to obtain countable additivity,
and then subsequently constructs a ‘modification’ of the
projectors (Xt)t∈R≥0 that has càdlàg sample paths—see, for
example, [13, Lemma 3.16 and Theorem 3.18] or [2, Sec-
tion 38]. Theorem 9 demonstrates that this is not needed—
at least not for bounded Q and finite X —as it is possible
to immediately start with càdlàg paths. Ironically, our proof
for Theorem 9 does make use of this ‘modification’ method,
be it as an intermediate step under the hood.

Due to Theorem 9, we can extend the domain of the
lower and upper expectations corresponding to PM ,Q,
PM
M ,Q and PHM

M ,Q as follows. First, for every jump process P
in PM ,Q, we use the method in Section 4.1 to extend the
domain of the expectation EP on JS by going over to the ex-
pectation Eσ

P on JM. Second, we take the lower and upper
envelopes over these extended expectations. For PM ,Q , this
yields the lower and upper expectation Eσ

M ,Q and Eσ

M ,Q

on JM, defined for all ( f |Xu = xu) in JM by

Eσ

M ,Q( f |Xu = xu) := inf
{

Eσ
P ( f |Xu = xu) : P ∈ PM ,Q

}
,

and similarly for Eσ

M ,Q( f |Xu = xu). Note that Eσ

M ,Q and
Eσ

M ,Q coincide with EM ,Q and EM ,Q on JS, and that they
are conjugate, in the sense that for all ( f |Xu = xu) in JM,

Eσ

M ,Q( f |Xu = xu) =−Eσ

M ,Q(− f |Xu = xu).
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We can do precisely the same for the lower and upper
expectations corresponding to PM

M ,Q and PHM
M ,Q. However,

in order not to exceed the page limit, we will from here
on only state results for the lower and upper expectation
corresponding to PM ,Q. Theorems 10 and 11 further on
also hold for the lower and upper expectations correspond-
ing to PM

M ,Q and PHM
M ,Q, and so do Propositions 14 and 19

further on; Theorem 15 also holds for the lower and upper
expectations corresponding to PM

M ,Q, and we conjecture
that the same is true for Theorem 20.

4.3. Continuity Properties

For all P in PM ,Q, u in U and xu in Xu, the correspond-
ing expectation operator Eσ

P (•|Xu = xu) has well-known
continuity properties: it is continuous with respect to point-
wise convergent sequences of σ(Au)-measurable variables
if these sequences are monotone—due to the Monotone
Convergence Theorem [2, Theorem 16.2]—or uniformly
bounded—due to Lebesgue’s Dominated Convergence The-
orem [2, Theorem 16.4]. Unfortunately, however, similar
results are not available for the lower and upper expec-
tations Eσ

M ,Q(•|Xu = xu) and Eσ

M ,Q(•|Xu = xu), at least
not in general.

This (potential) lack of continuity is not exclusive to
imprecise jump processes. In a more general setting, Mi-
randa and Zaffalon [14, Section 5.1] establish that for any
given set of probability measures, the lower envelope of the
corresponding expectations—in essence, the corresponding
Lebesgue integrals—is always continuous with respect to
monotone non-increasing sequences but may not be con-
tinuous with respect to non-decreasing sequences. In our
setting, this translates to the following result.

Theorem 10 Consider any u in U , xu in Xu and f in Mu.
Then for any non-decreasing sequence ( fn)n∈N in Mu
with inf f1 >−∞ that converges point-wise to f ,

lim
n→+∞

Eσ

M ,Q( fn |Xu = xu) = Eσ

M ,Q( f |Xu = xu) and

lim
n→+∞

Eσ

M ,Q( fn |Xu = xu)≤ Eσ

M ,Q( f |Xu = xu).

Due to conjugacy, similar results apply to non-increasing
sequences with sup f1 < +∞. In that case, equality is ob-
tained for the lower expectation, but not for the upper one.

Note that for non-decreasing sequences, the limit of
Eσ

M ,Q( fn |Xu = xu) exists as n recedes to infinity; and while
this limit may not give a tight bound, it always yields a con-
servative one. For dominated sequences, we have a similar
type of conservative limit behaviour.

Theorem 11 Consider any u in U , xu in Xu and f in Mu.
Let ( fn)n∈N be a sequence in Mu that converges point-wise
to f . If ( fn)n∈N is uniformly bounded, meaning that there
is some B in R≥0 such that | fn| ≤ B for all n in N, then

liminf
n→+∞

Eσ

M ,Q( fn |Xu = xu)≥ Eσ

M ,Q( f |Xu = xu) and

limsup
n→+∞

Eσ

M ,Q( fn |Xu = xu)≤ Eσ

M ,Q( f |Xu = xu).

