Appendix A: Delay time distributions

We consider a container filled with gaseous propane C3;Hjs in a closed room of constant volume
initially at atmospheric pressure. We assume that the room is adiabatic, which means that all heat
losses can be neglected.

Through a leak, a stoichiometric mixture of air-propane is formed in the room. Because of some
incident, the ambient temperature jumps from 293.15 K (20 °C) to an initial temperature T,
following a normal distribution: 7y ~ N (ug, = 524 K, o1, = 20 K'). We have

p(To < 440K) < 1E-04 and p(Tp > 600K) < 1E-04. As a consequence, we can always consider
that the initial temperature belongs to the interval [T} ;,,;,, = 440 K; T} ;45 = 600 K] in order to
develop an approximation for the critical time.

We decided to describe the system through the theory of thermal explosion of Semenov [1].
According to it, the reaction progress leads to an increase in temperature which itself spawns an
increase in the reaction rate that causes the temperature to rise ever faster (thermal runaway).
Following this theory, the system can be described by the following equations:

C3Hs + 504 — 3COs + 4H30 > pe, 2L = (—Au,,)r and

r= —7‘1[05’;18] = —%% = Ae~ 7% [C3 Hg)*[O2)".

[C3 Hg] and [O3] (mol/cm®) are the concentrations of propane and oxygen, respectively, p (kg/cm?)
is the volumetric mass of the gaseous mixture, ¢, (kcal/(kg-K)) is its thermal capacity at constant
volume, T (K) is the temperature, t (s) is the time, Au,, (kcal/mol) is the molar reaction energy, r
(mol/cm?/s) is the reaction rate, A is the pre-exponential factor, Ea (kcal/mol) is the activation
energy, R = 1.987E-03 kcal/(K mol) is the ideal gas constant, and a and b are reactant coefficients.

According to Westbrook and Dryer [2], the following parameter values can be employed:

Parameter Ap (mol, cm,s) Eay (kcal/mol) a b

Values 8.6E+11 30.0 0.1 1.65

They used laminar flame speeds at atmospheric pressures to calibrate them.

Further in the study, we shall assume that the parameters are uncertain and that

A € [6.0E+11 ; 8.0E+13] (mol, cm,s) and Fa € [27; 46] kcal/mol, for example because of
analogies with other global reactions. We consider a stoichiometric mixture at atmospheric pressure
(p = 1 atm = 101325 Pa), which means we have the following mole fractions:

XOyty = Tl ek & 0.0406, X0, ~ 0.2029, Xy, ~0.7565,

We are interested in how quickly the mixture reaches the critical temperature' Tc = 766 K beyond
which it would be impossible for someone to intervene to stop the explosion [3]. Let tc be the
critical delay time defined as 7'(tc) = 1.

tc = tca,gq(To) is a function of the kinetic parameters A and Ea and of the initial temperature 7.
For several values of the kinetic parameters A and Ea, we computed tca, go (70, min ),
tca,Ba(To,maz) and tca, gq (710, rana) for 40 random values of the initial temperature 7§ 44
uniformly chosen in the interval [ 1in; T0,maz] With the chemical kinetic software Cantera [4].
The results are shown in Figure 1.

1 also called ignition temperature in a technical context.
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Figure 1: tc as a function of (1/T0) for different (A, Ea) shown in the legend.

We can see that the logarithmic values of the delay time can be well approximated by a linear
function of 1/Ty:

log10(tca ga(To)) = aA,EaTLO + ba, g, with the coefficients

loglO(tcAyEa (To,mm)) —log10 (tcAEa(To,maz))

aA,ECL = ]_/To’min—l/TO,macv and

ba,Ea = 10910(tca, Ba(T0,min)) —0A,Ea ﬁ

1og10(tca, ga(To,min)) and log10(tca, ga (To,maz)) also turn out to be well approximated by a
bilinear function of log10(A) and Ea, as can be seen in Figure 2 and 3. They were obtained with a
regular grid containing 30*30 values of (A, Ea). We used the results to create a piece-wise bilinear
interpolation model of log10(tca, ga(T0,min)) and of 10g10(tca, ga(To,maz)) as a function of A and
Ea.

Let us suppose we want to approximate [og10 (tc A, Ea (T 0)) for arbitrary values of A, Ea and T}
belonging to the intervals defined above.

