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Abstract

In this paper, we deal with linear regression where
the covariates are interval-valued and the dependent
variable is precise. Opposed to the case where the
dependent variable is interval-valued and the covari-
ates are precise, it is far more difficult to compute
the set of all ordinary least squares (OLS) estimates
as the precise values of the covariates vary over all
possible values, compatible with the given intervals
of the covariates. Though the exact solution is diffi-
cult to obtain, there are still some simple possibilities
to compute bounds for the regression parameters. In
this paper we deal with simple linear regression and
present three different approaches: The first one uses a
simple interval-arithmetic consideration for the equa-
tion for the slope parameter. The second approach uses
reverse regression to swap the roles of the dependent
and the independent variable to make the computation
analytically solvable. The obtained solution for the re-
verse regression then gives an analytical upper bound
for the slope parameter of the original regression. The
third approach does not directly give bounds for the
OLS estimator. Instead, before the actual interval anal-
ysis, in a first step, we modify the OLS estimator to
another linear estimator which is simply a reasonably
weighted convex combination of a number of unbiased
estimators, which are themselves based on only two
data points of the data set, respectively. It turns out that
for the degenerate case of a precise independent vari-
able, this estimator coincides with the OLS estimator.
Additionally, the third method does also work if both
the independent variable, as well as the dependent vari-
able are interval-valued. Also the case of more than
one covariate is manageable. A further nice point is
that because of the analytical accessibility of the third
estimator, also confidence intervals for the bounds can
be established. To compare all three approaches, we
conduct a short simulation study.

Keywords: interval regression, measurement error, in-
terval arithmetic, Frisch’s true regression, reverse re-
gression, partial identification

1. Introduction
The present paper considers reliable regression analysis
under interval data on the independent variable. More con-
cretely, we study the influence of certain covariates x (also
called independent variables, explanatory variables, regres-
sors or stimuli) on a response variable y (dependent variable,
outcome, response) under the additional difficulty that the
covariates cannot be directly observed. Instead, one only
observes upper and lower bounds for the unobservable co-
variates. This is a special case of so-called coarse(ned) data,
i.e. data that are not observed in the resolution intended
in the subject matter context (see, in particular, [7], for a
discussion from a classical viewpoint, and, e.g., [1, Section
7.8] from an imprecise probability perspective). We focus
here on simple linear regression of the form

yi = β0 +β1xi + εi, i = 1, . . . ,n (1)
xi ∈ [xi,xi] a.s., i = 1, . . . ,n. (2)

Here (ε1, . . . ,εn) is the vector of error terms which are as-
sumed to be pairwise uncorrelated with expectation 0 and
finite variance σ2. Furthermore, we assume that not all
intervals intersect and that y is not constant. (In the first
case all three methods would break down and in the second
case method 2 would break down.) We make no assump-
tion about the distribution of the unobserved xi within the
observed intervals [xi,xi] beyond (2). This may be seen as
somehow unbalanced in comparison to the other assump-
tions above. However, note that also under much weaker
assumptions (for example only assuming that the error vari-
ances are uniformly bounded by a constant and only assum-
ing that the pairwise correlation is uniformly bounded be-
low 1) the classical ordinary least squares estimator (OLS),
which we will rely on in the sequel, is still an unbiased con-
sistent estimator. This will also translate to the results we
obtain here for the case of interval-valued covariates. The
xi’s are not observed, one observes only the bounds xi and
xi, as well as the yi’s. Thus, the linear model is generally
only partially identified. A reasonable set-valued estimator
for the only partially identified parameters β0 and β1 is
given by the collection of all OLS estimators where the
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covariate values vary over all values, compatible with the
observed bounds:1

OLS =
⋃{

argmin
β

{||Xβ − y||2} | X ∈ [X ,X ]

}
. (3)

Here, X is the design matrix

X =

 1 x1
...