5. Two Measurable Variables

While there is a (potential) lack of continuity in general, it
turns out that for many practically relevant variables, the
lower expectation Eσ

M ,Q is actually continuous. We discuss
here two examples of such variables: occupancy times and
the number of jumps to some set of states.

Our exposition simplifies due to the following notation
and terminology. Fix two time points s,r in R≥0 such
that s≤ r. A grid over [s,r] is a sequence of distinct time
points v = (t0, . . . , tn) in Une that starts in t0 = s and ends
in tn = r. For any such grid v = (t0, . . . , tn) over [s,r], we
call

∆(v) := max
{

tk− tk−1 : k ∈ {1, . . . ,n}
}

the maximum grid width of v. Note that whenever s = r,
there is only the degenerate grid v = (s); in this case, we
let ∆(v) := 0. We say that a grid w over [s,r] refines a grid v
over [s,r], and denote this by v v w, if w includes all the
time points in v.

5.1. Integral of f (Xt) Over Time

Occupancy times belong to a larger class of real variables
that are formally defined through a Riemann integral over
time. Fix some real-valued function f on X and any two
time points s,r in R≥0 such that s≤ r. Then for any path ω

in Ω, the function composition f ◦ω is piece-wise constant
over [s,r] because ω is càdlàg; as every piece-wise constant
real-valued function on [s,r] is Riemann integrable [18,
Section 24.26], it follows that f ◦ω is Riemann integrable
over [s,r]. Hence,∫ r

s
f (Xt)dt : Ω→ R : ω 7→

∫ r

s
f
(
ω(t)

)
dt

is well-defined, and we call this real variable the integral
of f (Xt) over [s,r].

Take, for example, the real-valued function f = IA
for some subset A of X . Then the integral

∫ r
s IA(Xt)dt

of IA(Xt) over [s,r] is the length of time that the system’s
state is in A between time point s and r; as explained be-
fore, we call this the occupancy time of A over [s,r] [12,
Section 4.5].

Since the integral
∫ r

s f (Xt)dt is defined through Riem-
man sums [see 18, Definition 24.3], we can use these to
construct a sequence of simple variables that converges
point-wise to

∫ r
s f (Xt)dt. More precisely, for any grid v =

(t0, . . . , tn) over [s,r], we consider the corresponding Rie-
mann sum

〈 f 〉v :=
n−1

∑
k=0

(tk+1− tk) f (Xtk).
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Note that in this expression, for every k in {0, . . . ,n−1},
we could replace f (Xtk) with f (Xsk) where sk is any ele-
ment of [tk, tk+1]; we choose to use f (Xtk) for the sake of
simplicity. By construction, 〈 f 〉v only depends on the state
of the system at the time points in the grid v; for this reason,
we have the following corollary of Lemma 4.

Corollary 12 Consider some u in U and some s,r in R≥0
such that maxu ≤ s ≤ r. Then for any grid v over [s,r]
and any real-valued function f on X , the corresponding
Riemann sum 〈 f 〉v is Au-simple, and

(r− s)min f ≤ 〈 f 〉v ≤ (r− s)max f .

Due to the definition of the Riemann integral [18, Defi-
nition 24.3], the Riemann sum 〈 f 〉v converges to the inte-
gral

∫ r
s f (Xt)dt as the grid width ∆(v) of the grid v vanishes.

Lemma 13 Consider some u in U and some s,r in R≥0
such that maxu≤ s≤ r. Fix some real-valued function f
on X , and let (vn)n∈N be a sequence of grids over [s,r]
such that limn→+∞ ∆(vn) = 0. Then (〈 f 〉vn)n∈N is a se-
quence of Au-simple variables that converges point-wise
to
∫ r

s f (Xt)dt; hence,
∫ r

s f (Xt)dt belongs to Mu.

Suppose (vn)n∈N is a sequence of grids over [s,r] with
limn→+∞ ∆(vn) = 0. Then by Corollary 12 and Lemma 13,
the corresponding sequence (〈 f 〉vn)n∈N of Riemann sums is
a uniformly-bounded sequence of simple variables that con-
verges point-wise to the integral

∫ r
s f (Xt)dt. Consequently,

we could invoke Theorem 11 to conservatively approxi-
mate the lower and upper expectation of

∫ r
s f (Xt)dt. In this

particular case, however, the approximation in Theorem 11
is actually tight.

