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Abstract

A reasonable assumption in recommender systems is that the rows (users) and columns (items) of
the rating matrix can be split into groups (communities) with the following property: each entry of
the matrix is the sum of components corresponding to community behavior and a purely low-rank
component corresponding to individual behavior. We investigate (1) whether such a structure is
present in real-world datasets, (2) whether the knowledge of the existence of such structure alone
can improve performance, without explicit information about the community memberships. To these
ends, we formulate a joint optimization problem over all (completed matrix, set of communities)
pairs based on a nuclear-norm regularizer which jointly encourages both low-rank solutions and
the recovery of relevant communities. Since our optimization problem is non-convex and of
combinatorial complexity, we propose a heuristic algorithm to solve it. Our algorithm alternatingly
refines the user and item communities through a clustering step jointly supervised by nuclear-norm
regularization. The algorithm is guaranteed to converge. We performed synthetic and real data
experiments to confirm our hypothesis and evaluate the efficacy of our method at recovering the
relevant communities. The results shows that our method is capable of retrieving such an underlying
(community behaviour + continuous low-rank) structure with high accuracy if it is present.
Keywords: Cluster detection, Inductive Matrix Completion, Orthogonal constraints

1. Introduction

In recommender systems (RSs) we aim to recommend items (e.g. movies, products, books) to
users. Oftentimes information about users (resp. items) is available in the form of categorical
attributes (commonly referred to as communities) such as gender, nationality, or occupation (resp.
genres, brands, or authors) Chen et al. (2013); Christensen and Schiaffino (2011); Seko et al. (2011);
Frolov and Oseledets (2019). Such information is frequently used, for instance, to improve RSs’
performance in terms of accuracy enhancement Frolov and Oseledets (2019), interpretability Dara
et al. (2019); Ledent et al. (2020), and scalability Jiang et al. (2020).

However, user and item communities are often not explicitly available. A typical solution to this
problem is to apply a clustering method on other forms of (non-categorical) side information. For
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instance, users are often clusterized considering user-user interactions Ahn et al. (2018); Qiaosheng
et al. (2019); Abbe (2018); Abbe et al. (2016); Yang et al. (2013). Another research direction is
concerned with providing partitions of the users and items into clusters based on a rating matrix
alone. A simple solution is to apply a clustering method to the user and/or item profiles obtained as a
natural byproduct of the rating prediction process of most collaborative filtering models Shi et al.
(2015); Boratto et al. (2010, 2016). However, such methods are ad hoc post-processing steps and do
not exploit the cluster structure in the predictions themselves.

Previous attempts at detecting user and item clusters based purely on a low-rank partially observed
matrix assume noisily observed pure community behaviour Qiaosheng et al. (2019); Ahn et al. (2018).
On the other hand, our hypothesis is that community behaviour and continuous low-rank structure
can coexist in the same matrix. To confirm or disprove this hypothesis, we aim to perform community
discovery and low-rank matrix completion jointly, by constructing a model which efficiently exploits
the "discreteness prior" on the existence of underlying user and item communities which play a role
in the generation of the ratings.

We assume the rows (users) and columns (items) of the matrix can be split into groups (com-
munities) with the property that each entry of the matrix is a sum of components corresponding to
community behaviour and a purely low-rank component corresponding to individual behaviour. Such
a decomposition was first introduced in Ledent et al. (2020), where an algorithm is provided to per-
form matrix completion based on this assumption, assuming complete knowledge of the communities
of users and items. In contrast, we formulate an optimization problem over all (completed matrix, set
of communities) pairs based on a nuclear-norm regularizer which jointly encourages both low-rank
solutions and the recovery of 'relevant’ communities. Since our optimization problem is non-convex
and of combinatorial complexity, we propose a heuristic algorithm to solve it.

Our experiments will address the following questions:

* Is it conceivable for the prior knowledge of the existence of communities, as opposed to a
more general low-rank prior, to improve the performance of matrix completion, without any
explicit knowledge of the community membership function? Specifically, on synthetic data,
how does our method perform in comparison with baselines that can be found in literature?