...
1 xn


and X and X are the design matrices corresponding to the
observed bounds and

y =

 y1
...

yn


is the column vector of the values of the dependent variable.
Here, we assume a fixed covariate design, but the results
naturally translate to a stochastic covariate design. The set
OLS can serve as a reasonable set-valued estimate for the
true but unidentified parameters in the sense that this set al-
ways contains the classical OLS estimate one would obtain,
if one would know the unobserved covariates. Furthermore
(under certain assumptions), this set-valued estimate con-
verges almost surely to the identification region of the best
linear predictor. For more details about this, see for exam-
ple [14, 2, 3] (compare also, e.g., [9, 12], especially for
other forms of identification regions). In the sequel, we are
only interested in the slope parameter β1 of the regression.
Generally, computing the exact set OLS is computationally
very hard for large n. Especially, if one is also interested in
inference, one presumably has to estimate bounds for the
scale parameter σ2, which is generally NP-hard, see [8], cf.,
also [5]. Therefore, in this paper, we present methods that
give non-sharp upper and lower bounds for the slope param-
eter β1. We compare three approaches: The first approach
uses simple interval-arithmetic, the second uses reverse
regression and the known analytical results for a regres-
sion where only the dependent variable is interval-valued.
The third approach replaces the classical OLS estimator
by another linear estimator and then applies an interval-
arithmetic analysis. Astonishingly, for the degenerate case
of precisely observed covariates, this estimator coincides
with the classical OLS estimator, which makes this ap-
proach very attractive. Additionally, the third approach can
be modified and generalized in many ways, see the outlook
given in Section 5.

1. The interval endpoints have to be always interpreted pointwise.

2. Three Approaches for Approximating the
OLS Set

2.1. Approach 1: Simple Interval-arithmetic

For simple linear regression the explicit formula for the
OLS slope parameter is

β̂1 =

n
∑

i=1
(xi−mean(x))(yi−mean(y))

n
∑

i=1
(xi−mean(x))2

. (4)

If now x cannot be observed and one only knows x ∈ [x,x],
then by elementary interval-arithmetic one can still deduce
that β̂1 lies in the interval [β̂

1
, β̂ 1] given by

β̂ 1 :=
∑

i:yi>mean(y)
(xi−mean(x))(yi−mean(y))

n
∑

i=1
(xi−mean(x))2

(5)

+

∑
i:yi<mean(y)

(xi−mean(x))(yi−mean(y))

n
∑

i=1
(xi−mean(x))2

(6)

β̂
1

:=
∑

i:yi<mean(y)
(xi−mean(x))(yi−mean(y))

n
∑

i=1
(xi−mean(x))2

(7)

+

∑
i:yi>mean(y)

(xi−mean(x))(yi−mean(y))

n
∑

i=1
(xi−mean(x))2

(8)

where

xi−mean(x) = xi−mean(x) (9)

(xi−mean(x))2 = min{(xi−mean(x))2,(mean(x)− xi)
2}

(10)

if [xi,xi]∩ [mean(x),mean(x)] = /0 and
(11)

(xi−mean(x))2 = 0 else (12)

(xi−mean(x))2 = max{(xi−mean(x))2,(mean(x)− xi)
2}.

(13)

This simple interval-arithmetic analysis constitutes our
first approach. (Note that there is a plenty of other forms of
interval-arithmetic analyses, for example one other possi-
bility would be to make an interval-arithmetic analysis for
the representation of β̂ as
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β̂ = (X ′X)−1X ′y. (14)

For analysing the inverse of (X ′X) one could use for exam-
ple the results given in [10].)

