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Abstract

We propose two improved algorithms for evaluating
the Hurwicz criterion in the context of decision making
with lower previsions, along with a new benchmarking
algorithm for measuring these improvements.

The Hurwicz criterion is a well-known criterion for
decision making with lower previsions under severe
uncertainty when decision makers want to balance
between pessimistic and optimistic extremes. When
the domain of the lower prevision, the set of possi-
ble outcomes and the set of possible decisions are all
finite, the classic method for applying this criterion
goes by solving a sequence of linear programs. We
show how to improve this classic algorithm, based on
similar improvements that we have proposed for other
decision criteria. Additionally, to allow benchmarking
these improvements, we provide a new algorithm for
randomly generating artificial decision problems with
a set number of Hurwicz gambles.

In our simulation, our proposed algorithms for Hur-
wicz outperform the standard algorithm in most sce-
narios except when the set of outcomes is small, the
domain of the lower prevision is large, and there are
many Hurwicz optimal decisions at once, in which
case our proposed algorithms are slightly slower.

Keywords: lower prevision, decision, Hurwicz, algo-
rithm, primal-dual method, linear program

1. Introduction

Consider a decision problem where one wants to choose the
best option from a set of all possible options. Selecting an
option will yield an uncertain reward which also depends
on uncertain states of nature. Rewards are assumed to be
expressed in utility scale. The uncertain reward can be
viewed as a bounded real-valued function, called gamble,
on a set of possible outcomes. Therefore, a decision maker
will select gambles from a set of possible gambles.

In a classical decision theory, if precise probabilities for
all events are known, then it is reasonable that the deci-
sion maker will choose a gamble that leads to the highest
expected utility [1]. However, when these precise probabili-
ties are not completely known, one way to handle this issue
is to use lower previsions which correspond to expectation
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bounds [20]. In this paper, we consider decision problems
using lower previsions.

Several decision criteria with lower previsions have been
studied and developed by many authors [7, 20, 16, 17, 4].
The I'-maximin criterion selects the decision which max-
imises the lower prevision (i.e. the worst case expected
utility), while the I'-maximax criterion selects the decision
which maximises the upper prevision (i.e. the best case
expected utility) [17]. When the decision maker wants to
balance between the pessimistic and the optimistic cases,
the decision maker can apply the Hurwicz criterion (also
known as I'-maximix) which selects the decision that max-
imises a convex combination of the lower prevision and
the upper prevision [4]. Note that these three criteria will
usually return a single gamble. There are other decision cri-
teria that return a set of gambles, for example, maximality
and interval dominance which are based on strict partial
preference orders [17].

Several authors, including Gilboa and Schmeidler [3],
Walley [20], Zaffalon et al. [23], Seidenfeld [16] and Trof-
faes [17], have studied decision criteria for lower previsions.
In addition, many authors have also studied algorithms
for them. For example, Kikuti et al. [6], Matt [8], Jansen
et al. [5] Nakharutai et al. [14] and Troffaes and Hable [19,
p- 336] have studied and improved algorithms for maxi-
mality and interval dominance. Kikuti et al. [6] Troffaes
and Hable [19, p. 335] and Nakharutai et al. [15] have stud-
ied algorithms for I'-maximin and I'-maximax. From these,
[14] and [15] performed a comparative benchmarking study
of their algorithms. However, as far as we known, in the
context of lower previsions, there is no in-depth study of
algorithms for Hurwicz in the literature.

Determining whether a gamble is optimal under I'-
maximin, I'-maximax, or Hurwicz, can be done by cal-
culating the value of the lower and/or upper previsions for
all gambles in the set. If the number of gambles in the set,
the number of outcomes and the domain of lower prevision
are finite, then one can solve linear programs to compute
the value of the lower previsions [6, 19, 5]. Note that there
could be scenarios where non-linear programming can be
applied, for instance, under certain structural assumptions
such as independence, however, this is beyond the scope of
this paper.
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In [12, 13] we investigated how to efficiently solve linear
programs for evaluating lower previsions. Based on these
results, we further studied how to improve and benchmark
algorithms for maximality and interval dominance in [14]
and for I'-maximin and I"-maximax and interval dominance
in [15]. In this paper, we investigate how several proposed
improvements can be applied to the Hurwicz criterion.