Proposition 14 Consider some u in U and some s,r
in R≥0 such that maxu≤ s≤ r. Fix a real-valued function f
on X , and let (vn)n∈N be a sequence of grids over [s,r]
such that limn→+∞ ∆(vn) = 0. Then for any xu in Xu,

Eσ

M ,Q

(∫ r

s
f (Xt)dt

∣∣∣∣Xu = xu

)
= lim

n→+∞
EM ,Q

(
〈 f 〉vn

∣∣Xu = xu
)
,

and a similar equality holds for the conjugate upper expec-
tation EM ,Q.

Because 〈 f 〉vn is an Au-simple variable by Corollary 12,
we could use the backwards recursive method of Krak
et al. [11, Section 9] to compute EM ,Q

(
〈 f 〉vn

∣∣Xu = xu
)

up to arbitrary precision, provided that Q is convex and
has separately specified rows, and then refine the grid until
we observe empirical convergence. However, to make this
method computationally tractable, it would have to be com-
bined with the decomposition ideas of T’Joens et al. [20].
It is therefore arguably more practical to use the following
direct approximation method, which can also be used if Q
is not convex, and which has these ideas—and the resulting
efficiency—already built in.

Theorem 15 Consider some s,r in R≥0 such that s ≤ r.
Fix some real-valued function f on X . For all n in N,
let ∆n := (r− s)/n and let fn,n be recursively defined by the
initial condition fn,0 := 0 and, for all k in {1, . . . ,n}, by

fn,k := ∆n f + fn,k−1 +∆nQ fn,k−1. (5)

If Q has separately specified rows, then for any x in X ,

Eσ

M ,Q

(∫ r

s
f (Xt)dt

∣∣∣∣Xs = x
)
= lim

n→+∞
fn,n(x);

a similar equality holds for the upper expectation EM ,Q if
we replace Q by Q in Equation (5). If Q does not have
separately specified rows, the obtained results provide
conservative—outer—bounds.

5.2. Number of Jumps to A

As a second example of a measurable variable that depends
on the state of the system at more than a finite number of
time points, we consider ‘the number of jumps’ to some
subset A of the state space X , meaning the number of
times that the system changes state from a state in Ac to a
state in A. For any subset A of X and any time points s,r
in R≥0 such that s ≤ r, we let ηA

(s,r] : Ω→ R be the real
variable that is defined for all ω in Ω by

η
A
(s,r](ω) :=

∣∣{t ∈ (s,r] : ω(t) ∈ A, lim
∆↘0

ω(t−∆) /∈ A
}∣∣.

Note that ηA
(s,r] is a real variable because any càdlàg path ω

in Ω can have but a finite number of jumps—that is, dis-
continuity points—in the bounded interval [s,r].

Here too, we use a grid over [s,r] to approximate ηA
(s,r].

More precisely, for any grid v = (t0, . . . , tn) over [s,r], we
use the corresponding approximation ηA

v : Ω→ R, which
is defined for all ω in Ω by

η
A
v (ω) :=

∣∣{k ∈ {1, . . . ,n} : ω(tk) ∈ A,ω(tk−1) /∈ A
}∣∣.

It is easy to see that

η
A
v =

n

∑
k=1

IAc(Xtk−1)IA(Xtk).

Hence, we have the following corollary of Lemma 4.

Corollary 16 Consider some u in U and some s,r in R≥0
such that maxu≤ s≤ r. Then for any subset A of X and
any grid v over [s,r], the corresponding approximation ηA

v
is Au-simple.

Consider now a second grid w over [s,r] that refines the
grid v. Then it is not all too difficult to verify that the
number of jumps to A over w is (point-wise) greater than
or equal to the number of jumps to A over v.
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Lemma 17 Consider some u in U and some s,r in R≥0
such that maxu≤ s≤ r. Then for any subset A of X and
any two grids v and w over [s,r] with vv w, ηA

v ≤ ηA
w .

Furthermore, it follows almost immediately from the prop-
erties of càdlàg paths that the approximation ηA

v converges
point-wise to ηA

(s,r] as the grid width ∆(v) of the grid v
vanishes.