2.2. Approach 2: Using Reverse Regression and
Analytical Bounds

The second approach uses the idea of reverse regression.
For a sample x = (x1, . . . ,xn) and y = (y1, . . . ,yn), let βyx =
Cov(x,y)
Var(x) be the slope parameter if we regress y on x and let

βxy =
Cov(x,y)
Var(y) be the slope of the reverse regression, i.e., the

slope parameter if we regress x on y. Then it is well known
that because of the Cauchy-Schwarz inequality we have

|βyx| ≤
1
|βxy|

. (15)

Thus, if we can establish a lower bound for the slope
parameter for the reverse regression, then we can compute
an upper bound for the original regression. (For simplic-
ity, we assume here that both slope parameters are non-
negative.) Since for the reverse regression the roles of x and
y are swapped, we have an interval-type regression prob-
lem where only the dependent variable is interval-valued.
Concretely, we have βyx =

[
(Y ′Y )−1 Y ′x

]
11

with precise Y
and only x interval-valued. The set of all OLS-parameters
where x varies over all possible values is then simply the
image of an n dimensional interval under a linear map, thus
a zonotope, which is easily enough to describe, see [14]
for a detailed analysis. Thus, we can analytically compute
the smallest slope parameter for the reverse regression and
get an upper bound for the original regression. Note that
usually the bound given by the reverse regression is not
sharp, it is sharp if the error term is zero and it usually gets
more loose if the error term has a higher variance.

2.3. Approach 3: Replacing OLS by Another Linear
Estimator

The third approach is based on the observation that it is
enough to have two different data points (xi,yi);(x j,y j) to
estimate the slope of the regression in an unbiased way
as y j−yi

x j−xi
. Since one usually has more than two data points,

one can make use of all pairs of data points and use as an
estimate a weighted mean of the form:

β̂1 := ∑
j>i

α ji ·
y j− yi

x j− xi
(16)

with weights α ji ≥ 0 such that ∑
j>i

α ji = 1. Since every term

y j−yi
x j−xi

, if treated as a random variable, has expectation β1,

the estimator β̂1 is in fact an unbiased estimator of β1. The
variance of the estimator is2

Var(β̂1) =Var

(
∑
j>i

α ji ·
y j− yi

x j− xi

)
(17)

= ∑
j>i

Var
(

α ji ·
y j− yi

x j− xi

)
(18)

+ ∑
j>i,l>k,

(i, j)6=(k,l)

Cov
(

α ji ·
y j− yi

x j− xi
,αlk ·

yl− yk

xl− xk

)
(19)

= ∑
j>i

α2
ji

(x j− xi)2 ·Var(y j− yi) (20)

+ ∑
j>i,l>k,

(i, j)6=(k,l),
|{i, j,k,l}|≤3

α ji ·αlk

(x j− xi)(xl− xk)
Cov(y j− yi,yl− yk)

(21)

= ∑
j>i

α2
ji

(x j− xi)2 ·2σ
2 (22)

+ ∑
j>i,l>k,

(i, j)6=(k,l),
|{i, j,k,l}|≤3

α ji ·αlk

(x j− xi)(xl− xk)
·±i jklσ

2 (23)

with ±i jkl ∈ {−1,+1} depending on the exact order of
i, j,k and l. This is a positive semidefinite quadratic form in
the coefficients α ji. Thus, we can minimize the variance of
the estimator by solving a quadratic program. Note that the
independent variable is treated here as fixed, but the analy-
sis also naturally translates to an analysis of the conditional
variance given x within a stochastic covariate design. With
this, we have an estimator which is linear in y and we can
now use a simple interval-arithmetic analysis to deal with
an imprecisely observed x by defining

β̂ 1 := ∑
j>i

α ji ·
y j− yi

x j− xi
(24)

β̂
1

:= ∑
j>i

α ji ·
y j− yi

x j− xi
(25)

where

x j− xi := min{x j− xi | x j ∈ [x j,x j],xi ∈ [xi,xi]} (26)

x j− xi := max{x j− xi | x j ∈ [x j,x j],xi ∈ [xi,xi]}. (27)

Here, we assume that [xi,xi]∩ [x j,x j] = /0. Otherwise we
could simply set the corresponding coefficient α ji to zero.
Furthermore, ties in the covariates can be handled by remov-
ing duplicated values and weighting the sample accordingly
beforehand. Analogously to above, also for this imprecise
situation, one can calculate the α ji’s such that the variances

2. | · | denotes here the cardinality of a set.
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of the estimators are minimal. But note that, opposed to
the precise case, for different choices of the coefficients,
also the expectation of the estimators vary such that one
has here a tradeoff between the narrowness of the interval[