The contributions of this work are as follows. We propose
two new improved algorithms for the Hurwicz criterion. In
these algorithms, we apply a technique to very quickly get
initial feasible starting points for all linear programs that we
need to solve (based on earlier work [12, 13]), and we pro-
pose an early stopping criterion for detecting non-Hurwicz
gambles early on the algorithm, to save computational ef-
fort. To benchmark these new algorithms, we propose a
new algorithm for randomly generating artificial sets of
gambles with a pre-specified number of Hurwicz gambles.

The paper is organised as follows. In Section 2, we briefly
review lower previsions, natural extension, and the decision
criteria that will be used throughout the rest of the paper. In
Section 3, we propose two new algorithms for the Hurwicz
criterion. In Section 4, we provide an algorithm to randomly
generate a set of gambles with a precise number of Hurwicz
gambles, which can be used for benchmarking algorithms
for Hurwicz. We also compare the performance of different
algorithms for Hurwicz on these generated sets. Finally, we
conclude the paper in Section 5.

2. Preliminaries

In this section, we review lower previsions, natural ex-
tension and two decision criteria: Hurwicz and interval
dominance, which we will need later. For further discus-
sion about these criteria and other decision criteria e.g.
I'-maximin, ['-maximax, maximality and E-admissibility,
we refer to [7, 20, 16, 17, 4] and references therein.

2.1. Lower Previsions and Natural Extension

We denote the set of possible outcomes by Q. A gamble,
typically denoted by f, is a bounded real-valued function
Q — R and represents an uncertain payoff, that is, we
receive f(®) when @ € Q is revealed as the true outcome.
We also denote the set of all gambles by .Z. Following [21,
22,20], a subject, such as a decision maker, can model their
uncertainty through a so-called lower prevision P which
is a real-valued function defined on a domain domP C .Z.
Specifically, given a gamble f € dom P, we view P(f) as
the subject’s supremum buying price for f. Its conjugate
upper prevision Pondom P := {—f: f € dom P} is defined
by P(f) := —P(—f) and represents the subject’s infimum
selling price for f [18, p. 41]. It has been extensively argued
that lower and upper previsions are suitable for modelling
uncertainty especially when little information is available
[20, 9, 10, 18].
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In this paper, we assume that every lower prevision con-
sidered avoids sure loss, namely, for all n € N, all non-
negative A,...,A,, and all f1,..., f, € domP, we require

that [18, p. 42]:
) ~0.

Otherwise, we can find combinations of gambles for which
the subject is willing to pay more than what she could ever
gain, which makes no sense [18, p. 44].

The natural extension E of P extends P to a lower previ-
sion defined on all gambles. For every gamble f € .7, it is
defined by [18, p. 47]:

(D

sup
weQ

(ixi il@) — P(f)]

E(f)=swp{aeR: f-a> Y A(fi—P(f)),
i=1
nEN, fi€domP, 420}, ()

and one can show that this is also a lower prevision (i.e.
that the supremum is finite) provided P avoids sure loss as
assumed [18, p. 68]. It is the supremum price that a subject
should be willing to pay for f, given the supremum buying
prices P(f;) for all f; € domP. Its conjugate is denoted by
E(f) = —E(—).

Throughout this study, we only consider the case that
both Q and dom P are finite, so E(f) can be obtained by
solving a linear program [19, p. 331].

2.2. Decision Criteria

As we mentioned before, there are many criteria for deci-
sion making with lower previsions. Here, we will discuss
Hurwicz and three other criteria that are related to Hurwicz,
namely, [-maximin, I'-maximax and interval dominance.