* Do real datasets (e.g. MovieLens) exhibit a non-trivial combination of discrete (community)
behaviour and continuous (generic low-rank) behaviour?

* In real RSs datasets, are the groups recovered by our methods meaningful and interpretable?

The presence of the predicted behaviour can be confirmed or disproved by evaluating whether
our methods (which model both phenomena) outperform baselines which do not allow for such
phenomena. Categorical information is easier to interpret than generic low-rank features: it can be
compared with known groups (e.g. genres), or more finely investigated (one can, e.g., search for
common plot themes). If confirmed, our hypothesis could shed light on the underlying phenomena
driving recommender systems predictions, greatly improving explainability.

2. Methodology and experimental design

Notation: Let R € R™*™ be a partially observed matrix. We denote by 2 C {1,2,...,m} X
{1,2,...,n} the set of observed entries and Ry, the matrix of observed entries with zeros imputed in
the missing entries. For all i < m (resp. j < n), write f(i) (resp. g(j)) for the community to which ¢
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(resp. j) belongs. Denote by d; (resp. d2) the number of user (resp. item) communities. Thus, f (resp.
g) are functions from {1,2,...,m} (resp. {1,2,...,n})to {1.2....,d;} (resp. {1.2....,d2}). By
abuse of notation, we will identify each element of w (resp. v) in {1.2....,d;} (resp. {1.2....,d2})
with the community f~1(u) C {1,2,...,m} (resp. g~1(v) C {1,2,...,n}) it represents.

2.1. Optimization problem

We propose the following optimization problem:

min min £ with L= Z ‘Cf(i),g(j) + Mi,g(j) + Uf(i)J + Zi’j — Ri,j’2

f,g CMUZ e
+2clClls + A [[IM [l + (U] + Az Z]l, (D)
subject to
Z My =0 Vu<di,v<d, Z Uy =0 Yu<dy,v<dy,
i€f 1 (u) j€g—1(v)
>, Zij=0 VYj<n, and Y Ziy=0 Vi<m, 2)
ief~1(u) jeg—1(v)

Here, Ao, Ay and Az are regularization parameters. The conditions (2) imply that the matrix
Z is free of any community-wide behaviour component for either users and items, and the matrices
M € R™*% and U € RU*" are free of any community-wide behaviour components for the users
and items respectively.

Note that the optimization is over not only the matrices C, M, U and Z, but also over the choice
of communities f,g. In the case where the community side information is fixed in advance, an
equivalent problem has been formulated in Ledent et al. (2020), where an iterative imputation
algorithm is proposed together with a proof of convergence.

2.2. Algorithm

Since (1) involves optimization over a combinatorial number of possible functions f, g we propose a
heuristic algorithm to reach a solution. Like (1), our algorithm takes as input the partially observed
matrix R and the hyperparameters dy, ds and A = {\z, A\c, Ay} Our strategy, further represented
in Algorithm 1, is as follows.

First, we solve the optimization problem (1) for f = ¢ = null (which is equivalent to d; = dy =
0). Secondly, we cluster both the rows and the columns of the recovered matrix, with the numbers
of clusters set to d; and do, yielding the partitions fy and gy respectively. Our next aim is now to
iteratively refine the partitions f and g. To this end, we solve problem (1) with f = fy,9 = go
fixed, obtaining the matrices RO = {Cy, My, Uy, Zy}, and consider, for each set of non-negative
parameters 6 = (61, 02, 03, 6,) in some predetermined set O, the following cluster profile:

S% = 6,Co + 02 Mo + 03Uy + 0420, 3)

where é’, M and U are m x n matrices such that éw = cf(i)g(j)w < m,j <n, Mi,j =
Mw(j)w <m,j <n,and f]i,j = Uf(i)JVi < m,j < n'. Foreach # € © we now obtain partitions

1. Note that since the matrices C', M, U and Z live in mutually orthogonal subspaces with respect to the Frobenius inner
product, the matrices C, M, U, Z (and in particular the loss £) are well-defined for any full matrix R = C+M+U+Z
for any given set of hyperparameters and partitions f, g.
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fo (resp. gp) of the users (resp. items) by clustering the rows (resp. columns) of S?. Next we
solve (1) fixing f = fy,g = gy, obtaining the matrices Rg = {Cy, My, Uy, Zy} and calculate
ly = L(Rq, Ro, A, fo, go). Finally, we compute the minimum ¢y_. of ¢y over all values of § and
retain the partitions fy_. , gs, .. and the associated matrices Rgmn ={Co,..» Mo, Uty Z0,i }-
Next we can feed this data to the next iteration of the algorithm: we use f%gmm to build the matrices
5?5 again and continue the process until convergence.