We start by predicting log10(tca, 5o (To,min)) and log10(tca, ga(To,maz) ) with the piece-wise
bilinear interpolation model.



.« . loglO tcA,Ea TO,min —loglO tCA,Ea TO,maz
We then compute the coefficients a4, g, = ( ( )) ( ( ))

1/T0,min_1/T0,ma:c and
1
bA,Ea - lOglO (tcA,Ea (TO,mln)) —QA,Ea Toomin

We finally have: log10(tca, ga(T0))~ aA’EaTLO + b4 Ea-
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Figure 2: 1og10(tc(To,min)) as a function of (A, Ea)
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Figure 3: 1og10(tc(To,maz)) as a function of (A, Ea)

The quality of the model has been tested by generating 3000 random values of (A, Ea) and T with

A~ U(Amin, Amaz), Ea ~ U(Eamin, Eamay)and Ty ~ N(ur,, or,) whereby U designates a
uniform probability distribution.



We systematically computed tc4 g, (7o) with Cantera and tcpr.cq, 4, Eq (T0) with the two linear

tcA,Ea (TO)_thred,A,Ea (TO)

min (tCA,Ea(TO) tCpred, A, Ea (To))

interpolation models and the relative difference r =

For more than 99.3% of the points, we have |r| < 5%.

We have max(r) = 12.32% which is reached for a very high delay time superior to 2E+08 s that
would be completely unproblematic. Given the fact that we are not interested in numerical accuracy
but in understanding the behaviour of probabilistic approaches to thermal runaway hazard, we
deemed that level of error to be acceptable.

We now want to compute the probability density distribution of tc for the true parameter values Ay

= 8.60E+11 and Fag = 30.

logl0 (tcAO ,Eag (TO,min)) —log10 (tcAo ,Eayg (To,maz))
1/T0,min _1/T0,maw

We first compute the coefficients a 4, po, =

and
bao,Bao = 10g10(tc Ao, Bao (To,min)) — @0, Fao Ty

We then have log10(tca,, Eay (1T0)) = @Ay, Eao Tio + by, Ea, With
To ~ N(ur, = 525K, o7, = 20K).

The cumulative probability distribution of ¢ is given by

1
F(t)=p(tc<t)= p(loglO(tc) < loglO(t))z p(aAo,an ™ +bag,Eay < logl()(t))
0

1 lOglO(t) — by, Ea A, Ea
F(t) =pltc < t) = <_§ 0. o): (TZ 0.Bag )
0= )=p To Ay, Eaqg 0 1og10(t) — ba,.Ea,
AAy,Ea GAy,Ea
F(t)=nlte<t) =1 — <T< 0,14aq ):1_q)< 0,Fao : ’ )
) =plte=t) PATO= T0g10(t) — bay 0y 10g10(1) — by pay o7 710

where ®(z, ur,, o1, ) is the cumulative probability distribution of the normal distribution.

/
Hence f(t) = F'(t) = (_(I)<ZOglocL(?)OiiZ(;,an s Uy s UTO))

A A, .Ea ! QAy,Ea
) e )
1) 10g10(t) — by Fag ¢ 10g10(t) — ba, pay o7 7T0

() = A Ay, Eayln(10) ( A Ay, Eao
t(bag,maoln(10) — In(t))* \ogl0(t) = bag a

s Ty s UTO)

We can also compute the quantiles tcos, tcso and ters (with F'(teas) = 0.25, F(teso) = 0.50 and
F(tczs) = 0.75) and p. = p(tc < 30s) = F'(30) which is the probability that the thermal runaway
delay would be so small that it would be very hard for someone to step in.

AAg,Eaqg

We have 0.25 — p(tc < t =1—‘1><
e have p(te < tegs) log10(tcas) — bagy, Eag

y HTy s JTO)



¢< a/Ao,an
log10(tcas) — by, Eao

s Ty s UTO>= 0.75.