E
(

β̂1

)
,E
(

β̂1

)]
(28)

and the variability of the interval

[β̂1, β̂1]. (29)

This is especially important if one wants to calculate con-
fidence intervals, because the choice of the tradeoff then
dependends on the exact used confidence level. For sim-
plicity, in the simulation study of Section 3, we always
used that coefficients α ji that minimize the variability of
the estimators. A further point worth mentioning is that the
above analysis is only valid for the homoscedastic case. For
the heteroscedastic case the situation is more subtle, but
one can at least do the following: One can simply take the
mid-points of the covariate intervals and then estimate with
the midpoints for example only the linear trend of the error
variability and then apply a weighted regression. Of course,
this estimate of the linear trend would then generally be
biased. But one can still hope that this biased estimate is
better than an estimate of zero implicitly induced by the as-
sumption of homoscedasticity. (Note that also for a biased
estimate of the trend, the weighted OLS is still a consistent
estimator.)

2.4. Relation to the OLS Estimator

In this short section, we show that the estimator from ap-
proach 3 is closely related to the OLS estimator by stating
the following

Theorem 1 For the case of degenerated interval-valued
covariates (i.e., x = x), the bounds given in equations (24)
and (25) coincide with the value of the slope parameter of
the classical OLS estimator.

Proof First, without loss of generality let us assume that the
values (x1, . . . ,xn) are already ordered increasingly. Then
the OLS estimator is a linear form in y:

β
OLS
1 =

n

∑
i=1

ci · yi. (30)

with fixed coefficients c1, . . . ,cn. As can be seen from equa-
tion (4) the ci’s are then also ordered increasingly. Further-

more, we have
n
∑

i=1
ci = 0 because the OLS estimator is an

unbiased estimator and if we would have
n
∑

i=1
ci = C 6= 0,

this would contradict the fact that for example for y≡ 1 we

would get β̂ OLS
1 ≡C 6= 0. Now we will show that β̂ OLS

1 can
be represented as

∑
j>i

α ji

x j− xi︸ ︷︷ ︸
=:d ji

(y j− yi) (31)

with non-negative α ji and therefore also non-negative d ji.
Because the OLS estimator is unbiased, necessarily the
α ji’s sum up to 1. With this representation we can then
argue that the OLS estimator is one special estimator in
the set of estimators considered in approach 3. Since the
OLS estimator is the estimator with the lowest variance
under all unbiased linear estimators, it coincides with the
minimal-variance estimator of approach 3.

Now, to establish the above representation we take d ji 6=
0 only for j = i+ 1. Then we have to find values di+1,i
which satisfy

n

∑
i=1

ciyi =
n−1

∑
i=1

di+1,i(yi+1− yi) (32)

for arbitrary y. To guarantee this, we have to ensure that

cn = dn,n−1 (33)
cn−1 = dn−1,n−2−dn,n−1 (34)
cn−2 = dn−2,n−3−dn−1,n−2. (35)

... (36)

For this it is enough to set

dn,n−1 = cn (37)
dn−1,n−2 = cn−1 +dn,n−1 = cn−1 + cn (38)
dn−2,n−3 = cn−2 +dn−1,n−2 = cn−2 + cn−1 + cn. (39)

... (40)

We now only have to make sure that all d ji’s and therefore
all α ji’s are non-negative. But this is clearly the case be-
cause the sum of all increasingly ordered c1, . . . ,cn is zero
and thus taking only a sum ck + . . .+ cn will necessarily
also give non-negative values.

