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Abstract

Humans can learn a variety of concepts and skills incrementally over the course of their
lives while exhibiting many desirable properties, such as continual learning without for-
getting, forward transfer of knowledge, and learning a new concept with few examples.
However, most previous approaches to efficient lifelong learning demonstrate only subsets
of these properties, often by different complex mechanisms. In this preregistration submis-
sion, we propose to study the effectiveness of a unified lifelong learning framework designed
to achieve many of these properties through one central mechanism. We describe this
consolidation-based approach and propose experimental protocols to benchmark it on sev-
eral skills, using grid searches over hyperparameters to better understand the framework.
The results of these experiments demonstrate that many properties can indeed be achieved
by the framework, which also illuminating directions for improving the framework and
evaluation.

Keywords: Lifelong learning, Human-inspired learning, Weight consolidation, Neural net-
works

1. Introduction

The past decade has seen significant growth in the capabilities of artificial intelligence.
Deep learning in particular has archived great successes in medical image recognition and
diagnostics (Litjens et al., 2017; Shen et al., 2017), tasks on natural language processing
(Radford et al., 2019; Devlin et al., 2019), difficult games (Silver et al., 2017), and even
farming (Kamilaris and Prenafeta-Boldú, 2018). However, deep learning models almost
always need thousands or millions of training samples to perform well. This is in a sharp
contrast with human learning, which normally learns a new concept with a small number
of samples. Other major weaknesses in current deep learning, when compared to human
learning, include difficulty in leveraging previous learned knowledge to better learn new
ones (and vice versa), learn many tasks sequentially without forgetting previous ones, and
so on.

Lifelong learning (LLL) (Thrun, 1998; Thrun., 1995), also known as continual (Parisi
et al., 2019) or sequential learning (McCloskey and Cohen, 1989), is one research area
concerned with flexible and efficient learning and the transfer of skills across long sequences
of tasks. In this work, we consider the LLL setting of task-incremental classification, where
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batches of data for new tasks arrive sequentially. That is, a sequence of (T1, D1), (T2, D2), ...
are given, where Di is the labeled training data of task Ti (from the space of tasks T ),
and an individual task consists of a set of classes to be learned. Classification models for
(T1, T2, ..., Tk) must be functional before (Tk+1, Dk+1) arrives. This models the incremental
process of human lifelong learning. The particular set of desirable LLL properties we are
concerned with include the following:

• Continual learning and testing: Before starting to learn a new task Tj , a LLL
approach should be able to perform well on all Ti<j . While learning the new task Tj ,
LLL should minimize the use of data D<j . This is in contrast to standard multi-task
(batch) learning, where all data of all tasks are used for training at the same time.
This continual learning condition ensures that the model is 1) useful, since each task
must be learned to an acceptable performance level, 2) flexible, in that new tasks can
be continually accommodated, and 3) efficient, in that tasks are learned with high
computational and data efficiency. For example, if T1 requires learning to classify
images of “0” vs. not “0” (see Section 3), acceptable performance on this task should
be reached before moving onto T2 of “1” vs. not “1”, which should also be learned to
an acceptable level.

• Non-forgetting: This is the ability to avoid catastrophic forgetting (McCloskey
and Cohen, 1989), where learning Tj causes a dramatic loss in performance on Ti<j .
Ideally, learning Tj when using only the data of Tj would not affect Ti<j . For example,
learning T2 of “1” vs. not “1” should not cause performance on the previous task, “0”
vs. not “0”, to degrade. Due to the tendency towards catastrophic forgetting, non-
lifelong learning approaches would require retraining on data for all tasks together to
avoid forgetting. This may reduce computational and data efficiency.

• Forward transfer: This is the ability to learn new tasks, T≥i, easier and better
following earlier learned tasks, T<i, also known as knowledge transfer (Pan and Yang,
2009). Achieving sufficient forward transfer also enables few-shot learning of later
concepts. For example, first learning to classify “0” vs not “0” should allow the later
task of “O” vs. not “O” to be learned faster.

