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Abstract

Dempster-Shafer Theory (DST) or Evidence theory
has been commonly employed in the literature to deal
with uncertainty-based information. The basis of this
theory is the concept of basic probability assignment
(BPA). The belief intervals for singletons obtained
from a BPA have recently received considerable at-
tention for quantifying uncertainty in DST. Indeed,
they are easier to manage than the corresponding BPA
to represent uncertainty-based information. Nonethe-
less, the set of probability distributions consistent with
a BPA is smaller than the one compatible with the
corresponding belief intervals for singletons. In this
research, we give a new characterization of BPAs rep-
resentable by belief intervals for singletons. Such a
characterization might be easier to check than the one
provided in previous works. In practical applications,
this result allows efficiently knowing when uncertainty
can be represented via belief intervals for singletons
rather than the associated BPA without loss of infor-
mation.

Keywords: Dempster-Shafer theory, uncertainty-
based information, belief intervals, basic probability
assignment, focal element

1. Introduction

Dempster-Shafer theory (DST), also known as Evidence
theory [8, 20], has been frequently employed in the liter-
ature to deal with uncertainty-based information in some
domains such as medical diagnosis [3], target identification
[4], face recognition [13], or statistical classification [10].
This theory has also been widely used in the combination
of information provided by different sources [2, 12, 5], an
important issue for decision making.

The basis of DST is the concept of basic probability
assignment (BPA), which generalizes the probability distri-
bution concept in Probability Theory (PT). For each BPA
in DST, there is a lower and upper probability function
associated with it. They are called, respectively, belief
and plausibility functions. In DST, the quantification of
the uncertainty-based information represented by a BPA
is an essential point. For this purpose, many uncertainty
measures in DST have been proposed so far. Some of
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the most recent researches on this topic can be found in
[14, 19, 6, 15].

Most of the uncertainty measures proposed so far in
DST are based on BPAs. Nevertheless, the belief inter-
vals composed of the belief and plausibility values of the
singletons have recently received considerable attention
for calculating the uncertainty-based information repre-
sented by a BPA [9, 23, 21, 17]. As explained by Sun et al.
[21], Moral-Garcia and Abellan [17], belief intervals are
easier to manage than a BPA to represent uncertainty-based
information; they belong to reachable probability intervals
theory [7]. Belief intervals have also been recently used for
the combination of information from different sources [21].

However, the set of probability distributions compati-
ble with the belief intervals for singletons is larger than
the one associated with the corresponding BPA [17]. In
consequence, when the belief intervals for singletons are
used instead of the BPA, some information might be lost. A
necessary and sufficient condition under which a BPA and
its corresponding set of belief intervals for singletons rep-
resent the same uncertainty-based information was given
by Moral-Garcia and Abellan [18]. It is expressed in terms
of the belief function associated with the BPA. We must
remark that such a condition might be computationally hard
to check since it requires calculating the belief value for
each subset, and the number of subsets exponentially grows
as the number of alternatives increases.

For this reason, in this research, we provide a new char-
acterization of BPAs representable via their corresponding
set of belief intervals for singletons. Such a characterization
is given through the relations among the cardinalities of the
subsets for which the probability mass assigned by the BPA
is greater than O (focal elements of the BPA). Hence, it may
be easier to check than the characterization provided in
previous works. In practical applications, this result allows
efficiently knowing when uncertainty can be represented
via belief intervals for singletons rather than the associated
BPA without loss of information.

This paper is arranged as follows: Dempster-Shafer the-
ory is exposed in Section 2. Section 3 describes basic prob-
ability assignments representable via belief intervals for
singletons. Conclusions and plans for future work are given
in Section 4.
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2. Dempster-Shafer Theory

Let us consider a finite set of possible alternatives X =
{x1,%2...,%,}. Let 2(X) be the power set of X.

Dempster-Shafer theory (DST), or Evidence theory [8,
20], is based on the concept of basic probability assignment,
which consists of a function m : g(X) — [0,1] such that
m(0) =0and Y 4cxm(A) = 1.

If A C X satisfies that m(A) > 0, A is said to be a focal
element of m.

A given BPA m on X has a belief function Bel,,, and
a plausibility function Pl,,, associated with it. They are
defined, for each A C X, as follows:

Bel,(A) = Ply,(A) = m(B).

B|BNA#0

Y. m(B),
B|BCA

Obviously, Bel,,(A) < Pl,,(A) VA C X. The interval
[Bel,y(A), Pl,(A)] is known as the belief interval of A.
In addition,

Pl,(A) = 1 —Bel,(A) VACX, )

being A the complementary set of A.

Given a BPA m on X, there exists a set of probability
distributions consistent with it (really, closed and convex
set of probability distributions, also called credal set). It is
determined by:

Pm={p € P(X)|Beln(A) <p(A), VACX}, ()

where Z(X) is the set of all probability distributions on X.

