
Proceedings of Machine Learning Research 148:136–151, 2021 NeurIPS 2020 Preregistration Workshop

Paying Attention to Video Generation

Rishika Bhagwatkar rishika.vnit@gmail.com
Khurshed Fitter khurshedpf@gmail.com
Saketh Bachu saketh7000@gmail.com
Akshay Kulkarni akshayk.vnit@gmail.com
Shital Chiddarwar s.chiddarwar@gmail.com
IvLabs, Mechanical Engineering Department, Visvesvaraya National Institute of Technology, India

Abstract
Video generation is a challenging research topic which has been tackled by a variety of
methods including Generative Adversarial Networks (GANs), Variational Autoencoders
(VAE), optical flow and autoregressive models. However, most of the existing works model
the task as image manipulation and learn pixel-level transforms. In contrast, we propose a
latent vector manipulation approach using sequential models, particularly the Generative
Pre-trained Transformer (GPT). Further, we propose a novel Attention-based Discretized
Autoencoder (ADAE) which learns a finite-sized codebook that serves as a basis for latent
space representations of frames, to be modelled by the sequential model. To tackle the
reduced resolution or the diversity bottleneck caused by the finite codebook, we propose
attention-based soft-alignment instead of a hard distance-based choice for sampling the
latent vectors. We extensively evaluate the proposed approach on the BAIR Robot Pushing,
Sky Time-lapse and Dinosaur Game datasets and compare with state-of-the-art (SOTA)
approaches. Upon experimentation, we find that our model suffers mode collapse owing
to a single vector latent space learned by the ADAE. The cause for this mode collapse is
traced back to the peaky attention scores resulting from the codebook (Keys and Values)
and the encoder’s output (Query). Through our findings, we highlight the importance of
reliable latent space frame representations for successful sequential modelling.
Keywords: Video Generation, GPT, Transformer, Attention, Discretized Autoencoder

1. Introduction

Machine Learning (ML) paradigms and model architectures are designed and optimized,
keeping in mind the task that is intended to be solved or tackled (Alom et al., 2019; Liu
et al., 2017). This, in turn introduces passive yet influential notions for domain-specific
conventions and methodologies for modelling ML systems. While some notions like the
direct dependence of a model’s performance and the amount of relevant training data (Alom
et al., 2019; SUG, 2018) hold true for most cases, other factors like model architectures
and evaluation metrics differ drastically across tasks. A prime example of this is the stark
difference between models that deal with images and those that deal with temporal data
like speech and text. We propose an attempt to harness the best of both worlds for video
generation tasks.
Generating videos from initial frame(s), on the face of it, seems to be an image manipulation
task which could be tackled satisfactorily using models based on or employing generative
paradigms, mainly Generative Adversarial Networks (GANs) (Zhang et al., 2019; Gur et al.,

© 2021 R. Bhagwatkar, K. Fitter, S. Bachu, A. Kulkarni & S. Chiddarwar.

Paying Attention to Video Generation

2020; Clark et al., 2019; Luc et al., 2020). Such techniques usually focus on learning pixel-
level transforms (Li et al., 2017; Parmar et al., 2018; Vondrick and Torralba, 2017; Zhang
et al., 2019) and try to generate succeeding frames using learnable motion or pixel flow
characteristics (Ohnishi et al., 2017; Patraucean et al., 2016). However, an alternative stance
could be to formulate video generation as a sequence modelling task (Mittal et al., 2017;
Dandi et al., 2019a; He et al., 2018) on a finite set of latent vectors. The recent advancements
in Natural Language Processing (NLP) (Brown et al., 2020; Devlin et al., 2019; Radford
et al., 2018, 2019; Vaswani et al., 2017) reflect the success of sequence modelling on latent
space representations of language tokens.
Most of the current literature on video generation uses the former approach. However, we
choose the latter as our initial stance to leverage the advancements in sequential modelling.
Further, most video generation approaches use pixel-level predictions to model and generate
images as a series of pixels (van den Oord et al., 2016; Chen et al., 2017). We focus on latent
vector manipulation using sequential models, namely the Generative Pre-trained Transformer
(GPT) (Brown et al., 2020; Radford et al., 2018, 2019). Sequence models perform well at
learning the plausible neighbours or successors of a given set of language tokens. We propose
to extend the idea such that the model learns to predict the latent space representation of a
frame, by conditioning over a set of already available (predicted or provided) latent vectors
of previous frames.
We propose a novel Attention-based Discretized Autoencoder (ADAE) which learns a
discretized finite set of vectors called the codebook. The codebook is then used to generate
frame embeddings, analogous to word embeddings (Almeida and Xexéo, 2019; Mikolov
et al., 2013) in NLP. We use a discretized Autoencoder (AE) to ensure a finite latent basis
size, analogous to vocabularies in NLP. We intend to validate our approach on the BAIR
Robot Pushing (Ebert et al., 2017), Sky Time-lapse (Xiong et al., 2018) and Dinosaur Game
datasets and compare the performance with state-of-the-art (SOTA) approaches.
The main contributions of our work are:

1. A novel ADAE to represent an entire frame as an encoded vector referred to as a frame
embedding.

2. Utilizing the sequential modelling prowess of the GPT to sequentially model frame
embeddings.

2. Related work

2.1. Video generation

Videos can be generated from text, initial frames, complete videos and even pixel trans-
formations on existing frames (Li et al., 2017; Vondrick and Torralba, 2017; Parmar et al.,
2018; Cai et al., 2018; Girdhar et al., 2019). Video generation started off as a deterministic
modelling task and later shifted towards approaches involving GANs (Goodfellow et al.,
2014; Zhang et al., 2019; Gur et al., 2020; Mathieu et al., 2016; Vondrick et al., 2016; Saito
et al., 2017; Tulyakov et al., 2017; Acharya et al., 2018; Saito and Saito, 2018; Clark et al.,
2019; Luc et al., 2020), Variational Autoencoders (VAEs) (Dandi et al., 2019b; Gur et al.,
2020; van den Oord et al., 2018; Razavi et al., 2019; Denton and Fergus, 2018; Denton
and Birodkar, 2017; Lee et al., 2018; Hsieh et al., 2018), optical flow(Ohnishi et al., 2017;

137

Paying Attention to Video Generation

Patraucean et al., 2016) and autoregressive models(Ranzato et al., 2016; Srivastava et al.,
2016; Shi et al., 2015; Kalchbrenner et al., 2016; Weissenborn et al., 2020; Ho et al., 2019).
Using only VAEs does not provide the best of results, and using GANs usually makes the
models computationally expensive and difficult to train.
The current state of the art approaches like TRIVD-GAN-FP (Luc et al., 2020) and
autoregressive models like PixelSnail (Chen et al., 2017; van den Oord et al., 2016) deliver
great quality frames but come at a heavy price of training and deployment overheads and do
not seem to perform well on resolutions beyond 64× 64 pixels. A similar issue arises with
the attention and subscaling-based Video Transformer (Weissenborn et al., 2020; Menick
and Kalchbrenner, 2018).
The latest work, Latent Video Transformer (Rakhimov et al., 2020) generates videos by
generating latent space representations of frames, by coupling a Vector Quantized Variational
Autoencoder (VQ-VAE) (van den Oord et al., 2018) and an entire Transformer (Vaswani
et al., 2017). We use only the decoder blocks of the transformer, stacked on top of each other
to form a GPT-based sequential model along with our ADAE. The choice of decoder blocks
of the Transformer, over the encoder blocks, is due to the presence of masked self-attention
which forces the model to condition on the previously available (provided or generated)
frame embeddings. While masking off random samples (BERT-based paradigm (Devlin et al.,
2019)) may enrich the robustness of the generated embeddings, we prefer the GPT-based
approach to learn sequential modelling.

2.2. Latent space representation

The robustness and effectiveness of most NLP models depend heavily on the robustness
and contextual capacity of the token embeddings used (Almeida and Xexéo, 2019). Word
embeddings are the most commonly used latent space or embedded representations of tokens.
The GPT and BERT-based approaches are prime examples of successful NLP models banking
on robust embeddings. Other approaches like ELMo (Peters et al., 2018), further decompose
words into characters and hence do not need to worry about a fixed vocabulary space as
opposed to models like GPT and BERT which use a fixed size embedding space and outliers
are usually assigned a special token, resulting in a single referencing index for each token.
Latent space representations for images are usually continuous d-dimensional vector spaces
(d is the bottleneck or encoding dimension) and are learned using autoencoder-based models.
The VQ-VAE (van den Oord et al., 2018) and VQ-VAE-2 (Razavi et al., 2019) models, learn
a discretized, finite subset of the d-dimensional latent space called the codebook, the size
of which is fixed a priori. However, the discrete vectors in the codebook, contain mainly
positional information about the latent space representation of an image.
We propose a novel Attention-based Discretized Autoencoder (ADAE) that discretizes the
continuous latent space Rd into a finite codebook. However, unlike the VQ-VAE models
(van den Oord et al., 2018; Razavi et al., 2019), the codebook in our model forms a basis that
is used to encode an entire frame into a single vector using an attention-based soft-aligned
linear combination (Vaswani et al., 2017; Bahdanau et al., 2016) of the codebook vectors.

138

Paying Attention to Video Generation

3. Approach

3.1. Attention-based discretized autoencoder

In typical reconstruction AEs, the encoder E(.; θ) learns to map an input x ∈ RH×W×C

to a vector belonging to a continuous latent space Rd, i.e. E(x; θ) = z ∈ Rd where
d is the bottleneck dimension. The decoder jointly learns a mapping from z ∈ Rd to
D(z;φ) = x′ ∈ RH×W×C . The loss criterion is simply the Mean Squared Error (MSE) loss
between the output of the decoder and the input.