• Non-confusion: Machine learning algorithms often find the minimal set of discrimi-
nating features necessary for classification. Thus, when more tasks emerge for learning
in our LLL setting, earlier learned features may not be sufficient, leading to confusion
between classes. For example, to distinguish between “1” and “0”, the learned model
may identify straight stroke for class “1” and curved stroke for “0”. The same features
may then be used to classify “I” vs “O”. However, if the model is tested on all tasks
so far, the model may be confused between “1” and “I” as well as “0” and “O”.

Most previous approaches can only demonstrate subsets of these human-like properties,
often by different complex mechanisms. For example, existing lifelong learning techniques
tend to use one or more of three types of mechanisms, each of which comes with their
own drawbacks and hurdles De Lange et al. (2019). These mechanisms are based on re-
play, regularization, and dynamic architecture respectively. See Section 2 for reviews and
comparisons of these mechanisms.
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In this paper, we describe a unified framework with one central mechanism that meshes
with additional mechanisms to seamlessly demonstrate many human-like lifelong learning
properties. The central mechanism, weight regularization, controls the flexibility of network
weights to direct the transfer of skills across tasks as well as prevents the forgetting of skills.
It is also intended to support network expansion in efficiently accommodating new tasks. We
primarily consider our framework as applied to deep neural networks, which have become
popular in recent years, and are an attractive type of machine learning model due to their
ability to automatically learn abstract features from data.

The questions to be answered by our empirical analysis as well as our hypotheses are as
follows:

1. How well does task-difficulty-based network expansion, as described in Section 3.2,
work to accommodate new tasks? We hypothesize that this type of expansion allows
for learning new tasks to the same accuracy level as less efficient methods.

2. How well does controlling the flexibility of task-specific weights, as described in Sec-
tion 3.3, work to reduce forgetting? We hypothesize that forgetting can be almost
completely removed with high enough regularization.

3. How well does task-similarity-based skill transfer, as described in Section 3.4, work for
enabling forward transfer? We hypothesize that this type of skill transfer mechanism
will work better than when no transfer is allowed and when transfer is not controlled
at all.

4. How well does pairwise confusion reduction, as described in Section 3.5, reduce confu-
sion? We hypothesize that this mechanism can reduce confusion by the same amount
as comparable methods while being less resource intensive.

2. Related Work

The mechanisms used to perform LLL tend to fall into three categories and often only
demonstrate subsets of LLL properties previously discussed. The first mechanism, replay,
commonly works by storing previous task data and training on it alongside new task data
(Rebuffi et al., 2017; Isele and Cosgun, 2018; Chaudhry et al., 2019; Wu et al., 2019). As a
result of its data and computation inefficiency, we consider it not to be a very human-like
learning mechanism.

The second mechanism is regularization. This mechanism works by restricting weight
changes (making them less “flexible”) via a loss function so that learning new tasks does
not significantly affect previous task performance (Kirkpatrick et al., 2016; Zenke et al.,
2017; Chaudhry et al., 2018; Ritter et al., 2018; Li and Hoiem, 2017; Zhang et al., 2020).
We use this mechanism as the basis for our unified framework. Compared to previous
approaches, we propose to use regularization more flexibly and strategically. Instead of
simply controlling weight flexibility to retain previous task performance, we leverage it to
also encourage forward transfer (Section 3.4).

The third mechanism, dynamic architecture, commonly works by adding new weights
for each task and only allowing those to be tuned (Rusu et al., 2016; Yoon et al., 2018; Xu
and Zhu, 2018). This is often done without requiring previous task data and stops forgetting
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while also allowing previous task knowledge to speed up learning of the new task. While
this mechanism is necessary for LLL of an arbitrarily long sequence of tasks (any fixed-size
network will eventually reach maximum capacity), it should be used sparingly to avoid
unnecessary computational costs. In Section 3.2 we describe how a dynamic architecture
can be efficiently used to help achieve multiple LLL properties when combined with our
central mechanism.