We may note that Bel,,(A) < p(A) VA C X is equivalent
to Bely(A) < p(A) < Pl,(A) YA C X due to the duality
relation expressed in Equation (2).

3. BPAs Representable by Belief Intervals
for Singletons

3.1. Previous Characterization

Let X = {x1,x2,...,x,} be a finite set of possible alterna-
tives and m a BPA on X. Let Bel,, be the belief function
associated with m and PI, its corresponding plausibility
function.

Let us consider the set of belief intervals for singletons:

jm = {[Bezm ({xl}) >le ({xl})] )

This set of intervals is coherent [17], and the credal set
composed of all the probability distributions consistent
with these intervals is given by:

P(In) ={p € Z(X) | Beln ({xi}) < p({xi})
<Pl,({x;}), Vi=1,...,n}.

Let &, be the credal set corresponding to m:

i=1,2,....,n}. @

P ={pe P(X)|Beln(A) < p(A), VACX}. (5
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We may observe that the BPA m and its corresponding
set of belief intervals for singletons .#,, represent the same
information if, and only if, 2(.%,) = Py,.

The set of probability distributions compatible with .7,
always contains the credal set associated with m, i.e &, C
P(Fn) [17].

Nonetheless, the credal set corresponding to m does not
always coincide with the one compatible with the belief in-
tervals for singletons, as shown with the following example
by Abellan [1], Moral-Garcia and Abelldn [18]:

Example 1 Ler X = {x1,x2,x3,x4} be a finite set and m
the following BPA on X :

m({x1,x2}) =m({x3,x4}) =0.5.

Let Bel,, and Pl,, denote, respectively, the belief and
plausibility functions associated with m. We have that:

Belyy ({xi}) =m({xi}) =0,
Pl,({x}) =) m(A)=05, VI<i<4.
Alx;€A

Thus, we have the following set of belief intervals for
singletons:

I = {]0,0.5]:]0,0.5]:[0,0.5]; [0,0.5]} .

Let us consider the probability distribution given by
p=({P{x1}),p({x2}), p({x3}), p({x4})) = (0.5,0.5,0,0).
This probability distribution is consistent with .%,,. How-
ever, it does not belong to the credal set corresponding to
m because

p({x3,x4}) =0<0.5=m({x3,x4}) = Bel,,({x3,x4}).

Consequently, in this case, the credal set associated with
S and the one corresponding to m are not equal.

According to the following result, proved by Moral-
Garcia and Abelldn [18], the BPA m represents the same
information as its associated set of belief intervals for sin-
gletons if, and only if, the corresponding belief function is
obtained as in reachable probability intervals theory.

Theorem 1

P(I) = P Bely(A) =

max{ Z Bel,, ({xi}),1— Z Pl, ({x:})
X;€A

}, K.
X ¢A

3.2. New Characterization

The condition given in Theorem 1 might be computation-
ally hard to check since it requires computing the value
of the belief function for each A C X, and the number of
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subsets exponentially grows as the number of alternatives
increases.

For this reason, in this work, we aim to provide a nec-
essary and sufficient condition for m to represent the same
information as .%, in terms of the relations among the focal
elements of m.

We transform m into the following BPA m’ on X:

Vi=1,2,...,n,

VACX, |A|>2,

where M =Y m({x;})!.

The following proposition shows that m’ is well-defined
as a BPA on X.
Proposition 2 ' is a BPA on X.

Proof Since m is a BPA on X, it holds that:

m(A) >0A1—M>0=m'(A) >0 VACX,|A|>2,

mA)+M< Y mB)=1=mA)<1-M=
BCX
m'(A)<1 VACX,|A|>2,
/ 4)  1-¥,m{x})
m' (A) = WS~ ~ 1.
Ag;( Ag%lzzl—M 1-M

All the focal elements of m’ have a cardinality greater or
equal than 2. Among the non-singleton subsets, the focal
elements of m’ coincide with the ones of m. It is expressed
in the following result, whose proof is immediate.

Proposition 3 VA C X such that |A| > 2, m(A) >0 &
m'(A) > 0.

Let &, denote the credal set consistent with m/,
P (SF,y) the credal set compatible with the belief inter-
vals associated with m’ for singletons, and Bel,; and Pl
the belief and plausibility functions corresponding to m/,
respectively. The following proposition shows that m repre-
sents the same information as its associated belief intervals
for singletons if, and only if, the same occurs with n?'.