Let # C .Z be a set of gambles. We first consider the
I'-maximin criterion:

Definition 1 [17] The set of I'-maximin gambles of & is
defined by

optg (%) := argmax E(f). 3)

fex
The I'-maximin criterion selects a gamble that maximises
the lower natural extension. In contrast, the following cri-
terion simply selects a gamble that maximises the upper
natural extension:

Definition 2 [17] The set of I'-maximax gambles of % is
defined by
optz(H#) = argmax E(f).
fex

“4)

Clearly, I'-maximin reflects a pessimistic decision maker,
while I'-maximax reflects an optimistic one. To balance
between these extremes, we can apply another criterion
called Hurwicz (also known as I'-maximix):
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Definition 3 [4] For any B € [0, 1] (fixed by the decision
maker), the set of Hurwicz gambles of ¥ is defined by

optg (A) = af}gg?)?"(ﬁi(f )+ (1=PBE(f)). ()

The Hurwicz criterion chooses a gamble that maximizes a
convex combination of the best and worst possible expected
payoff.

Finally, we consider interval dominance which is based
on a strict partial preference order.

Definition 4 Consider the following strict partial prefer-
ence order, defined between any two gambles f and g € £ :

f3gIfE(f)>E(g) (6)

The set of interval dominant gambles of & is defined by

opto(H) ={fe A (Ve H) gD )} (D
={fe X E(f)>maxE(g)}. ()
gexX
Note that the following relationship holds [4]:
optg () Uoptg(A#) Uoptg () Copt(A).  (9)

3. Algorithms

In this section, we discuss how to improve algorithms
for Hurwicz based on similar improvements proposed in
[14, 15], where we provided improved algorithms for I'-
maximin, I'-maximax, maximality and interval dominance.

3.1. Base Algorithm for Hurwicz

Let # be a set of k gambles. To find argmax ;- (BE(f) +
(1—PB)E(f)), we could simply evaluate k lower natural
extensions and k upper natural extensions [19, Sec. 16.3.1];
see algorithm 1.

Algorithm 1: Hurwicz [19]
Data: a set of k gambles #" = {f,..., fi}
Result: the index of a single Hurwicz gamble
M ¢ —o0
fori=1:kdo
if BE(f,) + (1 — B)E(fi) > M then
| i &M< BE(f)+(1-B)E(f)
end
end
return ;* // index of a Hurwicz gamble

3.2. Improvements for Hurwicz

In general, one can evaluate the natural extension by solv-
ing a linear program. There are several common linear
programming methods, for example, the simplex method,
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the affine scaling method, and the primal-dual interior point
method. These methods are iterative algorithms, i.e., they
produce a sequence of points that converge to an optimal
feasible solution.

As suggested in [13, 14, 15], one of the most effective
ways to evaluate E(f) goes by the primal-dual interior point

method, which simultaneously solves the following pair of
linear programs [14]:

1) Y. f(@)p(o)

weQ

Vf; edomP: Y (fi(®)—P(f;))p(w) >0 (11)

WEQ
Y plo)=1
weEQ

Vo: p(w) >0,

min (10)

subject to
12)

13)

(D1) max o (14)

Vo € Q: i(ﬁ(w)—ﬁ(ﬁ))lﬁa < flo)

i=1

Vi: ;>0 (o free).

subject to

15)
(16)

To evaluate E(f), note that E(f) = —E(—f) which is
equivalent to solving the following pair of linear programs
[15]:

(P2) min f3 a7
k
subjectto Vo € Q: B— Y (fi(w) — P(f))Ai > f(®) (18)
i=1
Vi: 4 >0 (B free), (19)
(D2) max Y f(o)p(o) (20)
weQ
subject to  Vf; € domP: Z (filw) —P(fi))p(w) >0 (21)
weQ
Y p(w)=1 (22)
weQ
Vo: p(w) > 0. (23)

In that work, two improvements were proposed, namely,
an efficient way to obtain initial feasible starting points
and an early stopping criterion. Specifically, for (P1) and
(D2), one can easily obtain a common (i.e. independent
of f) initial feasible starting point by applying the first
phase of the two-phase method [13, §4.2]. To obtain an
initial feasible solution for (D1) and (P2), we can apply a
result from Nakharutai et al. [13, Theorem 7]. Furthermore,
starting with these feasible points, the primal-dual method
can generate a sequence of feasible points converging to an
optimal solution [2, §7.3]. This is useful because feasibility
is required to allow us to apply the early stopping criterion,
whilst the standard primal-dual interior point method does
not produce a sequence of feasible points, unless we start
from a feasible point.