Regarding the choice of the searched set ©, since we use the k-means algorithm as the clustering
procedure we can restrict ourselves to s such that 61 + 0 + 03 + 64 = 1, and for computational
reasons, we set O to be the intersection of that set with a given discrete grid. Note that the value
0 = (1,0,0,0) € © will always return the same clustering and the same loss as the previous iteration.
Thus, the loss is guaranteed to decrease monotonically at each iteration and the algorithm converges.

Remark 1: The motivation for using k-means as the background clustering procedure is that it
can be interpreted as a well-principled approximation to the optimization of the loss £ over the user
(item) cluster assignments: assume for simplicity that there are no clusters over items so that the
matrix is only composed of the terms C and Z, with A¢ = 0. For any clustering assignment over
the users, the rows of the matrix Z are the distances to the cluster centers. Minimizing the nuclear
norm of Z over the choice of assignments is very difficult due to the implicit (cross-cluster) low-rank
condition. However, if we instead consider the Frobenius norm (at small cost to the intuition), the
solution is given exactly by k-means.

Remark 2: The intuition behind the introduction of the heuristic search parameter ¢ and the
construction (3) of S? is as follows. If A and Ajs¢ are both very large?, and the item partition g is
correct, it is clearly best to cluster the rows of M + C. Indeed, the items only exhibit community
behaviour in those components. On the other hand, if the ground truth contains a large U component
(i.e. if there is significant interaction between user communities and specific items), or if the current
item partition ¢ is significantly wrong, then the component Z + U will be more relevant to the
clustering problem. We further split all components so we can look for solutions across a spectrum of
confidence in the current partition (a very large 6, will reset the optimization procedure to a distant
solution, whilst a large 6; will keep the current solution unchanged). Thus our algorithm includes a
mix of incremental steps and explorative search.

2.3. Synthetic data generation

To examine our proposed method in different regimes we aim to generate square matrices in R”*™
where the users and items are naturally divided into k clusters of size m /k. Without loss of generality,
the first cluster consists of the first m/k entries, etc. and we assume f, g are defined according to
this clustering arrangement. In our first strand of experiments, a wide range of ground truth matrices
R™>™ will be built from the following three basis matrices:

* [Pure community component] (A): First construct a random orthogonal k x k matrix A to
represent the cross-community affinities, then set U; j = Af(;) ¢(;) and set A to be a normalized
version of U of Frobenius norm m.

* [User x (Item community) and vice versa] (B): Construct two matrices Bl € Rmxk (and
B? € RF¥™) whose columns (resp. rows) are k random orthonormal vectors in {z € R™ :

2. This implies, assuming suitably cross-validated parameters, that the Z, M, U components of the ground truth matrix
are very small.
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Algorithm 1 Collaborative Clustering
INPUT: Partially observed matrix Rq and hyperparameters dy,d2, A = {\z, A\c, A\pu }

I: f=null,g =null

2: Z =argming L(Rq, A, f,9)

3: j:o = clusterRows(Z, d1), gg = clusterColumns(Z, d2)

4: Ry = {Co, My, Uy, Z()} = arg minC7M7U7Z ,C(RQ, A, fo, g())
5: repeat

6:  MAKE Cy, My, Uy FROM Ry, fo, go

7. f= fo,9= 90,00 = L(Rq, Ro, A, fo, 90)
8
9

for0 € © do . .
SO = 0,C + 0oM + 63U + 042
10: fo = clusterRows(S?, d1), gy = clusterColumns(S?, d2)

