
Appendix A: Delay time distributions

We consider a container filled with gaseous propane C3H8 in a closed room of constant volume 
initially at atmospheric pressure. We assume that the room is adiabatic, which means that all heat 
losses can be neglected.
Through a leak, a stoichiometric mixture of air-propane is formed in the room. Because of some 
incident, the ambient temperature jumps from 293.15 K (20 °C) to an initial temperature  
following a normal distribution: . We have

 and . As a consequence, we can always consider 
that the initial temperature belongs to the interval [ ] in order to 
develop an approximation for the critical time. 

We decided to describe the system through the theory of thermal explosion of Semenov [1]. 
According to it, the reaction progress leads to an increase in temperature which itself spawns an 
increase in the reaction rate that causes the temperature to rise ever faster (thermal runaway). 
Following this theory, the system can be described by the following equations: 

 ,  and

. 
 and  (mol/cm3) are the concentrations of propane and oxygen, respectively,   (kg/cm3) 

is the volumetric mass of the gaseous mixture,  (kcal/(kg·K)) is its thermal capacity at constant 
volume, T (K) is the temperature, t (s) is the time,   (kcal/mol) is the molar reaction energy, r 
(mol/cm3/s) is the reaction rate, A is the pre-exponential factor, Ea (kcal/mol) is the activation 
energy, R = 1.987E-03 kcal/(K mol) is the ideal gas constant, and a and b are reactant coefficients.

According to Westbrook and Dryer [2], the following parameter values can be employed:

Parameter  (mol, cm,s)  (kcal/mol) a b

Values 8.6E+11 30.0 0.1 1.65
They used laminar flame speeds at atmospheric pressures to calibrate them. 

Further in the study, we shall assume that the parameters are uncertain and that
 (mol, cm,s) and  kcal/mol, for example because of 

analogies with other global reactions. We consider a stoichiometric mixture at atmospheric pressure 
(p = 1 atm = 101325 Pa),  which means we have the following mole fractions:
  0.0406, ,  0.7565.

We are interested in how quickly the mixture reaches the critical temperature1 Tc = 766 K beyond 
which it would be impossible for someone to intervene to stop the explosion [3]. Let tc be the 
critical delay time defined as .

 is a function of the kinetic parameters A and Ea and of the initial temperature .
For several values of the kinetic parameters A and Ea, we computed ,

 and  for 40 random values of the initial temperature  
uniformly chosen in the interval [ ] with the chemical kinetic software Cantera [4]. 
The results are shown in Figure 1.

1 also called ignition temperature in a technical context.



Figure 1: tc as a function of (1/T0) for different (A, Ea) shown in the legend.

We can see that the logarithmic values of the delay time can be well approximated by a linear 
function of 1/T0: 

 with the coefficients 

 and

 . 

 and  also turn out to be well approximated by a 
bilinear function of log10(A) and Ea, as can be seen in Figure 2 and 3. They were obtained with a 
regular grid containing 30*30 values of (A, Ea). We used the results to create a piece-wise bilinear 
interpolation model of  and of  as a function of A and 
Ea. 

Let us suppose we want to approximate  for arbitrary values of A, Ea and  
belonging to the intervals defined above.
We start by predicting  and  with the piece-wise 
bilinear interpolation model.



We then compute the coefficients  and

 .

We finally have: .

Figure 2:  as a function of (A, Ea)

Figure 3:  as a function of (A, Ea)

The quality of the model has been tested by generating 3000 random values of (A, Ea) and  with
,  and  whereby U designates a 

uniform probability distribution.



We systematically computed  with Cantera and  with the two linear

 interpolation models and the relative difference  .

For more than 99.3% of the points, we have  5%.

We have max(r) = 12.32% which is reached for a very high delay time superior to 2E+08 s that 
would be completely unproblematic. Given the fact that we are not interested in numerical accuracy
but in understanding the behaviour of probabilistic approaches to thermal runaway hazard, we 
deemed that level of error to be acceptable. 