L(x,x′; θ, φ) =|| x− x′ ||22 (1)

Such AEs can not be directly paired with language models due to the latter’s requirement
of finite vocabulary sizes. We discretize the latent space of the AE into a finite set ξ =
{ei} ∀ i ∈ [1, N], forming a codebook of N vectors with each vector ei ∈ Rd. The latent
vector z is now a linear combination of the codebook vectors.

z =
∑
i∈I

aiei (2)

Where, I is the set of top-k indices, ranked in decreasing order of normalized attention scores
ai = A(E(x; θ), ei) as per the attention metric A(., .). This introduces a soft-alignment
metric as opposed to a choice based on strict minimal distance. If we replace the linear
combination by

z = ej such that || E(x; θ)− ej ||
2

2 < || E(x; θ)− ei ||
2

2 ∀ i ∈ [1, N]− {j} (3)

then similar inputs may produce identical outputs leading to a diversity bottleneck. We
tackle this by introducing an attention-based soft-alignment (Bahdanau et al., 2016; Vaswani
et al., 2017). We formulate our loss function as

L(y, ŷ; θ, φ, ei) =|| y− ŷ ||22 + || sg[E(x; θ)]− ei ||
2

2 +β || E(x; θ)− sg[ei] ||
2

2 ∀ i ∈ I (4)

The loss function is similar to that proposed by Razavi et al. (2019) and the first term is
simply the MSE loss between the label and decoded output. The stop-gradient operation is
denoted by sg[.] and β is a hyperparameter which incorporates the relative reluctance of
changing the codebook corresponding to the encoder’s output.
The fundamental difference between our Attention-based Discretized Autoencoder (ADAE)
(shown in Fig. 1a) and the VQ-VAE (van den Oord et al., 2018; Razavi et al., 2019) models,
is that the latter focuses on learning a grid-like latent space representation for an input,
with the latent vectors being sampled from a discrete codebook and the reconstruction is
done pixel by pixel. Our model on the other hand, learns to encode an entire frame as a
linear combination of discrete vectors from a learnable codebook. The reconstruction is not
autoregressive (as opposed to the works by van den Oord et al. (2018); Razavi et al. (2019))
and the decoder learns to model the distribution p(x | z).

139

Paying Attention to Video Generation

(a) (b)

Figure 1: (a) A block diagram of our ADAE model. The attention metric A(., .) calculates
attention scores between the encoder’s output and codebook vectors. The normal-
ized scores are used as coefficients of the corresponding codebook vectors to get
the frame embedding (z). The frame embedding is then passed to the decoder
for reconstruction. (b) A block diagram of our approach. The GPT is given
t frame embeddings (z{1,2,...t}) and it predicts t probability distributions, each
corresponding to the model’s prediction for the succeeding frame embedding, for
each frame in the input set. Note: In both the figures, we have shown only 1
RGB frame, with top-k filtering disabled.

3.2. Generative pre-trained transformer

A GPT (Radford et al., 2018, 2019; Brown et al., 2020) is a large, generative, attention-based
sequential model, based on the Transformer model (Vaswani et al., 2017). However, the
model utilizes only the decoder blocks of the Transformer model and employs masked
self-attention to learn sequential generation of tokens.
We propose to interpose a GPT-based model between the encoder and decoder parts of our
proposed ADAE (as shown in Fig. 1b) to learn sequential modelling over the latent vectors.
The output of such models is usually a probability distribution vector of length equal to
the number of elements in the vocabulary. The indices of top-k probability scores from this
output distribution are used to form the set I. This set contains indices of the attention
scores to be used as coefficients of the codebook vectors to form a linear combination as
per Eq 2. The result of this linear combination (frame embedding) is then passed to the
ADAE’s decoder for reconstruction.

4. Experiments

4.1. Datasets

• BAIR Robot Pushing Dataset: This dataset (Ebert et al., 2017) contains about
59,000 videos (≈ 1.5 million video frames) of robots interacting with objects mainly
via pushing motions. It is divided into a training set (57,000 videos), an unseen test
set and a seen test set (1,250 videos each).

140

Paying Attention to Video Generation

• Sky Time-lapse Dataset: This dataset (Xiong et al., 2018) contains about 38,000
videos of 32 frames each. The videos are time lapse shots of the sky with clouds and
stars moving across the frames and are sourced mainly from YouTube.

• Dinosaur Game Dataset: We have curated over 5 hours of video, containing clips of
Google Chrome’s "Dinosaur Game". The frames can be binarized into black and white
frames, hence providing us with a comfortably learnable dataset to test prototypes.

We resize all the frames to 64 × 64 × 3 pixels for a fair comparison with previous works,
although we shall further experiment using higher resolutions to evaluate the scalability.
Further, we introduce a downsampling parameter (md) to downsample or skip frames from
videos, in cases where consecutive frames are too similar. This helps ensure that the model
does not end up learning an approximate identity map for some cases.

4.2. Teacher forcing

Teacher forcing ratio (rtf) is the probability of using the ground truth as an input to a
sequential model, instead of its own prediction at a given time stamp. Usually, it is set to
1 while training and 0 while testing. However, we set it to 1 for a few initial frames (up
to one fourth of video length) and then set it as a hyperparameter which determines the
trade-off between ease of convergence while training and robustness while sampling.