11 Re = {Co, My, Uy, Zo} = argming p v,z L(Ro, A, fo, go)
12: lg = L(Rq, Ry, A, fo, 90)

13:  end for

14: Opin = arg ming(¢p)

15: RO - Remin’ fO = femirﬂgo = gemin

16: until fo == fand go == ¢

17: return f,g

D ics- 1(6) x; = OVe € {1,2,...,k}} such that for each ¢ € {1,2,...,k}, the columns

vectors B! 1), for j < k are orthonormal (similarly for BQ) Set Uz J= Bz 905 + B2(1) y
and let B be a normahsed version of U with Frobenius norm m.
* [Community-free behaviour] (C): For each ¢1, ¢ € {1,2,...,k}, (independently) generate

a random matrix U2 ¢ R™/k*(m/k=1) whose columns form an orthonormal basis of
the space {x € R™/* : 3. 2; = 1}. Then construct the matrix R™/Fxm/k 5 Cevez —
uee2(U Cl’CQ)T (for each ¢y, ¢2). Define C' € R™*™ as a block k x k matrix whose blocks
are the matrices C°*°2, Finally, C'is a normalized version of C with Froebenius norm m.

Note that for a given f, g, the matrices A, B, C belong to the (independent) subspaces corresponding
to C, (M + U) and Z respectively. Using these basis matrices, we can construct matrices of the
form:

R(a,B) := A+ aB+ pC, ()

where the parameters « and 3 regulate the importance of ground truth behaviours associated to A, B
and C'. We plan to run experiments varying « and 3 as well as the proportion of observed entries
of R(«, ) and observe how our method performs in different difficulty regimes. Note that the
orthogonality conditions we imposed in the specific construction above make the problem especially
well-behaved: in the ground truth solution, all clusters of both users and items have equidistant
centers, and all of the vectors in any given cluster are equidistant to each other and each is at the
same distance from the center. This means no cluster is easier to detect than any other.

In our second strand of synthetic experiments, we will verify that the proposed method per-
forms well in a slightly less contrived setting without the orthogonality constraints presented above.
Specifically:
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* The pure community component A will be constructed as a k x k matrix with i.i.d. N (0,1)
entries. The (normalised) matrix A will be constructed from A as before.

« The columns of the user X community raw matrix B* € R™** are projections of independ-
ent isotropic Gaussian vectors in R™ onto the space {z € R™ : > . Fl(e)Ti = OVe €
{1,2,...,k}}. B?is constructed similarly. Further normalisation steps are unchanged.

* The matrix C' corresponding to pure low-rank effects, is simply constructed with i.i.d. N(0,1)
entries, then projected to the space { X € R™*™ : Zief—l(c) xi; =0vce {1,2,...,k},j <
M A ieg-1() Tiyj = 0Vc € {1,2,...,k},i < m} and normalised to have unit Frobenius
norm.

In the above situation, it is no longer true that each cluster is equally hard to detect.

2.4. Baselines

In the scenario where no explicit side information is provided for users or items, two branches of
clustering frameworks are widely used in collaborative filtering-based recommendation systems: (1)
matrix factorization (MF) methods and (2) nearest neighbor (NN) methods. We select as baselines a
state-of-the-art representative example of each branch as follows:

* [MF]: Apply standard nuclear-norm matrix factorization Mazumder et al. (2010) and then
cluster the rows (resp. columns) of the recovered matrix to detect communities of users (resp.
items).

* [NN]: Nearest neighbor methods typically calculate a statistical distance between users (resp.
items) using only the known entries, and then group the users (resp. items) hierarchically. As a
representative example, we propose to use the Pearson correlation.

2.5. Hyperparameter selection and scalability

The relevant hyperparameters in our model are dy, ds, Az, A\c, Aprp. In practice, they can later
be determined through cross validation. Note that the CV procedure can be executed in parallel:
different sets of (A, d1, d2) can be fitted separately. In the case of d; and do, it is not necessary to
run the full algorithm for each combination. Indeed, note that the choice of d; and ds is likely to
have a large effect on the optimal loss for typical values of A. Thus, a promising strategy is to run a
rudimentary version of our algorithm (e.g. with a single clustering step) for several d;’s and dy’s,
and select the best performing values.