Lemma 18 Consider some u in U and some s,r in R≥0
such that maxu ≤ s < r. Fix some subset A of X
and let (vn)n∈N be a sequence of grids over [s,r] such
that limn→+∞ ∆(vn) = 0. Then (ηA

vn)n∈N is a sequence
of Au-simple variables that converges point-wise to ηA

(s,r];
hence, ηA

(s,r] belongs to Mu.

Suppose (vn)n∈N is a sequence of grids over [s,r] such
that limn→+∞ ∆(vn) = 0 and vn v vn+1 for all n in N. Then
by Corollary 16 and Lemmas 17 and 18, the corresponding
sequence (ηA

vn)n∈N is a non-decreasing sequence of simple
variables that converges point-wise to ηA

(s,r]. Consequently,
we could invoke Theorem 10 to approximate the lower and
upper expectation of ηA

(s,r]. In this particular case though,
these approximations are actually tight. Even more, we can
drop the requirement that the next grid in the sequence
should always refine the preceding one.

Proposition 19 Consider some u in U and some s,r
in R≥0 such that maxu≤ s≤ r. Fix some subset A of X ,
and let (vn)n∈N be a sequence of grids over [s,r] such
that limn→+∞ ∆(vn) = 0. Then for any xu in Xu,

Eσ

M ,Q

(
η

A
(s,r]

∣∣Xu = xu
)
= lim

n→+∞
EM ,Q

(
η

A
vn

∣∣Xu = xu
)
,

and a similar equality holds for the conjugate upper expec-
tation EM ,Q.

Here too, we could use the backwards recursive method
of Krak et al. [11, Section 9] to compute the lower and
upper expectation of ηA

(s,r] up to arbitrary precision, pro-
vided that Q has separately specified rows and is convex.
That said, it is more efficient to use a direct approxima-
tion method similar to that in Theorem 15, now taking
inspiration from the decomposition ideas of De Bock et al.
[4].

Theorem 20 Consider some s,r in R≥0 such that s ≤ r.
Fix some subset A of X . For all n in N, let ∆n := (r− s)/n
and let fn,n be recursively defined by the initial condi-
tion fn,0 := 0 and, for all k in {1, . . . ,n}, by

fn,k : X → R
x 7→ fn,k−1(x)+∆n

[
Q(IAc(x)IA + fn,k−1)

]
(x). (6)

If Q has separately specified rows, then for any x in X ,

EM ,Q

(
η

A
(s,r]

∣∣Xs = x
)
= lim

n→+∞
fn,n(x);

a similar equality holds for the upper expectation EM ,Q if
we replace Q by Q in Equation (6). If Q does not have
separately specified rows, the obtained results provide
conservative—outer—bounds.

6. Numerical Examples

Troffaes et al. [23] use an imprecise jump process to asses
the reliability of a power network. They follow up on their
earlier work [21] and consider a power network that con-
sists of two power lines, called A and B. The reason why
there are two is redundancy: the network works as long as
at least one of the two power lines is working. Thus, an
independent failure of one of the two power lines is not
that much of an issue, because it does not cause a power
outage as long as the other power line is in operation. If
both power lines fail due to the same cause, this does result
in a power outage; whenever this occurs, we speak of a
common cause failure.

Troffaes et al. [23, Sections 2.3 and 3.4] model this power
network with an imprecise jump process as follows. The
state space is X := {AB,A,B,F}, where the state F cor-
responds to a failure of both power lines and where the
other state labels indicate the power lines that are working.
The set Q of rate matrices is specified through lower and
upper bounds on the off-diagonal components of the rate
matrices:

Q :=
{

Q ∈Q : (∀x,y ∈X ,x 6= y)

QL(x,y)≤ Q(x,y)≤ QU(x,y)
}
,

where the matrices

QL :=


� 0.32 0.32 0.19

730 � 0 0.51
730 0 � 0.51

0 730 730 �


and

QU :=


� 0.37 0.37 0.24

1460 � 0 0.61
1460 0 � 0.61

0 1460 1460 �


collect the bounds on the off-diagonal components. Be-
cause every rate matrix has rows that sum to zero, the con-
straints on the diagonal elements of Q are implied by the
others. Note that, by construction, Q has separately spec-
ified rows. Furthermore, evaluating the lower envelope Q
of Q is almost trivial because of the specific structure of Q.
Troffaes et al. [23] do not specify a set M of initial proba-
bility mass functions. As M plays no role in the following
analysis, it can be chosen arbitrarily.