4.3. Model architectures

Attention-based Discretized Autoencoder: We propose an ADAE which discretizes
the continuous latent space Rd into a fixed size codebook. This makes it almost intuitive to
use its codebook as a basis for the vocabulary or embedding space of a language model, like
the GPT employed by us.
We intend to implement broadly two classes of autoencoder architectures as a part of our
ablation study. The encoders are based on the architectures employed in VQ-VAE (van den
Oord et al., 2018; Razavi et al., 2019) and ResNet (He et al., 2015) along with their respective
symmetrical (mirror image) inversions as the decoder networks.
Further we propose varying the codebook size N , from about 1,000 to 65,000 (in steps of
≈ 8,000) and encoding/bottleneck dimension d, from around 200 to more than 2,000 (in
steps of ≈ 250). We intend to compare amongst and choose from a few attention metrics,
namely, dot product attention (Bahdanau et al., 2016), energy based attention and Key-
Query-Value-based attention (Vaswani et al., 2017) and shall be tuning the value of k for
choosing the top-k attention scores, for each metric.
Generative Pre-trained Transformer: The GPT model forms the sequential kernel of
our model and is interposed between the encoder and the decoder of our ADAE. It takes
in attended frame embeddings (z1, z2, . . . zt−1 ∈ Rd) and outputs the attention scores to
be used as coefficients for the linear combinations of the codebook vectors, to get the next
frame embedding (zt ∈ Rd) as per Eq 2.
We shall vary the depth of the model from about 10 to 40 stacked, modified Transformer
(Vaswani et al., 2017) decoder blocks, similar to the architectures proposed by Radford et al.

141

Paying Attention to Video Generation

(2019). Further, we will be using learnable positional embeddings as opposed to sinusoidal
ones used by Vaswani et al. (2017).

4.4. Training and evaluation metrics

As a part of our ablation experiments, we shall train our ADAE and GPT models jointly as
well as separately. When training separately, we shall train the ADAE as a reconstruction
autoencoder (x = y) first and then fine-tune it while training the GPT model. While
training jointly, we would train both the networks from scratch. However, while training
jointly, the labels would be the succeeding frame as opposed to the same frame in the disjoint
case.
Finally, we intend to evaluate our model on BAIR Robot Pushing and Sky Time-lapse
datasets and compare it with other models as shown in Tables 1 and 2.

Table 1: Frechet Video Distance (FVD) (Unterthiner et al., 2018) scores of various models,
referred from the work by Rakhimov et al. (2020).

Method FVD (↓)
SVP-FP (Denton and Fergus, 2018) 315.5
CDNA (Ebert et al., 2017) 296.5
LVT (Rakhimov et al., 2020) 125.8 ± 2.9
SV2P (Denton and Fergus, 2018) 262.5
SAVP (Lee et al., 2018) 116.4
DVD-GAN-FP (Clark et al., 2019) 109.8
TriVD-GAN-FP (Luc et al., 2020) 103.3
Video Transformer (Weissenborn et al., 2020) 94 ± 2
Ours 407.4

Table 2: Peak Signal to Noise Ratio (PSNR) and Strucutral Similarity Index (SSIM) (Zhou
Wang et al., 2004) scores of various models, referred from the work by Zhang et al.
(2020).

Method PSNR (↑) SSIM (↑)
MoCoGAN (Tulyakov et al., 2017) 23.867 0.849
MDGAN (Intrator et al., 2018) 23.042 0.822
DTVNet (Zhang et al., 2020) 29.917 0.916
Ours 2.445 0.192

Note: The FVD score has been reported on the BAIR dataset whereas the PSNR and
SSIM scores have been reported on the Sky Time-lapse dataset (following previous works).

142

Paying Attention to Video Generation

5. Discussion

We consider potential issues that could arise in the proposed approach. One of them could
be mode-collapse where our model generates sequences of almost indistinguishable (as per
human standards) frames. In such a case, we would increase the downsampling rate in order
to ensure enough diversity between consecutive frames. On the other hand, if our model is
unable to converge, then we may consider reducing the downsampling rate in an attempt to
make variations more subtle.
Another plausible issue could be unwanted blurry regions or artifacts appearing after
reconstruction, owing to the fact that the latent space representation focuses more on the
entire frame rather than local groups of pixels. We could tackle this by dividing frames into
grids and learning multiple codebooks.

6. Results

We trained the models on sequences of 15 frames each. We performed ablations for all
the possible values of hyperparameters within the ranges stated above. Additionally, we
made suitable modifications that we have documented and justified in the next section. We
performed experiments using a single Nvidia 1660 Ti GPU.

(a) Dinosaur Game Dataset

(b) BAIR Robot Pushing Dataset

(c) Sky Time-lapse Dataset
Figure 2: We sampled 15 frame videos from the model after providing 4 initial frames as

input. However, the model suffers mode collapse in all cases.

Figure 3: The output of the GPT is a normalized attention score distribution used to generate
the next frame embedding by taking a linear combination of the codebook vectors.
However, our model collapses to a unit magnitude delta distribution as the output.