Regarding the for loop in Algorithm 1 (lines 8-13) observe that the iteration ¢ + 1 does not
depend on iteration 7. In this case, small adjustments also allow these steps to be executed in parallel,
significantly reducing the computing burden of the search for the parameters O.

Note that line 11, which requires performing an iterative imputation procedure to solve the
version of problem (1) for known f, g, can be greatly accelerated with warm starts: the full recovered
matrix from the previous iteration (of the repeat loop) is used as a warm start for each value of O,
so that only a small number of imputations is required. Similarly to other involved optimization
algorithms?, further improvements can be performed if necessary: for instance, one could initially

3. such as architecture search for neural networks
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select the optimal value of © based on an even smaller number of imputations, and perform a more
thorough imputation procedure on the chosen © before moving to the next iteration of the repeat
loop.

2.6. Evaluation procedure

In the synthetic data, we propose to assess the agreement of our clustering method with the ground
truth using the Rand Index. Let f1, fo be two partitions of a set {1,2, ..., m}, the Random index
rand(f1, f2) between f; and f; is defined as the proportion of pairs of elements in {1,2,...,m}
which are either placed in the same cluster in both partitions f1, fo or placed in a different cluster in
both partitions fi, fa:

rand(f1, f2) = #(Sfl,fQ)/< ;L > where
Sp.f. = (in iz} [f1(i1) = f1(i2) A fa(in) = f2(i2)] V [f1(i1) # f1(i2) A f2(i1) # fa(i2)]) -

Note that the random index is well defined even if f; and f5 return a different number of clusters.

2.7. Real data experiments

We intend to evaluate the behaviour and performance of our methods on broadly used and stable
benchmark datasets such as MovieLens, Douban and LastFM. In the real data experiments, since we
do not have access to the "correct" clusters, we can only rely on the following two ad hoc solutions:

» comparing the accuracy (for instance the RMSE) of our method with that of other methods
such as a single optimization of Problem (1) with f = g = null; and

* manually observing correlations between our recovered clusters and explicitly or implicitly
available categorical side information (such as movie genres or common plot themes).

3. Related work

Community discovery is a widely researched task in recommender systems. In Ahn et al. (2018), the
authors propose a probabilistic model to solve binary matrix completion with graph side information
based on the assumption that the users form communities. The clusters are recovered from the graph
information via the stochastic block model (SBM), and the cluster preferences are then recovered
from the observed data. Similar approaches can be observed in Abbe (2018); Abbe et al. (2016);
Abbe and Sandon (2015); Holland et al. (1983); Qiaosheng et al. (2019). The main difference
between these works and ours is that they do not allow for non-random user-specific behaviour within
each cluster (except Qiaosheng et al. (2019)), that is, there is no difference between predicting the
matrix and predicting the clusters. In that respect, our setting is more similar to the regularization
based techniques Kalofolias et al. (2014); Ma et al. (2011); Jamali and Ester (2010), but our method
is different. The paper Qiaosheng et al. (2019) is to our knowledge the only work that incorporates
item-specific behaviour in a community detection context. They do so in a discrete fashion with the
concept of "atypical" movies and users, whilst our approach is a continuous one, which includes
the possibility of representing any matrix (at a regularization cost). A deep learning approach to
extracting community information from graphs is offered by graph neural networks Defferrard et al.
(2016); Wu et al. (2019); Henaff et al. (2015).
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Another systematic work which studies collaborative clustering is Ok et al. (2017), which
provides a deep theoretical analysis of a model where items must be clusterized based on discrete
ratings given by users, themselves belonging to certain communities (here the ratings are iid for any
fixed pair of communities and no specific algorithm is presented). In Shi et al. (2015); Boratto et al.
(2010), the authors detect user groups applying k-means on the user-latent factor matrix (imputing
the unknown entries via collaborative filtering). Nearest neighbor techniques are also employed in
aggregation methods: in Baltrunas et al. (2010), the authors use the Pearson correlation to define
the similarity among the users while in Kim and El Saddik (2015), the cosine similarity is applied.
One distinguishing characteristic of our model is that it is able to learn both ratings and communities
Jjointly. It is important to point out some authors explore orthogonality and factorization to implement
clustering in matrices Ding et al. (2006); Liu et al. (2013); Li et al. (2010). However, these works
differ from ours since they start from a fully-known matrix, and use different methods. The most
related work to ours is Ledent et al. (2020), which studied the case where there the community
memberships are known. In contrast to this work, here we study how to recover both communities
and the matrix starting only from the incompletely observed matrix.