Next, we note that we can exploit the fact that, in algo-
rithm 1, we only need to verify whether or not BE(f;) +
(1 :ﬁ)i(ﬁ) > M, where M = maxj<j<i—1 ﬁE(fj) + (] —
B)E(fj). Let £; and u; be the current lower and upper
bounds for E(f;), and let ¢; and &; be the current lower
and upper bounds for E(f;). Note that
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1M < Bt;+(1- BT
then f; is Hurwicz

1EM > Bui-t (1 B
then f; is not Hurwicz

e
o)

Continue the process until
max(¥, ) <€

BE(f:)+(1=B)E(f:)

Figure 1: Early stopping criterion for Hurwicz

Bli+(1—B)t < BE(f;) + (1 —B)E(fi)
< Bu;+(1-B)u

Clearly, given these bounds, one can stop as soon as
M > Bu; + (1 — B)%; because in this case, f; cannot be
Hurwicz. On the other hand, if M < B¢;+ (1 — f8)¢;, then
fi is Hurwicz among the gambles up to index i. However,
in this case, we still have to continue evaluating the linear
programs until convergence to obtain the optimal values,
as we need to know BE(fi) + (1 — B)E(f;) to assign it to
be the new value for M. Figure 1 illustrates this argument.

We also observe that if we can identify a Hurwicz gam-
ble (across all gambles in %) early on, then it is more
likely that we can stop early in later stages of the algorithm,
because a higher value of M translates into fewer iterations
of the algorithm with the early stopping criterion kicking in
more often. Following [14, 15], if we sort all gambles in .2
as f1,..., fr such that for some probability mass function
p,foralli < j:

(24)

Ey(fi) = Ep(f)), (25)

then it is more likely that for a given B, BE(f;) + (1 —
B)E(f;) > BE(fj) + (1 — B)E(f;). Therefore, there is a
high chance that we will find a gamble that is Hurwicz
with a smaller index. Even though this sorting does not
always guarantee this, it does not require much extra com-
putation, and therefore it is worth to implement this trick at
the initialization. An algorithm that implements all these
suggestions is presented in algorithm 2.

In that algorithm, we use B + (1 — ){; to bound the er-
ror. Indeed, the error is bounded by the difference between
the left and right hand sides of eq. (24), that is,

Bu;+ (1= B)ui— Bl — (1-B)e;
=By — L)+ (1= B) (@ — ;)

=Br+(1-B)& (206

3.3. Further Improving Hurwicz

In [15], we suggested an efficient way to find all I"-maximin
(or I'-maximax) gambles, whilst also making it possible
to remove non I'-maximin (or non I'-maximax) gambles
before obtaining the value of E(f7) (or E(f1)). We can treat
the Hurwicz criterion similarly.

Consider the following toy example. Let ¢ =
{f1, /2, /3, f4} be a set of gambles with E(f;) and E(f;)
given as in fig. 2. Suppose that we want to find all Hurwicz
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Algorithm 2: Hurwicz

Data: a set of k gambles ¢ = {fi,..., fi} such that
E,(fi) > Ep(f2) > --- > E,(fx) for some p that is
a feasible solution of (P1); a small number &; ini-
tial feasible states x” and x? for (P1) and (D1) and
initial feasible states y and y? for (P2) and (D2)
corresponding to f; respectively;