We now want to compute the probability density distribution of tc for the true parameter values  
= 8.60E+11 and  = 30. 

We first compute the coefficients 

 and 
 . 

We then have  with
. 

The cumulative probability distribution of  is given by 

where  is the cumulative probability distribution of the normal distribution.

Hence 

We can also compute the quantiles ,  and  (with ,  and
) and  which is the probability that the thermal runaway 

delay would be so small that it would be very hard for someone to step in. 

We have 



. 

We thus have , where  is a quantile of

.

This leads to . Likewise, we have 

 and .

Of course, these formula are also valid for any  and  .

We compared the analytical functions with an histogram obtained by generating 10,000 values of
 and computing the corresponding tc for ( ) via the two 

linear interpolations. We obtained the following results:

A = 8.6E+11  (mol, cm, s) - Ea = 30 kcal/mol

Analytical 28.84 55.04 108.68 0.2636

Numerical 28.94 54.94 107.72 0.2625

Figure 4: 

Probability distribution for A0 = 8.6E+11 and Ea0 = 30

We also computed the probability distribution for two other (A, Ea) chosen randomly. 



A = 6.14E+12 - Ea = 37.36 kcal/mol

Analytical 3109.14 7071.60 16797.92 7.75E-08

Numerical 3099.12 7069.12 16815.32 0

Figure 5: Probability distribution for A = 6.14E+12 and Ea = 37.36

A = 3.06E+12 - Ea = 34.82 kcal/mol

Analytical 625.17 1336.97 2976.44 8.66E-05

Numerical 625.34 1340.69 2990.27 9.00E-05



A = 2.99E+13 - Ea = 43.18 kcal/mol

Analytical 1.24E+05 3.24E+05 8.86E+05 0

Numerical 1.24E+05 3.20E+05 8.84E+05 0

Figure 6:

Probability distribution for A = 3.06E+12 and Ea = 34.82



Figure 7: Probability distribution for A = 2.99E+13 and Ea = 43.18

Tests performed with other parameter values led to an equally satisfying agreement, thereby 
validating the analytical formula. 
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Appendix B: priors

In order to perform the imprecise Bayesian analysis, we decided to use sixth priors which are 
uniform with respect to the following variables:
- first prior: log10(A) - Ea
- second prior: A – Ea
- third prior: 1/log10(A) - Ea
- fourth prior: 1/log10(A) – 1/Ea
- fifth prior: 1/A – Ea
- sixth prior: A – 1/Ea

Let us pose . Let us first consider the univariate priors ,  , , ,

,  which are uniform with respect to the indexed variables. We shall express the 

corresponding cumulative distribution functions and then the pdf with respect to x and Ea.

We straightforwardly have  and

.

For , we have  

→ 

For , we have  → ,

 .

For , we have

 

 →  → 



  → . 

For the first prior (uniform with respect to log10(A) and Ea), we have 

For the second prior (uniform with respect to A and Ea), we have 

For the third prior (uniform with respect to 1/log10(A) and Ea), we have 

For the fourth prior (uniform with respect to 1/log10(A) and 1/Ea), we have 

For the fifth prior (uniform with respect to 1/A and Ea), we have 

For the sixth prior (uniform with respect to A and 1/Ea), we have 



The six priors are shown in the following figures. 

Figure 1:  - 
          

Figure 2:  - 

Figure 3:  - 

The integrals of the priors were computed over   mol/m3/s and
 .

Prior

Integral 1.00100075 1.00100422 1.00100064 1.00114586 1.00100054 1.00114796





Appendix C: virtual experimental data

We created “experimental” data allowing us to determine posterior probability distributions of A 
and Ea. 
We considered a constant-volume reactor at atmospheric pressure with a very diluted mixture of 
propane and oxygen:  = 1E-05,   = 5E-05 and    =  0.99994.
Under such a high dilution, the temperature remains nearly constant so that analytical expressions 
of the profile of  are available. It has been rigorously verified that they are virtually 
identical to the numerical results of Cantera. 
Using the “true” values  = 8.60E+11 and  = 30.00 kcal/mol, we generated mole fraction 
profiles of C3H8 at four different temperatures in the range [1135; 2249] K. We used the model 
described in subsection 2.1 of the article and in appendix A.
We then randomly chose several time points  and generated normally distributed noise in such a 
way that  and 

.   is the relative standard deviation. The profile of propane  

has always been computed with  and . 