3. Methodology and Experimental Design

In this section we describe our unified framework. We start by introducing the central
mechanism and in the rest of the section, discuss how to use the central mechanism and
combine it with additional mechanisms to achieve the several desirable LLL properties
described in Section 1. For each mechanism, we also describe the experimental protocol to
evaluate it. Shared among the experimental protocols are the following settings:

Task. We will use the following binary classification task sequence with samples
taken from the balanced EMNIST dataset (Cohen et al., 2017): T1 = (0 vs. not 0), T2 =
(1 vs. not 1),..., T5 = (4 vs. not 4), T6 = (A vs. not A), T7 = (I vs. not I), T8 = (O vs. not O),
T9 = (Z vs. not Z). For tasks 1 to 5, “not x” means {0, 1, 2, 3, 4}\x. For tasks 6 to 9, “not
x” means {A, I,O, Z}\x. This task sequence is a minimal case allowing for proof-of-concept
experiments where we can be sure that there is a) clear room for forward transfer (e.g. from
“0” to “O” or “1” to “I”) and b) clear cases of confusion (e.g. between “0” and “O”). In a
more complex task sequence it would be harder to verify whether the proposed mechanisms
work as intended. For each character, we will use 50 training samples. Additionally, all
results will be averaged across 20 random seeds.

Architecture and training. We will use a network architecture with two hidden
layers with ReLU activation. The width of the layers for the first task is Nmax. The Adam
optimizer (Kingma and Ba, 2014) will be used, with the default hyperparameters provided
by Keras (Chollet et al., 2015). We will use a a batch size of 64 and training for 5 epochs
for each task.

3.1. A Central Consolidation Mechanism

We propose a LLL framework which situates a consolidation policy as the central mecha-
nism. The consolidation policy works through a high-dimensional dynamic hyperparameter,
bbb, which separately controls the flexibility of all network weights. Each network weight thus
has its own consolidation value specifying how easy (or hard) it is to modify the weight.
Depending on the specific bbb-setting policy used during training, we hypothesize that several
desirable learning properties can be achieved. While the network weights are learned via
back-propagation, bbb is set by a consolidation policy.

The consolidation mechanism ultimately works through dynamically modifying the loss
function. If each network weight, θi, is associated with a consolidation value of bbbi ≥ 0, the
loss for the new task by itself, Lt, is combined with weight consolidation as follows:

L(θ) = Lt(θ) +
∑
i

bbbi(θ
t
i − θ

target
i )2 (1)
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Here, θtargeti is the target value for a weight to be changed to. This can be either its
value before training of the new task, or zero, in the case where we explicitly want to prevent
certain weights from being used. θti is the weight value being updated during training on
task t. This loss has the following behaviour: a large bbbi causes changing θi away from θtargeti

to be strongly penalized during training. When bbbi is arbitrarily large, we refer to these
weights as “frozen”, and simply fix them during training. In contrast, bbbi = 0 indicates
that the weight is free to change, i.e. it is “unfrozen”. If bbbi is arbitrarily large, we can
consider θi to be masked during backpropagation and completely prevented from changing
to improve efficiency.

As elaborated in the rest of this section, we distinguish between three types of weights,
which have consolidation values and initialization methods corresponding to each. High-
level details of these weight groups are in Figure 1. There are group B weights (blue), which
are intended to be free to tune. There are group R weights (red), which contain previous
task knowledge. Finally, there are group G weights (green), which can facilitate the transfer
of knowledge between tasks.

3.2. Continual Learning of Classification Tasks

In LLL and human learning, we desire to learn new tasks after learning previous tasks. In
real brains, this is supported by continually growing new neurons and connections between
them (Winocur et al., 2012; Nelson and Alkon, 2015). Our framework similarly considers
learning new tasks with the strategic use of network expansion.

To accommodate a new task, Tj , we propose to extend the width each layer of the neural
network by Nj , an amount proportional to the estimated difficulty of the task.

To compute Nj , we first compute the maximum similarity to previous tasks. To com-
pute the similarity between two tasks, sim(Ti, Tj), we feed positive samples of the new
task, Tj , into the network, and average the probabilities output by model for Ti. When
the similarity between Tj and any previous task is high (i.e. the new samples are sim-
ilar to those of a previous task), proportionally fewer nodes are added. That is, Nj =
Nmax (1−maxi=1,...j−1 sim(Ti, Tj)). In the extreme case where a new task is identical (or
very similar) to a previous one, no new nodes (aside from the output) may need to be added.