QAp,Eaq
log10(tcas) — bay, Eay
N(uTo’ 0Ty )

We thus have = Zo.75(u1y, 013 ), Where Zy 75(ur,, o1, ) is a quantile of

QAg,Ea
e yTbag,

This leads to tcos = 107075707 To “_ Likewise, we have

@Ag,Eaq YAg,Eaq

tc75 — 10 ZO.25(V’T0"7T0)+bAO'Ea0 )+bA0,Ea0

and tesp = 10 Z0.50(HT 7Ty
Of course, these formula are also valid for any A € [Ain, Amaz] and Ea € [Eamin, Eamag] -
We compared the analytical functions with an histogram obtained by generating 10,000 values of

To ~ N(ut, = 525K, oq, = 20K') and computing the corresponding tc for (A, Fa) via the two
linear interpolations. We obtained the following results:

te te te Deritical
A =8.6E+11 (mol, cm, s) - Ea = 30 kcal/mol 25 |leso |lers | Feritic

Analytical 28.84 |55.04 |108.68 |0.2636
Numerical 28.94 |54.94 1107.72/0.2625
Figure 4:
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We also computed the probability distribution for two other (A, Ea) chosen randomly.



tc tc tc DPeritical
A = 6.14E+12 - Ea = 37.36 kcal/mol 2 o0 7 crites
Analytical 3109.14 |7071.60 [16797.92 |7.75E-08
Numerical 3099.12 | 7069.12 |16815.32 |0
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tc tc tc Peritical
A = 3.06E+12 - Ea = 34.82 kcal/mol 2 >0 i eres
Analytical 625.17 |1336.97 |2976.44 |8.66E-05
Numerical 625.34 1340.69 |2990.27 |9.00E-05




Figure 6:
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Figure 7: Probability distribution for A = 2.99E+13 and Ea = 43.18

Tests performed with other parameter values led to an equally satisfying agreement, thereby
validating the analytical formula.
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Appendix B: priors

In order to perform the imprecise Bayesian analysis, we decided to use sixth priors which are

uniform with respect to the following variables:
- first prior: log10(A) - Ea

- second prior: A — Ea

- third prior: 1/log10(A) - Ea

- fourth prior: 1/log10(A) — 1/Ea

- fifth prior: 1/A — Ea

- sixth prior: A— 1/Ea

Let us pose z = log10(A). Let us first consider the univariate priors f;,g10(4) f_ 1

Jas [,

To 10(A)

fEa f L which are uniform with respect to the indexed variables. We shall express the

corresponding cumulative distribution functions and then the pdf with respect to x and Ea.

1

We straightforwardly have f;,,10(4)(logl0(A)) = o9 10(Amns) — Tog10(Amm) and
1

o(Fa) = .
fE ( a) Eamam - Eamin
F have F' loglO(A) < —1 > Lo 1-F L
or fzoglO(A)’ we have logllo(m( 7) = p(logl0(4) < z)= p(logl()(A) - E)_ T megom (5)

1 1 1
L (@) =1- (S
To5100A) loglO(lAmm) — loglO(lAWm) z  1ogl0(Amaz)
1 1
fm (ZIZ’): 1 _ 1 ;
10g10(Apmin) 10g10(Apmaz)
1 1
1og 10t l()glO(lAmm) o l()glO(%Amam) lOglO(A)2
10 — A,in 10)10*
For f4, we have F (z)= ATSM I fa(z)= %’
In(10)10tg10(A)
10(A))= .

fA (log O( >) Amaaz - Amin
For f 1, we have
Fy ()=p (1og10(4) < )= p(4 <107)=p ( > k)= 1 Fy (1)

(0)=1- r—mg ~ f(7)= 2 -

min  Amazx

=

Amax

—1logl0(A)
(lOglO(A)) ln;l())lo ;



e — 1 1
E E max
F%(Ea): - 1Cl = 1 _’fELa(EaJ:E 2 1 1
Famin o Famax a Eamin o Eamax

For the first prior (uniform with respect to log10(A) and Ea), we have

fO,l(lOglO(A)7 ECL) = floglO(A),E‘a (lOglO(A), ECL) = floglO(A) (lOQlO(A))fEa(E(Z)

1 1
loglO(A), Fa) =
fO,l( og ( ); a) lO(]lO(Ama:c> — lOglO(Amin) Eamam - Eamin

For the second prior (uniform with respect to A and Ea), we have
fo.2(loglO(A), Ea) = fa.ga(loglO(A), Ea) = fa (loglO(A)) fea(Ea)