4. Experimental results

We have strictly followed the methodology and the experimental design proposed in Section 2.
To describe our experiments’ outcomes, we first introduce and discuss the results of the synthetic
experiments (Section 2.3). Then we then show how our method performed on a real-world data sets
(Section 2.7). Finally, we discuss the results in light of the proposed hypotheses and questions that
guided this research (Section 1).

4.1. Synthetic experiments

In Section 2.3 we proposed two generation procedures strands. In both of them, the parameters o and
5 in (4) regulate the importance of the community components and the community-free component.
We varied « and S in {0,0.25,0.50,0.75,1}. We also varied the percentage of observed entries
Pq € {0.15,0.30}. For both experiments strand and for each each possible combination of «, 5 and
Pq, we generated 40 samples of R(«, 5) € R"*"™ with users (resp. items) divided into clusters of
size m/k, where m = 100 and k = 4.

All the hyperparameter tuning was done through cross-validation. We split the set of observed
entries 2 into two randomly sampled subsets: 95% for training and 5% for validation. The range of
the parameters was adjusted according to each model’s needs. In this section we refer to our method
as Collaborative Clustering ([CC]).

Figures 1 and 2 summarize the results of the performed simulations with respect to the accuracy
of the detected cluster by [CC] and the baselines [MF] and [NN] for strands 1 and 2, respectively.
Since the baselines do not provide a clear way to select the number of clusters, we assume that the
value is known, that is, d; = do = 4. We observe that our method consistently outperforms [MF]
and [NN], specially when the importance of the community-free component is low (5 is low).

We also investigate whether d; and ds can be determined through cross validation as suggested
in Section 2.5. For strand 1 (resp. strand 2), Figure 3 (resp. Figure 4) shows the distribution of the
detected number of clusters obtained by our method through cross validation. Note that, for both
strands, [CC] can often accurately predict the number of clusters, especially when the number of
observed entries is sufficient and the community-free component is small.
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Figure 2: Strand 2 - Rand index distribution grouped by the parameters «, 5 and P,

Finally, we compared the accuracy of our method with [MF]* that can be seen as single optimiza-
tion of Problem (1) with f = g = null. Let Ro¢ and Ry be the matrices R recovered through
[CC] and [MF] respectively. We proposed quantity ¢ = (||Ryrr — R||F — ||Rcc — Rl|r)/||R||F
to make the comparison between the methods. Note that ¢ is normalized by the Frobenious norm of
R which forces the matrices to be of similar scale. If ¢ is greater than 0 our method outperforms
[MF]. Figures 5 and 6 show, for strands 1 and 2 (respectively), the distribution of ¢ grouped by «, 3
and Pp. We observe that [CC] consistently outperforms [MF] in all scenarios.

4.2. Real-data experiments

To evaluate the behaviour and performance of our methods on broadly used and stable benchmarks
we considered the following datasets: Douban, LastFM and MovieLens.

« Douban’ (R € R*999%4577). Douban is a social network where users can produce content
related to movies, music, and events. Douban users are members of the social network and
Douban items are a subset of popular movies. The rating range is [1,5] € N and the entry
(i,7) corresponds the rating of user 7 to movie j. The authors collected the movies’ genres
from the Douban website.