Result: a single Hurwicz gamble

M« BE(fi)+(1=B)E(fi);i" « 1
fori=2:kdo
repeat
(xf),xll-)) — (])(f,-,xf,xiD) // next iteration to update E(f;)
L < e, (fi,xF ,xP) 1/ 1ower bound for E( ;)
u; < e (fi,x; ,xlD) // upper bound for E(f;)
Ni=u—L

(ylf’,yiD) V. lll(ﬁ7yf,y?) // next iteration to update E(f;)
Zi — 2, (fi’yf,ylp) // lower bound for E(f;)
T (f‘i)yfhyiD) // upper bound for E(f;)
G=u—1{;
until M > Bu; + (1 —B)w; or By, + (1 - B)G < &;
if M < BL;+ (1 — B)u; then

| M« BL+(1—B)u;i*«i
end

end
return i* // index of a Hurwicz gamble

gambles (according to fig. 2, fi and f4 are both Hurwicz).
To start, given initial states (x',xP) for each i, we could
first calculate ¢; == e (f;,xF,xP) and u; == e*(f;,x,xP).
Similarly, given initial states (y7',yP) for each i, we can
also calculate ¢; := e.(f;,y*,yP) and u; = e*(f;,yF,y?).
Suppose that the result is as in fig. 2. The dashed line rep-
resents max;eg B¢; + (1 — B)¢;. For each f;, we compute
Bu;+ (1 — B)u;, where they are represented by O in fig. 2.
Note that Bu, + (1 — )iz and Bus + (1 — B)us are smaller
than max;cg B; + (1 — B)¢;. Therefore, we immediately
know that f, and f3 cannot be Hurwicz. At this point, we
can quickly eliminate these non Hurwicz gambles.

We now generalize this example to construct an algo-
rithm that can sequentially narrow a set R C {1,... k} of
potentially Hurwicz gambles (or rather, their indices). To
do so, for each gamble f; in 7, (i) we evaluate bounds for
E(fy). namely. £ = e, (fy.27,x) and ; == ¢* (i3] 2P).
and (ii) we also evaluate bounds for E(f;), namely, ¢; :=
e.(fi,yF,yP) and w; == e*(f;,y,yP). Next, we calculate
M, := max;eg B£;+ (1—B)f; and M* := max;cg Bu; + (1 —
B)u;. Note that M, and M* bound the Hurwicz value, that
is

M. < max(BE(f) + (1 — PE() < M’

max 27

Then, by eq. (24), any gamble f; for which Bu; + (1 —
B)u; < M, will not be Hurwicz and therefore can be elimi-
nated. Then, we update the states (x”,xP) and (y,y?) for
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maxicr Bl + (1 - B)li

\
v E(f) .. ! v E(fi) -
fa : : : : :
4 uy 1 A A
1
v E(fs) - . VE(f) -
f . —_— e
4 B 7 : 3
1
_ E(f2) -. E(f2) 1
f 1
L CHE A w '
.- EE/I)-- - E(fi) -
f I s e
Lo v mog, m
1
1
1

Figure 2: Early eliminating non Hurwicz gambles

Gambles | E(f;) | E(fi)) | BE(f) +(1=B)E(f)

fi 7 9 8
b 2 45 3.25
f 3 8 5.25
£ 5 11 8

Table 1: Example of different gambles in fig. 2 providing
their E(f;) and E(f;) with B =0.5.

all gambles f; that are still potentially Hurwicz. The pro-
cess will be repeated until either only one gamble is left in
the set of potentially Hurwicz gambles, or until all errors
are less than some given tolerance €, in which case we
have found multiple Hurwicz gambles. An algorithm that
implements these strategies is presented in algorithm 3.

To summarise, using similar arguments as those pro-
posed in [14, 15], we have proposed two new algorithms
for finding Hurwicz gambles (algorithms 2 and 3). The
main differences between algorithms 2 and 3 occur in the
processing and in the output. In particular, an implemen-
tation of algorithm 2 must necessarily process gambles
sequentially, whilst an implementation of algorithm 3 can
exploit parallel processing. Moreover, the output of algo-
rithm 2 gives only a single Hurwicz gamble whilst the
output of algorithm 3 gives an index set of all Hurwicz
gambles.

