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Abstract
Random forest is an accurate classification strategy,
which estimates the posterior probabilities of the
classes by averaging frequencies provided by trees.
When data are scarce, this estimation becomes difficult.
The Imprecise Dirichlet Model can be used to make
the estimation robust, providing intervals of probabil-
ities as outputs. Here, we propose a new aggregation
strategy based on the theory of belief functions. We
also propose to assign weights to the trees according
to their amount of uncertainty when classifying a new
instance. Our approach is compared experimentally to
the baseline approach on several datasets.
Keywords: Imprecise random forests, imprecise
Dirichlet model, belief functions

1. Introduction

Ensemble learning can significantly improve the perfor-
mance of basic machine learning models. We may cite three
main approaches: bagging [5], stacking [20] and boosting
[12]. In a random forest [6], a variation of bagging, a large
number of unpruned decision trees are trained by intro-
ducing sample and feature randomness; the tree outputs
(decisions or class probability distributions) are then aggre-
gated either by voting or by averaging. Different aggrega-
tion schemes have been compared in [15]. Random forests
have been successfully applied in many settings. However,
making precise predictions is questionable when the avail-
able information is scarce, or when there is a large conflict
between the decision tree outputs. Then, an alternative con-
sists in keeping the model cautious by producing sets of
decisions, or probabilities, so as to achieve robustness.

In this paper, we deal with the case where random forests
provide imprecise predictions using Walley’s Imprecise
Dirichlet Model (IDM) [19]. Whereas classical inference is
based solely on posterior probability estimates, obtained by
calculating the class frequencies over the instances falling
into a leaf node, the IDM incorporates an imprecise infor-
mation with regard to these class frequencies in the form of
a set of Dirichlet distributions; consequently, by conjugacy,
the posterior information on the classes is an updated set of
Dirichlet distributions [4]. The information inferred from

the data falling into a leaf node can then be described by
lower and upper bounds on the posterior probabilities of
the classes. The interest of using the IDM in decision trees
so as to provide cautious decisions has been demonstrated
in several studies [2, 14, 18].

Since the prediction generated by the cautious random
forest is a set of probability intervals, aggregating the tree
outputs is more difficult than with precise predictions. Sev-
eral strategies may be used for this purpose. One consists
in first obtaining the prediction for each tree (using for
example interval dominance [17]), and then obtaining a
final prediction by majority voting or weighted majority
voting [1]. Another consists in directly merging all prob-
ability intervals in the ensemble, either using disjunction
or conjunction [7] or by averaging [11], and then making a
prediction based on the resulting probability intervals.

In this paper, we propose an approach to combine the tree
outputs based on theory of the belief functions [8, 16]. We
consider that the trees provide pieces of evidence about the
value of the true probability in the form of closed random
intervals defined on [0;1]. It is then easy to compute the
belief and plausibility of any event defined on [0;1], and
to use them in a cautious decision-making process [10].
We also study the interest of weighting the trees in the
ensemble, via two strategies: weights based on the number
of samples in the leaves, or weights equal to the length of
the intervals (epistemic uncertainty of the intervals). This
approach can be seen as a generalization of voting.

2. Preliminaries
2.1. Imprecise Dirichlet Model (IDM)

Let us assume a sample space Ω = {ω1, . . . ,ωK} with
K ≥ 2 elements, and let π1, . . . ,πK be an unknown multino-
mial distribution over Ω (with π j = P(ω j) for j = 1, . . . ,K.
Let N instances be sampled independently from this distri-
bution: we obtain a vector n = (n1, . . . ,nK), of numbers of
instances in each class (with ∑

K
j=1 n j = N). An imprecise

Dirichlet prior is updated by the likelihood of observations
into the following lower and upper posterior probabilities:

E(π j|n) =
n j

N + s
, E(π j|n) =

n j + s
N + s

. (1)
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The parameter s can be interpreted as a number of virtual
samples with unknown class information. Although several
studies have been conducted with regard to choosing an
appropriate value [3], this problem remains open.

2.2. Belief Functions Induced by Random Intervals

Let U and V be two random variables such that U ≤V ; they
may be viewed as determining a random interval [U,V ]
defining a belief and plausibility function on R:

bel(A) = P([U,V ]⊆ A), pl(A) = P([U,V ]∩A 6= /0), (2)

for any element A of the Borel sigma-algebra B(R) of the
real line [9]. Let Ii = [ui,vi] with i = 1, . . . ,n, and let m be
the mass function from the set I of closed real intervals of
[0,1] such that m(Ii)=mi with i= 1, . . . ,n and ∑

n
m=1 mi = 1.