In(10) 1

10log10(A)
Amaa? - Amin Eamam - Eamin

fo,z(lOglO(A)a Ea) =

For the third prior (uniform with respect to 1/log10(A) and Ea), we have

fo,3(logl0(A), Ea) = 1 5, (logl0(A),Ea) = f__1 (loglO(A))fEa(Ea)

logl0(A) logl0(A)

1 1 1

f0,3(logl0(A), Ea) = T Eamas — Eamin logl0(A)2

1
loglo(Am,in) o loglo(A'm,a,zL')

For the fourth prior (uniform with respect to 1/log10(A) and 1/Ea), we have

f0.4(logl0(A), Ea) = f__1 1 (logl0(A), Ea) = f (loglO(A))fELa (Ea)

logl0(A)’ Ea

1
logl0(A)

1 1 1 1
fo.4(logl0(A), Ea) = T T I T
loglo(Amin) B loglo(Amuw) Eamin B Ea'mar loglo(A)z Ea2

For the fifth prior (uniform with respect to 1/A and Ea), we have

fo,5(logl0(A), Ea) = f1 p,(loglO(A), Ea) = f1 (logl0(A)) fEa(Ea)

n(10 1 0
foattonto(a), by = 10 L gris

A'nLi'rL A’"LQIL'

For the sixth prior (uniform with respect to A and 1/Ea), we have

fos(1og10(A), Ea) = f4 1 (logl0(A), Ea) = f4(logl0(A)) f 1 (Ea)

ln(l()) 1 logl0(A 1
fo.6(logl0(A), Ea) = o - —10 g10( )E_a2

main -
Ea'm in Eama:c




The six priors are shown in the following figures.
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Figure 1: f,1(1og10(A), Ea) = fiog10(4),54(log10(A), Ea) = fo,2(logl0(A), Ea) = fa ga(logl0(A), Ea)
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The integrals of the priors were computed over A € [6.0E+11 ; 8.0E+13] mol/m?/s and
Ea € [27;46].
Prior fo,1 fo,2 fo.3 fo4 fos foe
Integral 1.00100075 |1.00100422 |1.00100064 |1.00114586 |1.00100054 |1.00114796







Appendix C: virtual experimental data

We created “experimental” data allowing us to determine posterior probability distributions of A
and Ea.

We considered a constant-volume reactor at atmospheric pressure with a very diluted mixture of
propane and oxygen: Xc3ps = 1E-05, Xp2=5E-05and X2 = 0.99994.

Under such a high dilution, the temperature remains nearly constant so that analytical expressions
of the profile of X3ps(t) are available. It has been rigorously verified that they are virtually
identical to the numerical results of Cantera.

Using the “true” values Ay = 8.60E+11 and Faq = 30.00 kcal/mol, we generated mole fraction
profiles of C3;Hg at four different temperatures in the range [1135; 2249] K. We used the model
described in subsection 2.1 of the article and in appendix A.

We then randomly chose several time points ¢; and generated normally distributed noise in such a
way that X ¢, by eap(ti) = Xoymg (ti) + € and

€i~N(0,0,..Xc3H8 (1‘1)> o, is the relative standard deviation. The profile of propane X ¢3ps(t)

has always been computed with Ay and Fay.

We considered four situations:

A) we have no data whatsoever, we only know that A € [6.0E+11;8.0E+13] mol/m?/s and

FEa € [27;46] kcal/mol.

B) We have one profile of C3Hg with 6 time points measured at 1845 K with o, = 25%.

C) We have two profiles of C;Hs with 6 time points measured at 1135 K and 2249 K with o,. = 25%.
D) We have four profiles of C;Hg with 10 time points measured at 1135 K, 1478 K, 1845 K, and
2249 K with o, = 6%.

The different profiles are shown in the figures below.
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Figure 4: Ty =2249 K.

The likelihood of the experimental data given the parameters is:

m Mt 1 2
(XCSHS,i(tj7 A, Ea) — chs,emp,i(tj))

L(data|A, Fa) = | | | | ——ctp| —5 5
o4 .
i=1j=1 \/ 1_7 %

where m is the number of experiments, 7¢,; is the number of time points for the i-th experiment and
0i; = 0riXcsms,i(tj, Ao, Fag) is the local standard deviation.