4. Benchmarking

4.1. Generating Sets of Gambles with Precise Number
of Hurwicz Gambles

Suppose that one would like to benchmark the algorithms
for finding Hurwicz gambles on random sets of gambles.
One easy way to do is to randomly generate a set of gam-
bles such that for each gamble i and @, f;(®) is sampled
uniformly from [0, 1]. However, in this way, we do not con-
trol the exact number of Hurwicz gambles in the set of
generated gambles. To compare different algorithms, it is
useful to generate sets of gambles with a precise number
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Algorithm 3: Hurwicz
Data: a set of k gambles % = {fi,..., fy }; a small number
€; initial feasible states xf) and xf) for (P1) and (D1)
and initial feasible states yf) and yl-D for (P2) and (D2)
corresponding to f; respectively;
Result: a set of Hurwicz gambles
R+ {1,2,...,k}

repeat
VieR: (xF',xP) « ¢(fi,xF,xP) // next iteration to update
E(fi)
;< e, (fi,xF,xP) 1/ lower bound for E(f;)
u et (f,',xf),xlp) // upper bound for E(f;)
V==
(yf:yiD) +— q/(fi,yf,yiD), // next iteration to update
E(fi)

l; e, (ﬁ,yﬁy?) // lower bound for E(f;)
w; « 2 (fi,y7,¥P) // upper bound for E(f;)
G=u—{ -

M, — maxieRﬁﬁi + (1 — ﬁ)gl

M* maX,'GRBEl-+ (1 — ﬁ)ﬁ,’

R+ {ieR:Bu+(1-P)u; > M.}

1 < max{M" —M,,maxicr{B v+ (1)} }

until [R|=1orn <g;

return R // index set of all Hurwicz gambles

of Hurwicz gambles, similar to benchmarking techniques
proposed in [14, 11].

To generate a set of k gambles % such that exact b
gambles are Hurwicz, that is, |optﬁ ()| = b <k, anaive
idea is first to generate b Hurwicz gambles and then to
add k — b non Hurwicz gambles. Specifically, we can start
with # = {f}, where f is immediately Hurwicz. Next, we
randomly generate a gamble 4 such that

optg (A U {h}) = optg(#") U{h}, (28)

and then we add 4 to #". We continue this process until we
obtain b Hurwicz gambles in the set . Next, we randomly
generate a gamble A for which

optg (£ U{h}) = optg (), (29)

and then we add h to J#". We continue this process until we
obtain k£ — b non Hurwicz gambles in the set JZ".

However, a gamble & that we randomly generate may not
easily match the conditions in eq. (28) or in eq. (29). To
address this issue, we modify a gamble & by shifting & for
some & € R in order to make & — « satisfy either eq. (28)
or eq. (29). Ranges for o to modify / appropriately can be
directly calculated as follows:

Theorem 5 Let J# be a set of gambles where the gamble
fin & is Hurwicz. Let h be another gamble, let o € R,
and let &' = o U{h— a}. Define

B(E(h) —E(f))+ (1= B)(E(h) —E(f))

*

a (30)

Then
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(i) h— o and f are both Hurwicz in X" if o0 = o,
(ii) h— o is Hurwicz in ¢ but not f if o0 < o*.
(iii) h— a is not Hurwicz in ¢ but f is if & > o/,

Proof Note that o = max,e » (BE(g) + (1 —B)E(g))
since f is a Hurwicz gamble in . From the definition
of Hurwicz, h — a is also Hurwicz if and only if BE(h —
o)+ (1 — B)E(h— ) = maxc 1 (BE(g) + (1— B)E(g)).
This is equivalent to BE(h— o)+ (1 — B)E(h— o) =
BE(f) + (1 — B)E(f). Therefore, @ must be equal to

B(E(h) —E(f)) + (1= B)(E(h) — E(f)).