143

Paying Attention to Video Generation

(a) 1 epoch (b) 20 epochs (c) 40 epochs (d) 200 epochs

Figure 4: During training, we visualized the attention score distributions over the codebook
vectors for each head at regular intervals. All the ablations started off with
uniform attention distributions but quickly collapsed to peaky attention score
distributions.

7. Findings and modifications

We carried out the ablation studies as proposed in the above sections. We have reported the
findings for each sub-part below.

7.1. Joint training

The proposed solution was to train the entire model, including the GPT, from scratch.
However, for any combination of the hyperparameters, we were unable to prevent mode
collapse. The attention scores ai(s) that are the normalized output of the GPT (as described
in Eq 2), were all 0, except at one value of i, i.e. the distribution was a unit magnitude
delta distribution as shown in Fig 3. This resulted in a hard-choice selection of a particular
codebook vector and the model updated that vector, to minimize the loss, as opposed to
learning all the codebook vectors. This resulted in a random “choice” based learning for a
single codebook vector. Hence each output prediction was the same frame, indicating that
the model had collapsed.
Upon probing previous layers of the model, we found that the cause for a peaky distribution
at the output of the GPT was a similar attention score distribution used to calculate the
vector z from the vector E(x). Hence, it was not the GPT but the ADAE that was restricting
the latent space to a single vector instead of linear combinations of the entire codebook.
We attempted to mitigate the above-mentioned problem by including a scaling factor that
scales down the attention scores before calculating their Softmax, analogous to variable
temperature attention. Regardless of the scale, the attention scores continued forming peaky
distributions resulting in mode collapse. Additionally, changing the teacher forcing ratio (rtf)
and downsampling parameter (md) yielded no significant improvement. Even after changing

144

Paying Attention to Video Generation

the dimensionality of the model, which includes the Key, Query and Value dimensions, we
were unable to avoid mode collapse. The model failed to overfit even on small datasets.
To probe the high bias choices made by the model, we employed a disjoint, more focused
approach of training each component individually and then fine-tuning the entire system.

7.2. Disjoint training

The GPT manipulates frame embeddings generated by the ADAE, which emphasizes the
pivotal role of the ADAE. Thus, we aimed to train the ADAE first. The trained ADAE can
then be used as a reliable model to generate latent representations of frames, i.e. frame
embeddings. We performed ablation studies that involved changes to the codebook, followed
by the encoder and the loss function, and finally, the initialization and attention metric.
We tested the reliability of the GPT model by training it on vector sequences, for both the
cases of embeddings - learnable and frozen (pre-trained). The GPT performed at par with
the findings reported by Radford et al. (2019), validating its proper functioning.

7.2.1. Codebook

We experimented with various codebook sizes in the proposed range of values. However,
negligible deterioration or improvement was observed in these ablations. This concurs with
the reasoning that the peaky attention distribution picks one codebook vector and the
training process directs the model to learn a single latent frame representation. This latent
vector is learnt to minimize the loss function, specifically the reconstruction term, resulting
in an output frame that is very close to the average of all the frames in the dataset.
Further, tuning the hyperparameters influencing the attention mechanism also yielded no
meaningful improvement. The codebook vectors are used as Keys and Values, to compute
attention scores with the Queries, that are the encoder’s output vectors E(x, θ). Thus,
we introduce three linear transforms, to transform the Key, Query and Value inputs to
their respective dimensions. Despite the Key, Query and Value dimensions being tunable
hyperparameters, we were unable to alter and stabilize the attention distribution to include
multiple codebook vectors instead of “choosing” only one.
Initially, the attention distributions are uniform, but rapidly collapse to a peaky distribution
as displayed in Fig 4. In rare cases when the attention distribution would start off with
multiple noticeable peaks, it would quickly collapse to one of them within a few epochs.
Even with small learning rates and gradient clipping, we were unable to prevent the model
from collapsing. This resulted in the obvious implication of getting the same output frame
for all the inputs, hence confirming the root cause of the mode collapse problem described
above.

7.2.2. Encoder

Initially, we experimented with the encoder and decoder in parallel as we proposed using
the mirror image of the encoder as the decoder. Later, we tried asymmetrical decoders by
introducing differences with regards to depth and combinations of layers.

145

Paying Attention to Video Generation

Since both the proposed encoder types were based on the ResNet-50, we performed the
following three classes of ablations:

1. Training a randomly initialized ResNet-50 encoder along with the codebook and the
decoder from scratch.

2. Fine-tuning a pre-trained ResNet-50 encoder while learning the codebook and the
decoder from scratch.

3. Freezing the pre-trained ResNet-50 encoder for a few epochs and then fine-tuning it
along with the codebook and the decoder.

We used PyTorch’s (Paszke et al., 2019) inbuilt ImageNet pre-trained (Deng et al., 2009)
ResNet-50 with a top-1 accuracy of 76.130% and a top-5 accuracy of 92.862%. Further, we
used a linear layer to map the output of the convolutional layers to the required embedding
dimension in accordance with the Query dimension.
However, none of the ablations were able to solve the problem of peaky attention score
distributions, regardless of the embedding dimension. Owing to the collapse in attention
scores, the encoder learns weights that maximise similarity with the chosen codebook vector,
hence generating very similar encodings E(x) for different inputs. As stated above, changes
to the subscaling factor yielded no improvement in the results and the outputs kept collapsing
to a single frame, regardless of the input.