The log-likelihood is given by

9
(XC’SHS,i(tj7 A, Ea) — XCSH&ea:p,i(tj)) )

2,7

l(data|A, Ea) = >, Zm : ( (\/2710,2 _)_201,2 _

2
I(data|A, Ea) = Y12, Y001 | —3in(2n0?;) - 12J (XCSHS,i(tja A, Ea) — XC’SHS,exp,i(tj)>
The log-likelihood for situation B, C and D can be visualised in the figures just below. They were
all obtained with 300*300 values of A and Ea.

We can see that the likelihood function becomes sharper and sharper as more precise measurements
are used to compute it, which is completely expected.
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For each situation B, C and D, we obtained 6 posteriors based on the six priors mentioned in

Appendix B.
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is the posterior based on the fourth prior f; 4 and the experiment C.

And so on.
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The range of probable parameter values is considerably smaller in situation C but this could still

lead to inaccurate predictions.
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The range of probable parameter values is very small in situation D in all posteriors, which means
that the parameters are known with a high degree of accuracy.



Appendix D: Bayesian estimation of the delay time distribution

We are interested in how quickly the mixture reaches the critical temperature Tc = 766 K beyond
which it would be impossible for a technician to intervene to stop the explosion. tc is the critical
delay time defined as 7'(tc) = T.. As explained in appendix A, the initial temperature follows a
normal distribution Ty ~ N (ur, = 524K, o1, = 20K). We can limit ourselves to the interval
[T0,min = 440 K; T maz = 600 K] as p(T" < To min UT > To mae) < 2E-04.

The true values of the kinetic parameters are Ay = 8.6E+11 and FEq = 30.0.

We suppose they are unknown to the safety engineer so that A € [6.0E+411 ; 8.0E+13] and

Ea € [27;46] kcal/mol. tca ga(To,min) and tca ga(T0,maz ) can be predicted with a high degree of
accuracy thanks to piecewise bilinear interpolation.

It is then possible to predict tca, 5o (70) through a simple linear interpolation:

log10(tca, ga(T0)) = ClA,EaT% + b4, g, with the coefficients

loglO(tcAyEa (To,mm)) —log10 (tcAEa(To,maz))

aA,ECL = ]_/To’min—l/TO,macv and

ba,Ea = log10(tca, pa(To,min)) —@A,Ea gy

For A and Ea, the probability distribution of ¢, is given by

oIn(1 a
f(tc|A, Ba) = as,pan(10) (it
te(ba, galn(10) — In(tc)) log10(tc) — ba,Ea

y Ty, 0T, )

We are interested in the quantiles tcos, tcs0 and ter; which are given by the following formula
—*ABa g, o 9A,Ea +b %A,Ea
tcos = 10 Zo.75 (kT4 -7 T) ’ = 10 %0501y :91) A

+bA ,Ea
, teso )

1Ba and tc7s = 10 Zo.25(1TH 0T

We also want to know p. = p(tc < 30s) = F'(30) which is the probability that the thermal runaway
delay would be so small that it would be very hard for a technician to step in.
F is the cumulative probability distribution of ¢, given by

QA,Ea
logl0(tc) — ba Ea

F(tc|A,Ea) =1 — <I>( ,,uTO,UTO).

For a given (A, Ea), we can determine tcg o1 and tcg 999 such that F'(tcg.go1|A, Fa) = 0.001 and
F(t60,999|A, Ea) = 0.999.

We have 0.001 = p(tc < tcg.001) =1 — @A Ea

o(
log10(tco.001) — ba,Ea

y MTy s UTO)

q>< QA Ea
log10(tco.001) — ba,Ea

LT 0T0>: 0.999.

(A Ea
log10(tco.001) — ba,Ea
N(pr,,or,)-

We thus have

= Zo.999( i1, , 0T, ), Where Zg 999 (11, , 01, ) is @ quantile of

e 4, o, TN tba,Ea
This leads to tcg gop = 10 7099910710 7% Tjkewise, tcg.gg9g = 10 Z0-001 (7o o70) =774



The values of the probability density f(tc) will then be computed for n = 1000 values of tc in the
interval [tco.001; tco.990].
Given the joint distribution of the parameters (A, Ea) fa, g, the distribution of tc is given by

f<tc) — fAE[Amzn7Amaz]aEa6[Eam1naEamaa:] f(tC’A, Ea)fA’EadAdEa.

whereby f 4, i, might be either a prior distribution or a posterior distribution after taking the species
concentration profiles into account.
We compute it on the interval [mina g, (tc(A, Ea)), maz a,gq (tc(A, Ea))].