In the case that oo < a*, we find that BE(h— o) + (1 —
B)E(h—o) > BE(f)+ (1—B)E(f). So, h— o is Hurwicz
but f is not Hurwicz. On the other hand, if @ > «*, then
BE(h— o)+ (1— B)E(h— a) < BE(f) + (1 — B)E(f).

Hence, h — « is not Hurwicz but f is still Hurwicz. |

Using theorem 5, we construct an algorithm for randomly
generating a set of k gambles with a precisely specified
number of b Hurwicz gambles; see algorithm 4. The pro-
cess behind algorithm 4 is straightforward, namely, it first
generates b Hurwicz gambles and then generates k — b fur-
ther gambles that are not Hurwicz. Note that in stage 3,
to generate a non Hurwicz gamble f; — ¢ that is harder to
detect, we can assign a value of o that is only slightly
larger than B(E(f;) — E(f1)) + (1 - B)(E(f) — E(fi))-
In our simulation, we sample € from (0,1) and assign
a=PBE(f)~E(f1)+ (1 B)(E(f}) ~E(f1)) +e. Note
that regardless of how many Hurwicz gambles in a set of
k gambles that we want to generate, algorithm 4 needs to
evaluate 2k natural extensions.

4.2. Simulation Results

In our simulation, we benchmark our algorithms for Hur-
wicz (algorithms 1, 2 and 3) on randomly generated sets
of gambles that have a precise number of Hurwicz gam-
bles by using algorithm 4. We consider |Q| € {24,2%},
|| € {24,26,28} and |dom P| € {2%,2°}.

To do so, we first generate a lower prevision P which
avoids sure loss as follows. We first use [13, algorithm 2]
with 2* coherent previsions to generate a lower prevision
E on the set of all gambles, that avoids sure loss. With a
given finite size of domain, we use [13, stages 1 and 2 in
algorithm 4] to restrict E to a lower prevision P that avoids
sure loss, with a specified value for |dom P|.

To generate gambles f; € 27, for each @ and i, we sam-
ple fi(®) uniformly from the interval [0, 1]. Next, we use
algorithm 4 with 8 = 0.5 to randomly generate a set .#” for
|# | =k € {24,25,28} and |optg (#")| = b for some b <k,
using the P that we generated earlier for evaluating £ and
E.
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Algorithm 4: Generate a set of k gambles . such that
optg ()=b<k
Result: a set of k gambles .# such that exactly b gambles
are Hurwicz
A+ {fi}; !/ fi is immediately Hurwicz

fori=2:bdo
/I Generating b — 1 Hurwicz gambles
for v € Q do
| sample f;(®) from [0, 1]
end

a=B(E(fi) —E(f))+ (1 =B)E) —E(f));

H — K U{fi—a)

end
fori=b+1:kdo
/I Generating k — b non-Hurwicz gambles
for o € Q do
| sample fi(®) from [0, 1]
end
sample o > B(E(f) — E(A)) + (1 — B)E(fi) —
E(f1));
H — X I{fi—a}
end
return 7

Given different sizes of the set Z", we consider a range
of several options of b that satisfy b < k as shown in ta-
ble 1. Options a to i represents different increasing sizes of
Hurwicz gambles in the sets JZ".

Options a|lb|lc|d| e f g h i

=2 1|2]4]6[ 8 |10[12] 14 | 16
=201 ]2]4[8]16]20]32] 42 | 64
lZ]=2%1]2]4]8[16|32]64 ]| 128] 256

Table 1: Table of options that indicate different sizes of set
£ with vary the number of Hurwicz gambles b in 2