Troffaes et al. [23, Section 3.4] use—an informal ver-
sion of—the imprecise jump process PM ,Q to obtain lower
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Table 1: Estimates for αx
F and α

x
F, in years.

x αx
F α

x
F

AB 6.512×10−4 1.647×10−3

F 9.938×10−4 2.332×10−3

[23] 6.513×10−4 1.647×10−3

and upper bounds on two performance measures: the ex-
pected time that the power network is down over a period of
10 years, and the expected number of times that the power
network is down over a period of 10 years.

Let us first consider the expected time that the power
network is down over a period of 10 years. In our for-
malism, the time that the power network is down over a
period of 10 years corresponds to the integral

∫ 10
0 IF(Xt)dt

of IF := I{F} over [0,10]. For any initial state x in X , we
use Theorem 15 to compute the lower expected value

α
x
F := Eσ

M ,Q

(∫ 10

0
IF(Xt)dt

∣∣∣∣X0 = x
)

of this downtime, and similarly for the upper expected
downtime, which we denote by α

x
F. More precisely, we start

with n = 29200 iterations—this to ensure that (I+∆nQ) is
a so-called lower transition operator [see 8, Proposition 3]—
and repeatedly increase the number of iterations by a factor
10 until we observe empirical convergence, up to four sig-
nificant digits. Our results are reported in Table 1 for the
initial states x = AB and x = F, and we also report the lower
and upper bounds that Troffaes et al. [23, Equation 60]
find using their heuristic. If we start with two function-
ing power lines—so for x = AB—our approximations are
(almost) equal to those of Troffaes et al. [23], up to three
significant digits. If we start in the state where both power
lines are down—so for x = F—our results are different. The
heuristics of Troffaes et al. [23] do not take into account
this initial state because they are designed for a system
that is in regime; for this reason, they do not pick up the
transient effect caused by the initial state x = F.

Second, we consider the expected number of times that
the power network is down over a period of 10 years. In
our setting, if we start in the state x = AB, the number of
times that the power network is down over a period of
10 years corresponds to η

{F}
(0,10], the number of jumps to {F}

over (s,r]. Thus, we can use Theorem 20 to compute the
lower expected number of downtimes

β
F

:= Eσ

M ,Q

(
η
{F}
(0,10]

∣∣X0 = AB
)
,

and similarly for the upper expected number of downtimes
β F. We report our results in Table 2. Here too, our results
agree surprisingly well with those of Troffaes et al. [23].

Table 2: Estimates for β
F

and β F.

Theorem 15 [23]

β
F

1.902 1.900
β F 2.405 2.407

As a final experiment, we consider an imprecise jump
process with state space X := {a,b,c}, set of rate matrices

Q :=


−λa λa 0

µb −µb−λb λb
0 µc −µc

 :

λa = 1,µb = 10,
λb ∈ [1,100],
µc ∈ [1,100]


and arbitrary set M of initial probability mass functions. In
this case, we are after the upper expected fraction of time
that the system is in state b. For each initial state x in X ,
this upper expected fraction is given by

γ
x
b := lim

T→+∞

1
T

Eσ

M ,Q

(∫ T

0
Ia(Xt)dt

∣∣∣∣X0 = x
)
,

and can thus be obtained by applying Theorem 15 for
increasingly larger T until empirical convergence is ob-
served. The obtained result is γb := γ

x
b = 0.091 = 9.1%

and does not depend on x, so there are no transient ef-
fects of the initial state here. Computing the same infer-
ence with the heuristic of Troffaes et al. [23], we find that
γb = 0.703 = 70.3%. This shows that while the heuristic
method of Troffaes et al. [23] performs surprisingly well
in some instances, there are also instances where it yields
approximations that are much too conservative compared
to the exact results provided by our methods.

7. Conclusion
We have extended the domain of imprecise jump processes,
so that these can formally deal with (extended) real vari-
ables that depend on the state of the system at more than a
finite number of time points. Furthermore, we have investi-
gated the continuity properties of the extended lower and
upper expectations, similar to the Monotone Convergence
Theorem and Lebesgue’s Dominated Convergence Theo-
rem. While the extended lower and upper expectations may
not be continuous with respect to monotone and dominated
convergence in general, we have identified two particular
cases in which they are. For these two particular cases, be-
ing integrals over time and the number of jumps to a set of
states, we have also established recursive numerical meth-
ods to iteratively compute the lower and upper expectations
exactly. Our experiments indicate that these methods can—
significantly—outperform the heuristic of Troffaes et al.
[23] with respect to the tightness of the bounds.
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