7.2.3. Loss Function

Our experiments with loss functions initially used the proposed loss function as the baseline,
while varying values of β. Further, we experimented with l1 and Huber (Smooth-l1 Norm)
losses in place of the squared error proposed in Eq 4 and even in cases when we considered
only the reconstruction term. In Eq 4, the second and third terms focus on aligning the
codebook vectors with the encoder’s output and vice-versa. However, upon realising that the
mode collapse problem resulted in the same output frame for each input frame due to peaky
attention, we removed the second and third terms in the loss function to emphasize more
on achieving better reconstruction. Also, this mode collapse implied that the use of top-k
choices became trivial. Further, we attempted to improve the latent space representation of
a frame z by modifying the proposed loss function as follows,

L(y, ŷ; θ, φ, z) =|| y− ŷ ||22 + || sg[E(x; θ)]− z ||22 +β || E(x; θ)− sg[z] ||22 ∀ i ∈ I (5)

where z is the linear combination of the codebook vectors, weighted using attention scores
as stated in Eq 2. The intuition supporting the choice was to focus more on learning reliable
frame embeddings while ensuring that they contain adequate information to enable the
decoder to reconstruct the frames. As opposed to the loss function proposed in Eq 4 which
focuses on increasing similarity between the encoder’s output and the codebook vectors, this
loss function emphasises more on improving the frame embedding, which in turn improves
the representational capacity of the codebook vectors. However, none of the above attempts
resulted in noticeable improvements.

146

Paying Attention to Video Generation

7.2.4. Initialization and Attention Metric

Upon comparing different weight initializations like Xavier (Glorot and Bengio, 2010) and
sampling from normal distributions, we concluded that the model performed better (with
respect to minimizing the objective function) when using a unit normal initialization for
all the weights. Also, using weight decay and employing AdamW optimizer (Loshchilov
and Hutter, 2019) with 0.01 weight decay and 0.001 learning rate resulted in the best
optimization. Further, regardless of the normalisation and preprocessing employed, the mode
collapse persisted for all three datasets, proving the data agnostic nature of the problem.
As ablations for the attention metrics, we implemented dot product attention (Bahdanau
et al., 2016), energy-based attention and Key-Query-Value-based attention (Vaswani et al.,
2017). Also, in all the paradigms, we scaled the attention scores using a scaling factor with
values ranging from the square root of the dimensionality (bottleneck) of the model to its
inverse, as proposed by (Vaswani et al., 2017). Regardless of the metric and scale that were
chosen, the problem of peaky attention score distributions persisted.

8. Conclusion

In this work, we propose a latent vector manipulation approach to video generation. Specifi-
cally, we introduce a novel Attention-based Discretized Autoencoder (ADAE) to learn a finite
set of vectors. This set acts as the basis for the frame embeddings, which are sequentially
modelled using a GPT.
However, through systematic experimentation, we conclude that our proposed model suffers
from mode collapse, regardless of the hyperparameter choices and training paradigm. Upon
probation, we concluded that the root cause for mode collapse is the peaky attention score
distribution for the codebook vectors, with regards to the encoder’s output. Hence, the
ADAE collapses to a singular latent space, forcing the GPT to collapse. We validated
the functionality of the GPT by using it to model over vector sequences and achieved
performance at par with the original work. Further, modifications to the loss function and
even the decoder architecture yielded no improvements. Through our exhaustive study, we
establish that our approach requires reliable latent frame representations as a foundational
prerequisite.

References

Dinesh Acharya, Zhiwu Huang, Danda Pani Paudel, and Luc Van Gool. Towards high
resolution video generation with progressive growing of sliced wasserstein gans, 2018.

Felipe Almeida and Geraldo Xexéo. Word embeddings: A survey, 2019.

Md. Zahangir Alom, Tarek Taha, Chris Yakopcic, Stefan Westberg, Paheding Sidike, Mst
Nasrin, Mahmudul Hasan, Brian Essen, Abdul Awwal, and Vijayan Asari. A state-of-the-
art survey on deep learning theory and architectures. Electronics, 8:292, 03 2019. doi:
10.3390/electronics8030292.

147

Paying Attention to Video Generation

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural machine translation by
jointly learning to align and translate, 2016.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla
Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini
Agarwal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya
Ramesh, Daniel M. Ziegler, Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark Chen,
Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner,
Sam McCandlish, Alec Radford, Ilya Sutskever, and Dario Amodei. Language models are
few-shot learners, 2020.

Haoye Cai, Chunyan Bai, Yu-Wing Tai, and Chi-Keung Tang. Deep video generation,
prediction and completion of human action sequences. Lecture Notes in Computer
Science, page 374–390, 2018. ISSN 1611-3349. doi: 10.1007/978-3-030-01216-8_23. URL
http://dx.doi.org/10.1007/978-3-030-01216-8_23.