2.5. Confidence Intervals for Approach 3

From the above analysis, for a known dispersion σ2, one
can simply get the variability of the estimators. This can
be used for constructing approximate confidence intervals.
(Note that the same would also apply for approach 1.) How-
ever, one usually does not know the dispersion σ2 of the
unobservable error terms εi and this dispersion parameter
is in our situation generally only partially identified. More-
over, computing a tight upper bound for σ̂2 is NP-hard, see
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[8]. However, one can still use non-sharp bounds to get
conservative confidence intervals for the estimators of the
bounds. One possibility for doing so is to use the results
given in [8]. There it is shown that (assuming the intercept
and the slope to be non-negative)

σ̂
2 ≤min{||w||2 | Xβ −w≤ y,−Xβ −w≤−y,β ≥ 0}

(41)

The right hand side of this inequality can be computed
using linear programming. This result will be used in our
short simulation study.

3. A Short Simulation Study
We now conduct a short simulation study. We take n = 50
data points and β0 = β1 = 10. We simulate under three
different scenarios which are different in the distribution
of the covariates. Within every scenario we look at three
different situations with a low, a medium and a large
dispersion of the error terms, respectively:

Scenario 1: Uniform covariate distribution:
x = (1, . . . ,50), dispersion σ ∈ {10,100,1000}. The
lower bounds for the covariates are defined as xi = xi−0.4.
The upper bounds are defined as xi = xi +0.4.

Scenario 2: right skewed covariate distribution:
x=(12,22, . . . ,502), dispersion σ ∈{1000,10000,20000}.
The lower bounds for the covariates are defined as
xi = (i − 0.4)2. The upper bounds are defined as
xi = (i+0.4)2.

Scenario 3: left skewed covariate distribution:
x = (

√
1,
√

2, . . . ,
√

50), dispersion σ ∈ {10,50,100}. The
lower bounds for the covariates are defined as xi =

√
i−0.4.

The upper bounds are defined as xi =
√

i+0.4.

We always simulated 100 times. Table 1 to table 3 show
for every method both the estimated expectation and the es-
timated standard deviation for the corresponding estimator
of the upper bound. (We omitted the results for the lower
bounds because approach 2 does not give a lower bound
and the results for the lower bounds for the other methods
are similar to the results for the upper bounds.) Additionally,
for method 3 we computed the upper bound σ̂ for the scale
parameter based on [8, Theorem 7.4 (c)], averaged over all
100 simulations. Additionally, to get a feeling for the sharp-
ness of the bounds, we did a constrained optimization and
directly maximized the slope parameter for the classical
OLS estimator constrained on the condition x ∈ [x,x]. This
non-linear constrained optimization was solved using the
algorithm described in [4]. But note that it is not clear if
the optimizer did in fact find the global maximum. Thus,

the bounds given by the optimization procedure (called
reference in the tables) are only lower bounds for the upper
bound of the OLS set.

Table 1: Scenario 1: Uniform covariate distribution.

Approach σ = 10 σ = 100 σ = 1000

1, expectation 11.55 11.57 13.78
1, standard deviation 0.10 0.98 9.51

2, expectation 10.29 15.01 3257.02
2, standard deviation 0.09 1.02 26715.19

3, expectation 10.24 10.18 9.63
3, standard deviation 0.09 0.88 8.77

3, σ̂ 13.41 103.00 1003.21
reference 10.24 10.31 10.97

reference, sd 0.09 0.87 8.60

Table 2: Scenario 2: right skewed covariate distribution.

Approach σ = 103 σ = 104 σ = 2 ·104

1, expectation 11.55 11.69 12.09
1, standard deviation 0.20 1.93 3.80

2, expectation 10.42 28.08 93.38
2, standard deviation 0.17 3.81 48.29

3, expectation 10.54 10.45 10.36
3, standard deviation 0.18 1.79 3.58

3, σ̂ 1177.3 10158.9 20172.35
reference 10.24 10.25 10.38

reference, sd 0.17 1.72 3.42

Table 3: Scenario 3: left skewed covariate distribution.