Proposition 4 P (.7,) = P, < P (Fw) = Py

1. Here, we do not consider the case M = 1 because, in this situation, m
is a probability distribution.

Proof For each A C X, we have that:

Bel,y(A) = max { Z Bel,y ({x;}),1— Z Pl ({xl})} &

X €A Xi¢A
Y ' (B)= max{ PZACEH B ED Y m'(B)} &
BCA XA

xi¢AB|x;€B
} -

m(B)} &

=
=

m(B
_(Azlzmax{o,lz Z =

Xi#A B|x;€BA|B|>2

S

BCA, |B|>2

m(B) —max{071—M— Z

BCA, |B|>2 xi¢A B|x;€BA|B|>2

Y m({xh+ X

x€EA BCA,|B|>2

1-M+ Z m({x;i}) — Z

X €A Xi¢A B|x;€BA|B|>2

Y m(B) = max{ Y Bely ({xi}),1—

BCA X;€EA

) [m<{x,»})+ )3 m(Bﬂ } &
B|x;€BA|B|>2

xXi¢A

Bel,(A) = max{ Z Bely, ({xi}),1— Z Z m(B)} &

x€A xi¢AB|x;€B

m(B) = max{ Y m({x}),

X;€A

m(B)} &

Bely,(A) = max{ Z Bely ({x;}),1— Z le({xi})}v

X €A X ¢A

and our thesis follows from Theorem 1.
[ |

Hence, we focus on studying when m’ can be represented
via its corresponding set of belief intervals for singletons.

The following theorem gives the necessary and sufficient
condition for m’ to represent the same uncertainty-based
information as its corresponding set of belief intervals for
singletons: the difference between each pair of focal ele-
ments has a cardinality lower than 2.

Theorem 5 y(jm/) = f@m/ ~ |B1 \Bg‘ <1 VB],BQ cX
such that m'(By) > 0 and m'(B,) > 0.

Proof Let us suppose that £ (.#,,) = £2,,. Let A be a
focal element of m’. From Theorem 1, it follows that:

Bel,;(A) = max{ Z Bel,y ({xi}),1— Z Pl ({x,})}

X;€EA Xl'¢A

:max{;‘m/({xi}),l— Y ) m’(B)}

xi¢AB‘X,EB
=max{0,1— Y m'(B)[B\A]
BCX

=1-Y m'(B)|B\A|.

BCX
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The last equality is because A is a focal element of m’.
In consequence, Y.gcam'(B) =1 — Y gcxm'(B) |B\ Al

Furthermore,
1=Y m'(B)=Y m'(B)+ )
BCX BCA B|B\A+0
Thus,
Y ' (B)y=1-Y m'(B)|B\A|
BCA BCX
= Zm'(B)Jr Z Zm )|B\A|.
BCA B|B\A#£0 BCX
This implies that
=) m'(B)[B\A.

B\B\Aﬂ) BCX

Therefore, if m’ (B) > 0, then it is not possible that
|B\ A| > 2.1t can be concluded that |B; \ B2| < 1VB|,B, C
X such that m'(By) > 0 and m'(B;) > 0.

Let us assume now that |B; \ By| < 1VBj,B; C X such
that m'(B1) > 0 and m/(By) > 0. Let us consider A C X.
We have that:

{ Z Bel,y ({xi}) Z Pl ({xi})
X;€EA

Xi¢A

ax{ Z m ({xi}),1— Z Z m’(B)} =
X €A x;¢A B|x;€B
max{O,l - Z m'(B) B\A|} =
BCX
max{O7 Y m'(B)+ - Y ' |B\A|}
BCA B\B\A;ﬁ@ BCX

We distinguish two cases:

¢ Case 1: 3C C A such that m/(C) > 0.

By hypothesis, it holds that, if B C X satisfies that
|[B\C| > 1, then m'(B) = 0. Hence, since C C A,
m'(B) =0 VB C X such that [B\A| > 1. Conse-
quently, |B\ A| < 1VB C X such that m’(B) > 0. Then,

{ Z Bel,y ({x;:}) } =
X €A

ZPZ / {x,

Xi¢A
max {O, Z m'(B) + Z m'(B)—
BCA B|B\A#£0
) m'(B)|B \A|}
BCX
max {O, Y m’(B)} =Y m'(B) = Bel,y(A).
BCA BCA
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0 VB C A.
0 and

e Case2: m'(B) =
In this case, Bel,y(A) =

ax { ;Belmf ({xi})

max {

Y (B

=), Ply ({xi})

)C[¢A

}:

0, . m'(B)

BCA

B\AI}

)

BIB\A#0

BCX
max {0, Y m'B)(1- B\A|)} =0=Bel,(A).
BIB\A£0
In this way,
{Z Bel,y ({x;}) Z Pl ({x;} }
X;€A x,éA
=Bel,y(A), VACX,

and, from Theorem 1, we conclude that £ (.#,,

'):‘@m'-
|

As a consequence of this theorem and Proposition 3,
the necessary and sufficient condition for a given BPA
on X to be representable by its associated set of belief
intervals for singletons is the following one: the cardinality
of the difference between each pair of non-singleton focal
elements is lower or equal than 1. It is expressed in the
following corollary:

Corollary 6 Given a BPA m on a finite set X, it holds that
P(In) = Pn< |Bi\B2| <1 VBi,By C X such that
m(B,) > 0and |Bl| > 2,f0ri: 172'

Hence, the BPA m given in Example 1 cannot be rep-
resented via its corresponding set of belief intervals for
singletons since {x1,x} and {x3,x4} are focal elements of
mand |{x3,x4}\ {x1,02}| =2.