Xi Chen, Nikhil Mishra, Mostafa Rohaninejad, and Pieter Abbeel. Pixelsnail: An improved
autoregressive generative model, 2017.

Aidan Clark, Jeff Donahue, and Karen Simonyan. Adversarial video generation on complex
datasets, 2019.

Yatin Dandi, Aniket Das, Soumye Singhal, Vinay P. Namboodiri, and Piyush Rai. Jointly
trained image and video generation using residual vectors, 2019a.

Yatin Dandi, Aniket Das, Soumye Singhal, Vinay P. Namboodiri, and Piyush Rai. Jointly
trained image and video generation using residual vectors, 2019b.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A
large-scale hierarchical image database. In 2009 IEEE Conference on Computer Vision
and Pattern Recognition, pages 248–255, 2009. doi: 10.1109/CVPR.2009.5206848.

Emily Denton and Vighnesh Birodkar. Unsupervised learning of disentangled representations
from video. arXiv, 2017.

Emily Denton and Rob Fergus. Stochastic video generation with a learned prior. arXiv,
2018.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of
deep bidirectional transformers for language understanding, 2019.

Frederik Ebert, Chelsea Finn, Alex X. Lee, and Sergey Levine. Self-supervised visual
planning with temporal skip connections, 2017.

Rohit Girdhar, João Carreira, Carl Doersch, and Andrew Zisserman. Video action transformer
network, 2019.

Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training deep feedforward
neural networks. In In Proceedings of the International Conference on Artificial Intelligence
and Statistics (AISTATS’10). Society for Artificial Intelligence and Statistics, 2010.

148

http://dx.doi.org/10.1007/978-3-030-01216-8_23

Paying Attention to Video Generation

Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil
Ozair, Aaron Courville, and Yoshua Bengio. Generative adversarial networks. arXiv, 2014.

Shir Gur, Sagie Benaim, and Lior Wolf. Hierarchical patch vae-gan: Generating diverse
videos from a single sample, 2020.

Jiawei He, Andreas Lehrmann, Joseph Marino, Greg Mori, and Leonid Sigal. Probabilistic
video generation using holistic attribute control, 2018.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition, 2015.

Jonathan Ho, Nal Kalchbrenner, Dirk Weissenborn, and Tim Salimans. Axial attention in
multidimensional transformers, 2019.

Jun-Ting Hsieh, Bingbin Liu, De-An Huang, Li Fei-Fei, and Juan Carlos Niebles. Learning
to decompose and disentangle representations for video prediction. arXiv, 2018.

Yotam Intrator, Gilad Katz, and Asaf Shabtai. Mdgan: Boosting anomaly detection using
multi-discriminator generative adversarial networks, 2018.

Nal Kalchbrenner, Aaron van den Oord, Karen Simonyan, Ivo Danihelka, Oriol Vinyals,
Alex Graves, and Koray Kavukcuoglu. Video pixel networks. arXiv, 2016.

Alex X. Lee, Richard Zhang, Frederik Ebert, Pieter Abbeel, Chelsea Finn, and Sergey Levine.
Stochastic adversarial video prediction, 2018.

Yitong Li, Martin Renqiang Min, Dinghan Shen, David Carlson, and Lawrence Carin. Video
generation from text, 2017.

Shixia Liu, Xiting Wang, Mengchen Liu, and Jun Zhu. Towards better analysis of machine
learning models: A visual analytics perspective. Visual Informatics, 1(1):48 – 56, 2017.
ISSN 2468-502X. doi: https://doi.org/10.1016/j.visinf.2017.01.006. URL http://www.
sciencedirect.com/science/article/pii/S2468502X17300086.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization, 2019.

Pauline Luc, Aidan Clark, Sander Dieleman, Diego de Las Casas, Yotam Doron, Albin
Cassirer, and Karen Simonyan. Transformation-based adversarial video prediction on
large-scale data, 2020.

Michael Mathieu, Camille Couprie, and Yann LeCun. Deep multi-scale video prediction
beyond mean square error. arXiv, 2016.

Jacob Menick and Nal Kalchbrenner. Generating high fidelity images with subscale pixel
networks and multidimensional upscaling, 2018.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient estimation of word
representations in vector space, 2013.

149

http://www.sciencedirect.com/science/article/pii/S2468502X17300086
http://www.sciencedirect.com/science/article/pii/S2468502X17300086

Paying Attention to Video Generation

Gaurav Mittal, Tanya Marwah, and Vineeth N. Balasubramanian. Sync-draw. Proceedings of
the 2017 ACM on Multimedia Conference - MM ’17, 2017. doi: 10.1145/3123266.3123309.
URL http://dx.doi.org/10.1145/3123266.3123309.

Katsunori Ohnishi, Shohei Yamamoto, Yoshitaka Ushiku, and Tatsuya Harada. Hierarchical
video generation from orthogonal information: Optical flow and texture. arXiv, 2017.