We apply algorithms 1, 2 and 3 on each generated set
of gambles .Z” and measure the total computational time.
To evaluate natural extensions inside algorithm 1, we solve
linear programs by the standard primal-dual method while
for algorithms 2 and 3, we solve the linear programs by the
improved primal-dual method which has all improvements
from section 3.2. To guarantee a fair comparison, we wrote
our own implementation for these algorithms in MATLAB
for solving the linear programs. We used the built-in quick-
sort function to sort all gambles in algorithm 2. The total
computational time spent in algorithm 2 includes the time
to find an initial feasible p and the time to sort gambles
with respect to their expectations. We repeat the process
500 times for each case and show results in fig. 3. All sim-
ulations were run on an Intel(R) Core(TM) i3-6100 CPU
@ 3.70 GHz processor with 4 GB of RAM.
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Figure 3: Comparison plots of the average computational
time (in seconds) for different algorithms (see the labels for
algorithms 1, 2 and 3) for finding Hurwicz gambles where
B =0.5,|domP| = 2* and 2°. The bars indicate 2 sample
standard deviations above and below the sample average,
to give an idea of the variability of the computational time.
Note that the 95% confidence intervals on the mean compu-
tational time are too small to be indicated. The number of
outcomes in left and right columns are 2* and 2°. Each row
labels a different number of gambles with varying options
of the numbers of Hurwicz gambles in the set (see table 1
for each option).
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5. Discussion and Conclusion

To summarise, we studied and discussed new algorithms
for Hurwicz which is a criterion for decision making with
lower previsions. Based on several improvements proposed
in [14, 15], we presented how to improve the naive al-
gorithm for Hurwicz and proposed two new algorithms
(algorithms 2 and 3) for Hurwicz. Both algorithms 2 and 3
exploit a quick way to compute feasible starting points for
primal-dual method to compute lower and upper bound for
lower previsions. Providing a sequence of bounds for lower
and upper previsions, we also identified ways to eliminate
non-Hurwicz gambles early on. The main difference be-
tween these algorithms is in the output of the algorithms.
Specifically, algorithm 2 will return a single Hurwicz gam-
ble while algorithm 3 will return all Hurwicz gambles in
the set.

Moreover, algorithm 3 can be parallelized, whilst algo-
rithm 2 is inherently serial as it must process the gambles
in a specific order. However, there are trade-offs between
being precise and the number of iterations. In particular,
algorithm 3 may need more iterations than algorithm 2 due
to comparing intervals with intervals (less precise), whilst
algorithm 2 performs a comparison of a single value against
intervals (more precise). Note that, however, we designed
our implementations and benchmarking on the serial run-
ning time to return the overall computational work. A study
of parallel algorithms for which these trade-offs can be
compared to serial algorithms could be left for future work.

For comparing the performance, we additionally provide
a new algorithm for randomly generating artificial sets
of decision problems with a pre-determined number of
Hurwicz gambles.

Results from our simulation show that the average com-
putational time of three algorithms for Hurwicz depend
on the number of outcomes, the number of gambles in the
set and the size of the domain of lower previsions. Specifi-
cally, if one of these factors is larger, then the mean running
time spent on the algorithm is longer. The number of Hur-
wicz gambles in the set has an impact on the total running
time for algorithms 2 and 3 but not for algorithm 1. In
particular, the total running time for algorithms 2 and 3 is
slightly longer if the number of Hurwicz gambles in the set
is increasing while the total running time for algorithm 1
remains the same regardless of the number of Hurwicz
gambles.

In practice, for generic decision problems, we normally
expect that there is only a single Hurwicz gamble in the
set. In such case, we should apply algorithm 2 since it
outperforms other algorithms in all scenarios.

If we believe that the set of gambles might contain many
Hurwicz gambles, and we are interested in finding only one
Hurwicz gamble, then we should apply algorithm 2 unless
the size of the domain of lower previsions is large and the
numbers of gambles and outcomes is small (see the case
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|domP| =2°, |.#'| = 2* and |Q| = 2* when there are many
Hurwicz gambles) for which algorithm 1 performs better.
However, if we are interested in obtaining all Hurwicz
gambles in the set, then from the algorithms presented,
only algorithm 3 will do.

Finally, we note that all our simulations used § = 0.5,
representing a balanced decision maker. It could also be
interesting to investigate different choices of 3.
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