The true probability distribution of tc for Ay and Eay is as follows:
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In what follows, f(tc) and its main features will be given in Situation A, B, C and D.
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Prior tcas (S) teso (S) ters (s) Pcritical

Ao, Eay 28.86 55.08 108.79 0.2634

fo1 34.29 2801.66 2.34E+05 0.2424

fo2 7.85 649.06 5.45E+04 0.3260

fos 39.22 3201.74 2.68E+05 0.2348

fo 9.39 356.02 4.00E+04 0.3360

fos 149.45 1.21E+04 9.99E+05 0.1585

fos 1.80 69.51 8019.06 0.4476

[min; max] |[1.80; 149.45] [69.51;1.21E+04] |[8019.06;9.99E+05] |[0.1585;0.4476]

As could be expected, f(tc) and its features widely differ if the non-updated priors f,(A,Ea) are used
and none of the f{tc) are close to the true distribution obtained with Ay and Fay.




Situation B
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Posterior tcos teso tcrs Dcritical

Ao, Eag 28.86 55.08 108.79 0.2634

fs.1 322.64 5667.50 101985.48 0.0600

fs.2 46135.45 267339.01 1194153.91 0.0034

fs3 234.54 3630.43 71792.60 0.0690

fs.4 108.43 1035.65 21514.09 0.1018

fss 35.05 114.69 604.56 0.2183

fss 26002.85 192780.68 959438.88 0.0069
[min;max] |[35.05;4.61E+04] [114.69;2.67E+05] |[604.56;1.19E+06] | [3.4E-03;0.2183]

As can be seen in Appendix C: virtual experimental data (fischer21c-supp.pdf), the use of only

one experiment at a single temperature is not enough to determine the two kinetic parameters A and
Ea at the same time. A very large number of (A, Ea) values are equally probable.
Consequently, the probability distribution of tc obtained with most posteriors tends to be far off
from the real one and the computed distributions themselves strongly disagree with one another.
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Situation C
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Posterior teas leso ters Deritical

Ay, Eay 28.86 55.08 108.79 0.2634

fc,1 22.56 44.03 88.39 0.3508

fc.2 23.74 46.62 94.41 0.3311

fcs 22.49 43.86 87.99 0.3521

fc’4 22.24 43.32 86.77 0.3566

fc’5 21.57 41.83 83.22 0.3689

fC,G 23.45 46.00 93.02 0.3358
[min;max] [21.57;23.74] |[41.83;46.62] |[83.22;94.41] [0.3311;0.3689]

Situation C corresponds to two noisy experiments at two different temperatures.

As shown in Appendix C: virtual experimental data (fischer21c-supp.pdf), the region of probable
values of (A, Ea) is considerably smaller than in situation B. While the differences between the
delay times and Pcritical are considerably smaller than in situation A and B, the delay times are
systematically under-predicted whereas Pcritical is systematically over-predicted. This could be an
artefact of the choice of the six prior distributions and could possibly be avoided by choosing a
parametric family of priors instead.
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Situation D
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Posterior tcos teso tcrs Dcritical

Ao, Eag 28.86 55.08 108.79 0.2634

fo.1 28.55 54.53 107.77 0.2672

fo.2 28.61 54.65 108.03 0.2664

fos 28.54 54.52 107.75 0.2672

fo.4 28.53 54.49 107.70 0.2674

fos 28.48 54.40 107.51 0.2680

fo.6 28.60 54.62 107.98 0.2666
[min;max] [28.48;28.61] |[54.40;54.65] |[107.51;108.03] |[0.2664;0.2680]

In that situation, the six posteriors were computed from four experiments at four different
temperatures with a low relative standard deviation o,. = 6%. The quantiles and pc;;¢icq; are almost
the same. The very slight under-prediction of the delay times and over-prediction of p;;t;cq; might
stem from the numerical approximations used to compute ¢. or from the fact that no parametric
family of prior distributions was considered for this study.