Niki Parmar, Ashish Vaswani, Jakob Uszkoreit, Łukasz Kaiser, Noam Shazeer, Alexander
Ku, and Dustin Tran. Image transformer, 2018.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan,
Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas
Köpf, Edward Yang, Zach DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy,
Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An imperative style,
high-performance deep learning library, 2019.

Viorica Patraucean, Ankur Handa, and Roberto Cipolla. Spatio-temporal video autoencoder
with differentiable memory. arXiv, 2016.

Matthew E. Peters, Mark Neumann, Mohit Iyyer, Matt Gardner, Christopher Clark, Kenton
Lee, and Luke Zettlemoyer. Deep contextualized word representations, 2018.

Alec Radford, Karthik Narasimhan, Tim Salimans, and Ilya Sutskever. Improving language
understanding by generative pre-training, 2018.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever.
Language models are unsupervised multitask learners, 2019.

Ruslan Rakhimov, Denis Volkhonskiy, Alexey Artemov, Denis Zorin, and Evgeny Burnaev.
Latent video transformer, 2020.

MarcAurelio Ranzato, Arthur Szlam, Joan Bruna, Michael Mathieu, Ronan Collobert, and
Sumit Chopra. Video (language) modeling: a baseline for generative models of natural
videos. arXiv, 2016.

Ali Razavi, Aaron van den Oord, and Oriol Vinyals. Generating diverse high-fidelity images
with vq-vae-2, 2019.

Masaki Saito and Shunta Saito. Tganv2: Efficient training of large models for video generation
with multiple subsampling layers. arXiv, 11 2018.

Masaki Saito, Eiichi Matsumoto, and Shunta Saito. Temporal generative adversarial nets
with singular value clipping, 2017.

Xingjian Shi, Zhourong Chen, Hao Wang, Dit-Yan Yeung, Wai kin Wong, and Wang
chun Woo. Convolutional lstm network: A machine learning approach for precipitation
nowcasting. arXiv, 2015.

Nitish Srivastava, Elman Mansimov, and Ruslan Salakhutdinov. Unsupervised learning of
video representations using lstms. arXiv, 2016.

150

http://dx.doi.org/10.1145/3123266.3123309

Paying Attention to Video Generation

Hyontai SUG. Performance of machine learning algorithms and diversity in data. MATEC
Web of Conferences, 210:04019, 01 2018. doi: 10.1051/matecconf/201821004019.

Sergey Tulyakov, Ming-Yu Liu, Xiaodong Yang, and Jan Kautz. Mocogan: Decomposing
motion and content for video generation, 2017.

Thomas Unterthiner, Sjoerd van Steenkiste, Karol Kurach, Raphaël Marinier, Marcin
Michalski, and Sylvain Gelly. Towards accurate generative models of video: A new metric
& challenges. CoRR, abs/1812.01717, 2018. URL http://arxiv.org/abs/1812.01717.

Aaron van den Oord, Nal Kalchbrenner, Oriol Vinyals, Lasse Espeholt, Alex Graves, and
Koray Kavukcuoglu. Conditional image generation with pixelcnn decoders, 2016.

Aaron van den Oord, Oriol Vinyals, and Koray Kavukcuoglu. Neural discrete representation
learning, 2018.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need, 2017.

C. Vondrick and A. Torralba. Generating the future with adversarial transformers. In 2017
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages 2992–3000,
2017.

Carl Vondrick, Hamed Pirsiavash, and Antonio Torralba. Generating videos with scene
dynamics, 2016.

Dirk Weissenborn, Oscar Täckström, and Jakob Uszkoreit. Scaling autoregressive video
models. arXiv, 2020.

Wei Xiong, Wenhan Luo, Lin Ma, Wei Liu, and Jiebo Luo. Learning to generate time-lapse
videos using multi-stage dynamic generative adversarial networks, 2018.

Han Zhang, Ian Goodfellow, Dimitris Metaxas, and Augustus Odena. Self-attention gener-
ative adversarial networks. In Kamalika Chaudhuri and Ruslan Salakhutdinov, editors,
ICML, volume 97 of Proceedings of Machine Learning Research, pages 7354–7363. PMLR,
2019. URL http://proceedings.mlr.press/v97/zhang19d.html.

Jiangning Zhang, Chao Xu, Liang Liu, Mengmeng Wang, Xia Wu, Yong Liu, and Yunliang
Jiang. Dtvnet: Dynamic time-lapse video generation via single still image, 2020.

Zhou Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli. Image quality assessment:
from error visibility to structural similarity. IEEE Transactions on Image Processing, 13
(4):600–612, 2004.

151

http://arxiv.org/abs/1812.01717
http://proceedings.mlr.press/v97/zhang19d.html

	Introduction
	Related work
	Video generation
	Latent space representation

	Approach
	Attention-based discretized autoencoder
	Generative pre-trained transformer

	Experiments
	Datasets
	Teacher forcing
	Model architectures
	Training and evaluation metrics

	Discussion
	Results
	Findings and modifications
	Joint training
	Disjoint training
	Codebook
	Encoder
	Loss Function
	Initialization and Attention Metric

	Conclusion