When extending each layer of the network, the new column of nodes is connected as
shown in Figure 1 (b) and (c). These group B weights are randomly initialized and have
bbb values of Bbbb = 0, so that they are free to tune. As outlined in the pseudo-code in
Algorithm 1, after extending the network and performing steps corresponding to components
of our proposed framework to be discussed next, training can be performed using only
samples of the new task.

Experimental design. We need to demonstrate that tasks are learned to the same com-
petency as though they were trained with a larger number of nodes added. The evaluation
metric consists of computing the AUC for each task, and averaging across tasks after all
tasks have been learned. We will try a range of values for Nmax : {0, 10, 50, 100}. Baselines
consist of adding the following constant widths: {0, 10, 50, 100}. For these tasks, we will
use Rbbb = inf (i.e. frozen) and disable the forward transfer mechanism (introduced in Sec-
tion 3.4) so that all transfer links are initialized to non-zero values, but no weight-copying
is done. In addition to task performance, we will also report the model size, as a fraction
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Train task 1 
(1 vs. not 1)

Train task 3
(I vs. not I)

Train task 2
(2 vs. not 2)

Reduce confusion 
between 1 and I

2 and 1 are 
dissimilar, so 
transfer is 
prevented by 
disabling grey 
weights

Since 1 and I are 
similar, weights 
are copied at 
initialization from 
x to y

x

y

(a) (b) (c) (d)

weight 
group b initialization

R Rb = inf -
G Gb = 0 Ginit= based on R
B Bb = 0 Binit = +/- 0

grey inf 0

train data T1 only
loss T1 only

train data T2 only
loss T2 only

train data T3 only
loss T3 only

train data T1+T3
loss combine T1, T3

Figure 1: An example of applying the several mechanisms of our LLL framework. In step
(a), task 1 is being trained. All weight here are in group B (randomly initialized
and free to tune). In step (b) task 2 is being learned without forgetting task
1. Group R (red) weights can be frozen to prevent forgetting of T1. Since 2
is dissimilar from 1, transfer can be prevented by disabling the transfer weights
(grey). In (c), task I is learned while adding fewer nodes due to similarity with
task 1. High dissimilarity from task 2 means that the corresponding forward
transfer links are disabled. In (d), confusion is being reduced when 1 and I are
confused, with additional nodes added when necessary.

Algorithm 1: Combining Framework Skills

// Given that tasks T1, ..., Tk−1 have been learned

Extend width of network proportional to task difficulty as described in Section 3.2;
Set consolidation values for non-forgetting of previous tasks as described in Section 3.3

// see group R weights in Figure 1

Initialize weights from earlier units to newly recruited units as described in Section 3.4
// see group G weights in Figure 1

Train the new task Tk to minimize Eq. 1 // only on the data of new task Tk
Perform confusion reduction as described in Section 3.5;

of the model size when the same Nmax value with constant expansion is used. We expect
that the performance will be roughly the same for both dynamic expansion and constant
expansion for a given maximum expansion amount.

3.3. Non-Forgetting

Maintaining performance on previous tasks while learning new ones is the primary difficulty
of LLL. In our framework, we can design consolidation policies to ensure that this is achieved
while the new task is learned with the data for the new task only.
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An intuitive way to prevent forgetting is by using a larger bbb value for weights which most
influence the loss of a trained model (Kirkpatrick et al., 2016). To ensure non-forgetting
during new-task training, we thus propose to set Rbbb such that the previous-task weights are
frozen/near-frozen.

Experimental design. We need to demonstrate that the learned AUC (the AUC on
a task when it is first learned) is close to the retained AUC (the AUC after all tasks
have been learned). We can subtract the average learned task AUC from the average
retained task AUC. Larger negative values indicate greater forgetting. This experiment will
be run with a fixed width extension value of 50. We will try the following range of Rbbb:
{0, 1, 10, 100, 1000, inf}. We will also leave the forward transfer mechanism disabled. We
expect the larger consolidation values to provide better non-forgetting in comparison to the
baseline value of 0 when no consolidation is applied.