4. Note that [NN] does not aim to predict the unknown entries but only recover clusters.
5. Rating matrix available in https://doi.org/10.7910/DVN/JGHIHA
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Figure 3: Strand 1 - The distribution of the number of our model detected clusters according to the
parameters «, 5 and P
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Figure 4: Strand 2 - The distribution of the number of our model detected clusters according to the
parameters «, 3 and Pq
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Figure 5: Strand 1 - ¢ distribution grouped by the parameters «, 5 and Pg
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Figure 6: Strand 2 - ¢ distribution grouped by the parameters «, 5 and Pq
Table 1: Summary of the results of the real-world data experiments

Matrix RMSE Pearson Correlation | RandIndex[CC]
mXxmn Pq [CC] [MF] [CC] [MF] Users Items
Douban 4999 x 4577 | 0.0305 | 0.8796 | 0.9582 | 0.5443 0.5090 - 0.5548
LastFM 1875 x 4354 | 0.0051 | 2.1801 | 2.4109 | 0.5362 0.5040 - 0.7305
MovieLenz | 6040 x 3382 | 0.0448 | 0.8958 | 0.9280 | 0.6071 0.5943 0.7036 | 0.6080

 LastFM (R € R875x4354). T ast fm is a British music website that builds a detailed profile of
each user’s musical taste based on music recommendation. Differently from the other datasets
an entry (4, j) represents the number of views of user ¢ to band/artist j. We expressed the
number of views in a log scale. The website allows users to tag artists, which provides us
with the opportunity to group the items (artists) by their associated tags. The corresponding
(tag-based) groups were then compared to the clusters obtained by our method.

» MovieLens (R ¢ R6040%3382). We consider the MovieLens 1M dataset, which is a broadly
used and stable benchmark dataset. MovieLens is a non-commercial website for movie
recommendations. Just as in Douban, an entry (i, j) represents the rate of user ¢ to movie j on
a scale from 1 to 5. We selected this version of the dataset because in addition to the rating
matrix, cluster information such as age-range for users and genres for movies are available.

As proposed in Section 2.7 we aim to observe correlations between our recovered clusters and
explicitly or implicitly available categorical side information. We noticed that some of this categorical
side information was highly unbalanced: some categories have fewer than ten items while others
have thousands of items. In order to properly assess our method [CC] we keep only items that are
associated with categories which have a significant number of instances. Table 1 summarizes the
results of the real-world data experiments. Two important (and broadly used) metrics to measure
the accuracy in recommender systems are the RMSE and the Spearman correlation (both evaluated
between two vectors composed of the values on the test set of the ground-truth matrix R and the
estimated matrix R respectively) . Observe that [CC] has the lowest RMSE and largest Spearman
correlation on all datasets. Note correlations between our recovered clusters and available sets of
categorical side information are high, especially the item groups on the LastFM dataset and the users’
age-range on the MovieLenz dataset.
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4.3. Hypothesis discussion

Our hypothesis is that community behaviour and continuous low-rank structure can coexist in the
same matrix. The research questions and methodology proposed in Section 1 aim to confirm or
disprove this hypothesis.

From the results on synthetic data (Section 4.1), we conclude our proposed method is capable
of retrieving such an underlying (community behaviour + continuous low-rank) structure with high
accuracy if such structure is present. This also results in a reduction in test error compared to baseline
methods which do not exploit the discreteness prior.

In Section 4.2, we showed that on real-life datasets, the use of our model results in a decrease in
the RMSE and an increase the Spearman correlation, compared to baselines which do not rely on our
core hypothesis. It follows that real-world datasets do, in fact, exhibit a non-trivial combination of
discrete (community) behaviour and continuous (generic low-rank) behaviour (although the extent to
which that is the case is moderate). Furthermore, the groups recovered by our method are interpretable
in the sense that they often correlate with available qualitative categorical side information (even
though this information was not fed to the model). This further confirms the relevance of our method
and hypotheses.

5. Conclusion

In this paper, we have presented a model which is based on a sum of terms corresponding to
community behaviour and continuous low-rank behaviour. A key characteristic of our model is that
the community membership functions and the low-rank matrix are optimized jointly, without access
to any categorical side information.

On synthetic data experiments, our model was able to disentangle the continuous (generic low
rank) and discrete (community-based) components and recover the underlying communities highly
accurately.

On real data experiments, the superior performance of our model, compared to baselines which
are agnostic to the existence of underlying categories, demonstrates that real data does exhibit a
non-trivial combination of discrete and continuous behaviour.
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