Under this setting, the belief and plausibility functions are

bel(A) = ∑
Ii⊆A

mi, pl(A) = ∑
Ii∩A6= /0

mi, ∀i = 1, . . . ,n. (3)

The intervals Ii are called focal intervals of m [10]. This
definition provides a basis for pooling pieces of information
provided by the trees with respect to the class probabilities.

3. Combining Credal Decision Trees
We focus here on a binary classification problem. Assuming
a training data set (xi,yi) with i = 1, . . . ,N, where yi =∈
{0,1}, the probability that sample xi belongs to category 0
(respectively, 1) is written pi,0 (resp., pi,1).

We consider a random forest composed of T trees
{C1, . . . ,Ct , . . . ,CT}. Each instance xi in the feature space
belongs to a certain region of the random forest, defined
by the set of regions R = {L1

i , . . . ,L
t
i , . . . ,L

T
i } with Lt

i (the
region associated with) the leaf in which the instance falls
for tree Ct . The leaf information is summarized by (nt

i,N
t
i ),

where nt
i is the number of samples of category 1 and Nt

i is
the total number of training samples (the information being
available for all leaves Lt

i , t = 1, . . . ,T ).
The IDM gives an interval-valued estimate Ii

t = [pt
i,1, pt

i,1]

of pi,1:

It
i =

[
nt

i
Nt

i + s
,

nt
i + s

Nt
i + s

]
t = 1, . . . ,T. (4)

We propose to aggregate these intervals by computing
the belief and the plausibility of the interval [0.5;1], i.e. that
the available evidence points towards class 1 for instance
xi. According to Equation (2), we have

beli,1 = bel(pi,1 ∈ [0.5,1])

=
1
T

T

∑
t=1

I(pt
i,1 ≥ 0.5) =

T

∑
t=1

mt
iI(pt

i,1 ≥ 0.5),
(5)

pli,1 = pl(pi,1 ∈]0.5,1])

=
1
T

T

∑
t=1

I(pt
i,1 > 0.5) =

T

∑
t=1

mt
iI(pt

i,1 > 0.5),
(6)

where mt
i (t = 1, . . . ,T ) is the mass of interval It

i in the
aggregation process. Note that, by duality, we have beli,0 =
1− pli,1 and pli,0 = 1−beli,1. A natural choice is mt

i = 1/T ;
we propose here two alternatives, which depend on the
number of instances in the leaves. The first one is

mt
i =

Nt
i

∑
T
j=1 N j

i

, ∀t = 1, . . . ,T ; (7)

using Equation (7), leaves with fewer samples bring weaker
evidence. The second one defines, for t = 1, . . . ,T ,

mt
i =

1−ut
i

∑
T
j=1(1−u j

i )
, with ut

i =
s

Nt
i + s

, (8)

where ut
i is the level of epistemic uncertainty for instance

xi and for the tth tree. Intuitively, with this proposal, leaves
with a smaller epistemic uncertainty get larger weights.

A decision can then be made by applying interval domi-
nance to beli,1 and pli,1: we would choose class 1 whenever
beli,1 > 0.5, class 0 whenever pli,1 < 0.5, and leave the
decision as indeterminate otherwise.

4. Experimental Results
We compared the performance of our strategy with a base-
line approach, which consists in averaging the lower and
upper probability bounds over all trees: pi,1 = ave(pt

i,1)

and pi,1 = ave(pt
i,1). This baseline also produces indeter-

minate predictions: class 0 is chosen if pi,1 < 0.5 and class
1 if pi,1 > 0.5, the decision being indeterminate otherwise.
This baseline approach can be seen as a generalization of
averaging precise probabilities and has been shown to pro-
duce good results [11]. In our experiments, we compared
both proposals on eight data sets from the UCI Machine
Learning Repository [13]. Different values were consid-
ered for the IDM parameter: s ∈ {1,3,5}, so as to study the
behaviour of the various aggregation schemes with respect
to epistemic uncertainty.

We compared the models using the u65 criterion [21],
which is commonly used for comparing imprecise clas-
sification results. In the case of binary classification, u65
rewards precise and correct decisions with 1

N , and indeter-
minate ones with 0.65

N , thus making being cautious attractive
while still penalizing indeterminate predictions. The mean
value of u65 was computed using 10-fold cross-validation,
due to the small amount of data. We statistically assessed
the difference in u65 by repeating this procedure 50 times.
Throughout the experiments, the random forest always con-
sisted of 100 decision trees which were always trained to
the maximum possible depth.
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Tables 1, 2 and 3 display u65 values as a percentage. In
these tables, mass1 refers to mt

i = 1/T (all trees have an
equal weight), mass2 to Equation (7) (weights are propor-
tional to the number of samples in the leaf) and mass3 to
Equation (8) (weights depend on epistemic uncertainty).
We compared the best result obtained with either of the
credal approaches to that of the baseline, the best result
being indicated in bold. We used a Student t-test on the 50
results obtained in each case, the level of significance being
indicated using stars.