3.4. Forward Transfer

While non-forgetting ensures task performance is maintained over time, previous tasks do
not “help” learning new tasks, a concept prominent in multi-task and transfer learning (Pan
and Yang, 2009; Zhang and Yang, 2017), and appears in LLL as “forward transfer”.

We propose to achieve positive forward transfer with our framework by controlling the
transfer of skills between tasks. This skill transfer is mediated by the dashed links in
Figure 1. When these weights are “disabled” (initialized to 0 and frozen – see grey links
in Figure 1(b), (c)), the past task is unable to influence the new task. When they are
“enabled” (unfrozen and initialized to non-zero values – see group G weights in Figure 1),
features learned by past tasks can be quickly reused when learning a new task. When a task
might lead to negative transfer for the new task, the transfer weights would be disabled,
and when positive forward transfer is expected, they are enabled. Group G weights have a
consolidation of Gbbb = 0, allowing them to be freely tuned.

In an attempt to more directly leverage previous knowledge, we identify the most similar
task to the new one, and copy the output layer weights from that task to the new task
weights, as shown in Figure 1(c). All other G weights are randomly initialized. We use a
simple technique to decide when to allow transfer: if the similarity, sim(Ti, Tj) (discussed
in Section 3.2) is above a certain threshold, α ∈ [0, 1], then enable the transfer links and
copy the similar-task weights, otherwise disable them.

This idea of selectively sharing knowledge between tasks is conceptually shared by GO-
MTL (Kumar and Daume III, 2012), which learns in a non-continual fashion. GO-MTL
computes task similarity by first learning a separate model for each task and then looking
at the similarity between learned weights. A sparse matrix representing transferability
of knowledge between tasks is computed. A LLL approach by (Raghavan et al., 2020)
selectively transfers skills from “canonical tasks” to a new task. The amount of transfer is
based on the likelihood that new task samples would be generated by a generative network
learned by each canonical task.

Experimental design. We need to demonstrate that tasks are learned to a greater com-
petency with the selective forward transfer mechanism enabled than without. We can thus
subtract the learned AUC when the mechanism is disabled (all transfer weights randomly
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initialized) from the learned AUC when it is enabled. Larger positive values indicating
greater forward transfer. The experiment will use Rbbb = inf , fixed width expansion, and a
grid search over Nmax = {0, 10, 50, 100} and α = {0, 0.25, 0.5, 0.75, 1.0}. We expect that the
forward transfer mechanism will have a greater contribution when Nmax is smaller (with
larger networks, the effect of forward transfer is likely smaller) and when α = 0.5 (this is a
guess at the threshold below which negative transfer would occur).

3.5. Non-Confusion

When a new task such as “O vs not O” is similar to a previous one, “0 vs. not 0”, we
leverage this fact to learn the new task faster, as described in the previous subsection.
However, since both tasks are learned without observing samples of the other, confusion
may occur when we present an O or 0 to the model.

We propose to resolve such confusion in a pairwise manner, as step 5 in Algorithm 1.
This process uses stored prior task samples (Mem each) to compute entries of the confusion
matrix corresponding to confusion with the new task, Tj . Whenever confusion occurs
between Ti and Tj at a rate greater than some threshold, γ ∈ [0, 1], we can simultaneously
fine-tune the last-layer weights of Ti and Tj on samples of the confused tasks. This is
done by adding a temporary softmax output and minimizing the categorical cross-entropy
loss when classifying positive samples of both classes. When this is insufficient to reduce
confusion to below γ, we can expand the model by a constant amount, Nconfused, with type
B weights and repeat. This step is reflected in Figure 1(d).

Experimental setup. We can determine effectiveness by observing the confusion, as
measured by the average task recall error when the task ID is not provided. When this
value is larger, it indicates greater confusion. This experiment will be run with the following
fixed values: Nmax = 100, Rbbb = inf , α = 0.5, and Mem = 20. We will run a grid search
over γ = {0.1, 0.2, 0.3}, and Nconfused = {0, 10, 50}. For baselines, we can consider when no
confusion reduction is performed (γ = 1) and when no expansion for confusion is performed
(Nconfused = 0). We expect that smaller values for γ will reduce confusion, especially with
larger values of Nconfused.