We considered four situations: 

A) we have no data whatsoever, we only know that  mol/m3/s and
 kcal/mol.

B) We have one profile of C3H8 with 6 time points measured at 1845 K with  = 25%.
C) We have two profiles of C3H8 with 6 time points measured at 1135 K and 2249 K with  = 25%.
D) We have four profiles of C3H8 with 10 time points measured at 1135 K, 1478 K, 1845 K, and 
2249 K with  = 6%.

The different profiles are shown in the figures below. 

Figure 1:  = 1135 K. 



Figure 2:  = 1478 K.

 

Figure 3:  = 1845 K.

 



Figure 4:  =2249 K.

The likelihood of the experimental data given the parameters is: 

where m is the number of experiments,  is the number of time points for the i-th experiment and
 is the local standard deviation.

The log-likelihood is given by 

The log-likelihood for situation B, C and D can be visualised in the figures just below. They were 
all obtained with 300*300 values of A and Ea.

We can see that the likelihood function becomes sharper and sharper as more precise measurements 
are used to compute it, which is completely expected. 



Figure 5: Situation B  -  Situation C

Figure 6: Situation D

For each situation B, C and D, we obtained 6 posteriors based on the six priors mentioned in 
Appendix B. 

 is the 

posterior based on the first prior  and the experiment B.

 is the posterior based on the fourth prior  and the experiment C.

And so on. 



In situation B, log10(A) and Ea are strongly correlated in most posteriors and many values of 
(log10(A) , Ea) are equally compatible with the available evidence.



The range of probable parameter values is considerably smaller in situation C but this could still 
lead to inaccurate predictions.



The range of probable parameter values is very small in situation D in all posteriors, which means 
that the parameters are known with a high degree of accuracy.



Appendix D: Bayesian estimation of the delay time distribution

We are interested in how quickly the mixture reaches the critical temperature Tc = 766 K beyond 
which it would be impossible for a technician to intervene to stop the explosion. tc is the critical 
delay time defined as . As explained in appendix A, the initial temperature follows a 
normal distribution . We can limit ourselves to the interval 
[ ] as  < 2E-04.
The true values of the kinetic parameters are  = 8.6E+11 and  = 30.0. 

We suppose they are unknown to the safety engineer so that  and
 kcal/mol.  and  can be predicted with a high degree of 

accuracy thanks to piecewise bilinear interpolation. 
It is then possible to predict  through a simple linear interpolation: 

 with the coefficients 

 and

 . 

For A and Ea, the probability distribution of  is given by 

. 

We are interested in the quantiles ,  and  which are given by the following formula 

,  and 

We also want to know  which is the probability that the thermal runaway
delay would be so small that it would be very hard for a technician to step in. 
F is the cumulative probability distribution of  given by 

.

For a given (A, Ea), we can determine  and  such that  and
. 

We have 

. 

We thus have , where  is a quantile of

.

This leads to .  Likewise,  .  



The values of the probability density f(tc) will then be computed for n = 1000 values of tc in the 
interval [ ; ].
Given the joint distribution of the parameters (A, Ea) , the distribution of tc is given by 

.

whereby  might be either a prior distribution or a posterior distribution after taking the species
concentration profiles into account.
We compute it on the interval .

The true probability distribution of tc for  and  is as follows:

Figure 1: Probability distribution for A0 = 8.6E+11 and Ea0 = 30

8.6E+11  - 30

Analytical 28.86 55.08 108.79 0.2634

Numerical 28.94 54.94 107.72 0.2625

In what follows, f(tc) and its main features will be given in Situation A, B, C and D.