We show below another example where the BPA is rep-
resentable by its associated set of belief intervals for single-
tons.

Example 2 Let X = {x|,x2,x3,x4} be a finite set and m
the following BPA on X :

m({x3}) =03, m({x;,x2}) =023,
m({x1,x%,x3}) =0.1, m({x1,x2,x4}) =

The non-singleton focal elements of m are {xi,x},
{x1,%2,x3}, and {x1,x2,x4}. We can check that
Ko} \ {xx,xib) = 0, Hxnxxib \{x, 0} = 1,
and |{x1,x2,x,~}\{x|,x2,xj}‘ =1, fori,je {3,4}.

Thus, in this case, the credal set corresponding to m
coincides with the one associated with the set of belief
intervals for singletons.

0.3.
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If there is a unique non-singleton focal element of m,
namely B, then m’(B) = 1 and, clearly, m y m’ can be rep-
resented via their corresponding sets of belief intervals for
singletons. Also, if all the focal elements of m are single-
tons, then m is a probability distribution.

For testing the condition given in Corollary 6, it is just
necessary to check whether there exists, among the non-
singletons subsets, a focal element of greatest cardinality
such that its difference with another one of smallest cardi-
nality has a cardinality greater than one. So, that condition
might be easier to check than the one given in Theorem 1.

From Corollary 6, it is easy to deduce that, if there are
three or fewer alternatives, then m always represents the
same uncertainty-based information as its associated set
of belief intervals for singletons. Therefore, we have the
following result:

Corollary 7 Let m be a BPA on a finite set X =
{x1,...,xn} with n < 3. Then, it is always satisfied that
P(Iw) = P

3.3. An Example: The Imprecise Dirichlet Model

The Imprecise Dirichlet Model (IDM) [22] is an imprecise
probabilities model that is useful to make inferences about
the probability distribution of a discrete variable.

Summarizing, the IDM can be described in the following
way: Let X be a categorical variable that takes values in
{x1,x2,...,%, }. Let us assume that we have a sample of N
independent and identically distributed outcomes of X.

According to the IDM, the probability that X takes the
x; value belongs to the following interval:

|

where n; is the number of ocurrences of x; in the sample

Vi=1,2,...,n,and s > 0 is a given parameter of the model.

As shown by Abellan [1], Denceux [11], the IDM can

also be expressed via the following BPA on {xy,x2,...,%, }:
n;

m({xi}):N—l—s’

m(A) =0, VAC{x;,x2,...,%:},2<JA| <n,
s
N+s

In this way, the only focal element of the IDM BPA
with cardinality greater than 1 is the total set. Therefore,
the IDM BPA can be represented by its corresponding set
of belief intervals for singletons. Indeed, these intervals
coincide with the ones given in Equation (6).

ni ni+s
N+s N+s

s | ©)

Vi=1,2,...,n,

m({xl,XQ,...,xn}) =

4. Conclusions and Future Work

Belief intervals for singletons are easier to manage than ba-
sic probability assignments to represent uncertainty-based
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information in Dempster-Shafer theory. Nevertheless, the
set of probability distributions corresponding to a BPA
is smaller than the one consistent with the corresponding
belief intervals for singletons. In this research, we have
provided a new characterization of BPAs representable via
belief intervals for singletons.

Specifically, the results presented in this work have re-
vealed the necessary and sufficient condition for a BPA to
be representable by its associated set of belief intervals for
singletons: the cardinality of the difference between each
pair of non-singleton focal elements is lower or equal than
one. This condition might be easier to check than the one
provided in previous works, which requires calculating the
belief value for each subset.

It is remarkable that, in DST, when there are three or
fewer alternatives, a BPA can always be represented by
belief intervals for singletons. Moreover, as an example,
we have shown that the Imprecise Dirichlet Model is repre-
sentable via a BPA such that the set of probability distribu-
tions associated with it coincides with the one compatible
with the corresponding belief intervals for singletons.

As future work, the results presented here could be used
in practical applications to know efficiently when the uncer-
tainty can be represented via belief intervals for singletons
rather than the BPA without loss of information. For in-
stance, our results could be applied to the management
of uncertainty-based information in sensors [16]. Further-
more, it would be interesting to analyze whether, in other
mathematical models expressed by a BPA, the set of prob-
ability distributions compatible with it is the same as the
one corresponding to the belief intervals for singletons.
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