Table 1: Comparison in terms of u65 with s=1

Dataset mass1 mass2 mass3 baseline

Pima 77.37 76.71 77.30 78.11**
Heart 82.98 83.17 83.13 83.56

Biodeg 87.26 85.49 87.11 87.67*
B-cancer 96.19 95.15 96.07 96.14
Cardiac 77.96 77.98 77.96 78.12

Wine 82.42 79.46 82.34 82.74
Magic 94.52 93.53 94.41 94.68
Spam 95.36 94.33 95.22 95.50*

Table 2: Comparison in terms of u65 with s=3

Dataset mass1 mass2 mass3 baseline

Pima 78.33 77.32 78.19 78.22
Heart 83.06 83.70 83.89*** 82.56

Biodeg 87.99 85.69 87.64 87.80
B-cancer 96.15 95.10 96.03 95.96
Cardiac 78.59 78.80 78.90 78.75

Wine 81.86 79.06 82.07*** 81.45
Magic 94.32 93.57 94.28 94.23
Spam 95.27 94.32 95.14 95.26

Table 3: Comparison in terms of u65 with s=5

Dataset mass1 mass2 mass3 baseline

Pima 77.82 77.62 78.59*** 76.86
Heart 81.17 83.82*** 83.57 80.47

Biodeg 87.58 85.83 87.73*** 86.91
B-cancer 95.78 95.08 95.81 95.58
Cardiac 78.03 78.80 78.44 78.41

Wine 80.57 79.71 81.53*** 79.62
Magic 93.76 93.52 94.09*** 93.60
Spam 94.92 94.32 95.04*** 94.81

The belief function-based strategy performs slightly
worse than the baseline for small values of s. However,

as s increases, it outperforms baseline. Although we cannot
find a weighting strategy consistently giving the best per-
formances, weights based on epistemic uncertainty seem to
guarantee better results for high s values. Recall that in the
IDM, the parameter s is interpreted as number of virtual
samples with unobserved category. Therefore, larger values
induce a larger uncertainty. The belief-theoretic approach
combined with a weighting strategy seems to withstand
greater epistemic uncertainty, keeping the performances at
a good level while remaining determinate, probably due to
using appropriate weights.

The three different weighting strategies can be compared
based on these preliminary results. Giving equal weights to
the trees (mass1) seems to yield roughly the same results as
the baseline — including regarding robustness to epistemic
uncertainty. Weighting the trees based on the number of
samples in their leaves (mass2) does not seem to be consis-
tently better than the baseline in terms of u65, even for high
values of s. Weighting according to the level of epistemic
uncertainty (mass3) proves to be much more fruitful in this
case, even if both of these strategies (mass2 and mass3) are
based on the same information (number of samples in the
leaves attained in each tree by the test instance).

5. Conclusion

In this short contribution, we describe a new approach to
aggregate probability intervals on the posterior probabili-
ties of the classes produced by an imprecise random forest.
We focus on binary decision trees with outputs obtained
using the Imprecise Dirichlet Model. The approach is for-
malized within the theory of belief functions. The belief
that the instance belongs to the positive class is estimated
as the proportion of intervals supporting exclusively the
assumption p1 ≥ 0.5 (i.e., with lower bound greater than
0.5); the plausibility of the positive class, as the proportion
of intervals which do not contradict this assumption (up-
per bound greater than 0.5). A decision is then made by
applying interval dominance. We propose two variants by
assigning specific weights to the trees, based on the amount
of information associated with the leaf reached by the test
sample. The variants of our strategy are compared with the
baseline approach (which averages the probability inter-
vals) on several datasets. In presence of low uncertainty,
the baseline seems to perform better, whereas our approach
based on weights derived from the amount of uncertainty
seems to be much more robust when uncertainty increases.

Future work may be conducted in several directions.
First, we will consider learning automatically the weights
of the trees using the training data, similarly to the approach
proposed in [18]. Second, our aim is to provide a way to
interpret the results of the random forest, and in particular
to explain why a decision is indeterminate. Finally, we shall
study the extension of our approach to the multiclass case.
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