Situation A



Prior  (s)  (s)  (s)

A0, Ea0 28.86 55.08 108.79 0.2634

f0,1 34.29 2801.66 2.34E+05 0.2424

f0,2 7.85 649.06 5.45E+04 0.3260

f0,3 39.22 3201.74 2.68E+05 0.2348

f0,4 9.39 356.02 4.00E+04 0.3360

f0,5 149.45 1.21E+04 9.99E+05 0.1585

f0,6 1.80 69.51 8019.06 0.4476

[min; max] [1.80; 149.45] [69.51;1.21E+04] [8019.06;9.99E+05] [0.1585;0.4476] 

As could be expected, f(tc) and its features widely differ if the non-updated priors f0,i(A,Ea) are used
and none of the f(tc) are close to the true distribution obtained with  and .



Situation B



Posterior

A0, Ea0 28.86 55.08 108.79 0.2634

fB,1 322.64 5667.50 101985.48 0.0600

fB,2 46135.45 267339.01 1194153.91  0.0034

fB,3 234.54 3630.43 71792.60  0.0690

fB,4 108.43 1035.65 21514.09 0.1018

fB,5 35.05 114.69  604.56 0.2183

fB,6 26002.85 192780.68 959438.88 0.0069

[min;max] [35.05;4.61E+04] [114.69;2.67E+05] [604.56;1.19E+06] [3.4E-03;0.2183]

As can be seen in Appendix C: virtual experimental data (fischer21c-supp.pdf), the use of only 
one experiment at a single temperature is not enough to determine the two kinetic parameters A and 
Ea at the same time. A very large number of (A, Ea) values are equally probable.
Consequently, the probability distribution of tc obtained with most posteriors tends to be far off 
from the real one and the computed distributions themselves strongly disagree with one another.

file:///home/marc.fischer/Dokumente/C3H8_explosion_profiles/Verzugszeitenverteilung_Bayes/fischer21c-supp.pdf


Situation C



Posterior

A0, Ea0 28.86 55.08 108.79 0.2634

fC,1 22.56 44.03 88.39 0.3508

fC,2 23.74 46.62 94.41 0.3311

fC,3 22.49 43.86 87.99  0.3521

fC,4 22.24 43.32 86.77  0.3566

fC,5 21.57  41.83 83.22 0.3689

fC,6 23.45 46.00 93.02  0.3358

[min;max] [21.57;23.74] [41.83;46.62] [83.22;94.41] [0.3311;0.3689]

Situation C corresponds to two noisy experiments at two different temperatures.
As shown in Appendix C: virtual experimental data (fischer21c-supp.pdf), the region of probable
values of (A, Ea) is considerably smaller than in situation B. While the differences between the 
delay times and  are considerably smaller than in situation A and B, the delay times are 
systematically under-predicted whereas  is systematically over-predicted. This could be an 
artefact of the choice of the six prior distributions and could possibly be avoided by choosing a 
parametric family of priors instead. 

file:///home/marc.fischer/Dokumente/C3H8_explosion_profiles/Verzugszeitenverteilung_Bayes/fischer21c-supp.pdf


Situation D



Posterior

A0, Ea0 28.86 55.08 108.79 0.2634

fD,1 28.55 54.53 107.77 0.2672

fD,2 28.61 54.65 108.03 0.2664

fD,3 28.54 54.52 107.75 0.2672

fD,4 28.53 54.49 107.70 0.2674

fD,5 28.48 54.40 107.51 0.2680

fD,6 28.60 54.62 107.98 0.2666

[min;max] [28.48;28.61] [54.40;54.65] [107.51;108.03] [0.2664;0.2680]

In that situation, the six posteriors were computed from four experiments at four different 
temperatures with a low relative standard deviation   = 6%. The quantiles and  are almost 
the same. The very slight under-prediction of the delay times and over-prediction of  might 
stem from the numerical approximations used to compute  or from the fact that no parametric 
family of prior distributions was considered for this study. 