Approach σ = 10 σ = 50 σ = 100

1, expectation 11.97 12.84 14.24
1, standard deviation 0.89 4.29 8.52

2, expectation 14.11 133.39 7927.76
2, standard deviation 0.85 110.42 50217.69

3, expectation 10.28 10.06 9.80
3, standard deviation 0.77 3.86 7.72

3, σ̂ 10.37 50.25 100.25
reference 10.31 10.57 11.06

reference, sd 0.77 3.78 7.51

4. Discussion of the Results
Now, let us shortly discuss the results.With exception of
Scenario 2 and σ = 1000, both the expectation, as well as
the standard deviation of the estimator for the upper bound
is always the smallest for approach 3. The performance of
the 3 methods are very similar for small dispersions of the
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error terms. As expected, for method 2 both the expectation,
as well as the standard deviation of the estimator is clearly
larger for larger dispersions of the error term. This makes
method 2 unattractive. But note that in a situation where
the covariates are not only observed in intervals, but where
the unobserved precise covariates are additionally prone to
measurement error, then, already for the case of precise co-
variates, the OLS estimator systematically underestimates
the true slope. In this situation, the reverse regression still
gives an unbiased estimate of a sharp upper bound for the
(then only partially identified) true slope parameter. This
is referred to as ’Frisch’s true regression’ in [13], (cf., par-
ticularly [6]). This analysis would then naturally translate
to the case of interval-valued covariates with additional
measurement-error in the unobserved precise covariates.
In this case it would thus be reasonable to use method 2
for the upper bound and method 3 for the lower bound of
the slope parameter. With respect to inference, as could
be expected, the estimates σ̂ tend to overestimate the true
unknown scale parameter. Thus, confidence intervals based
on these estimates will generally be conservative. Alterna-
tively, one could also use bootstrap methods for inference.
If there are more analytical, non-asymptotic exact solutions,
not for estimating σ , which is only partially identified, but
for the variability of the precise estimators of the bounds,
seems to be an open question.

5. Summary and Outlook

In this paper, we have investigated three simple methods to
obtain bounds for regression parameters for simple linear
regression. Especially method 3 showed that it can often
be useful to not directly adopt a known statistical problem
from the precise to the interval-valued case, but instead,
in a first step, to rethink the original statistical problem,
here the problem of linear regression: Something that is
(in a certain sense) most convincing (or convenient) in
the precise case (here the OLS estimator as the uniformly
best unbiased linear estimator under certain assumptions)
is not necessarily the most convincing starting point for
a generalization for the interval-valued case. Method
3 additionally allows for a plenty of modifications and
generalizations:

1) Instead of a weighted mean one can also use a
weighted median or another robust measure of location.
This will usually make the estimator more robust. Also for
the estimation of an upper bound for the scale parameter σ2

one could adopt robust methods. For example the location
free scale estimator analyzed in [11] is based on triples of
data points. Also this idea can be adopted straightforwardly
to the interval-valued case via interval-arithmetic. Also
the variance of the resulting scale estimator can then be
minimized by using a weighted median. (If one wants a

high breaking point then maybe one should stick to the
non-weighted median.)

2) Method 3 is also applicable for the case where
both the covariates, as well as the dependent variable are
interval-valued. We focused here on the case of a precise
dependent variable only because method 2 is not capable of
dealing with the situation of an interval-valued dependent
variable. Note further that in this situation, under additional
measurement error, although method 2 is not applicable,
one can still apply method 3 to the original, as well as the
reverse regression to get valid lower and upper bounds also
in this situation.

3) Also more than one covariate is no problem for
method 3. For example for two covariates one would have
to look at triples instead of pairs of data points and compute
a weighted mean over all triples. Note that also in the case
of multiple regression p data points can identify all slope
parameters and these parameters are simple linear forms in
the y’s. Furthermore, the extremal slope parameters are ob-
tained if the precise unobserved covariate values are set to
certain extremal points of the intervals. Of course, looking
at all p+1-tuples of data points would be computationally
challenging if one has a high number p of covariates. How-
ever, for example one could look not at all p+1-tuples of
data points, but instead on only that p+1 tuples for which
the data points have a high enough pairwise distance. Note
further that unfortunately, for additional measurement error,
the idea of reverse regression seems to not apply any more
for more than one covariate. A further open question is
if theorem 1 also translates to the case of multiple linear
regression. This is an interesting point for further research.
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