4. Experimental Results

Through the four sets of experiments described previously, we found that in general the
results agree with the predictions. Several details of the results differ from our expectations
however, which may serve to design a more effective framework and more insightful exper-
iments in future work. The results for continual learning will be described in Section 4.1.
Non-forgetting results will be described in Section 4.2. Forward transfer results will be
described in Section 4.3. Non-confusion results will be described in Section 4.4.

Final experimental setup The following changes and edits were made to the proposed
experimental setup. First, instead of averaging across 20 random seeds, we found that
some results were noisier than expected, motivating an increase to 30 random seeds for all
experiments. Second, for the continual learning experiments, we realized that it does not
make sense to use Nmax = 0 (since you cannot have a neural network of width zero), so the
minimum value we consider is 10. Third, for Nmax during the non-confusion experiments,
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we used 50 rather than 100, so as to agree with Nmax for the non-forgetting experiments.
Fourth, the algorithm used for deciding which weights to freeze and unfreeze for confusion
reduction differs slightly from Figure 1d: when reducing confusions between previous tasks
and the newest task, all weights added for the newest task should still be unfrozen (since
changing these weights does not affect previous tasks). In addition to the analyses originally
described, we include closer examinations of some of the results in Sections 4.3 and 4.4.

4.1. Continual Learning

The goal of this set of experiments is to determine whether difficulty-based expansion is an
effective way of reducing total model size without sacrificing performance. From Table 1 we
can see that difficulty-based expansion (DBE) reduces the number of parameters to between
50% and 69%, depending on the value of Nmax. While LA is lower when using DBE, the
difference is only around 0.7 when Nmax = 100.

Nmax LA (const. expand) LA (DBE) DBE param. pct.

10 72.1 65.0 50%
50 95.9 92.7 69%

100 98.3 97.6 63%

Table 1: Continual learning results. DBE param. pct. is the percentage of parameters that
are use when applying DBE vs. when using constant expansion. We can see that
DBE does indeed reduce total network size, but at the cost of small decreases in
performance.

These results suggest two questions for future research. First, how does the estimated
difficulty of tasks depend on the number of weights used for previous tasks? Second, what
is the relationship between task difficulty and performance with a given number of nodes?
Answering these questions would allow for designing a better DBE strategy.

4.2. Non-Forgetting

Addressing the question of how well larger Rbbb values prevent forgetting, Table 2 shows that
when Rbbb = 0, forgetting is indeed the highest, and quickly drops as the value increases. As
expected, the amount of forgetting is exactly zero when weights are fully frozen (masked
during training).

4.3. Forward Transfer

The goal of the forward transfer experiments is to determine to what extent allowing knowl-
edge transfer only from similar tasks helps performance.

From Table 3 we can see that for both DBE and constant expansion and all values
for Nmax, a similarity threshold of α = 0.75 is optimal or near-optimal (in contrast to
our initial guess of α = 0.5 being optimal). Interestingly, we find a greater amount of
forward transfer when using DBE than constant expansion. This may be a result of the
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Rbbb RA - LA

0 (unfrozen) -0.89±0.21
1 -0.03±0.03

10 0.00±0.02
100 0.02±0.03

1000 0.03±0.03
infinity (frozen) 0± 0

Table 2: Non-forgetting results. We found the results to vary considerably with Rbbb = 0 and
thus include 95% confidence intervals, estimated over the 30 trials.

fact that greater forward transfer is seen with smaller networks than larger ones (DBE leads
to smaller networks).

const. expansion DBE

α Nmax = 10 Nmax = 50 Nmax = 100 Nmax = 10 Nmax = 50 Nmax = 100

0 6.4 0.8 0.4 9.3 1.3 0.4
0.25 14.2 1.7 0.5 18.4 3.4 0.5
0.5 17.0 1.8 0.5 23.1 3.8 0.6

0.75 17.6 1.8 0.5 23.3 3.7 0.6
1.0 16.2 1.7 0.4 21.5 3.4 0.4

Table 3: Forward transfer results. Matching our expectations, the benefit is greater for
smaller values of Nmax. The ideal value for α differs slightly from our prediction
(0.75 instead of 0.5).

Figure 2 shows the estimated similarities of previous (source) tasks to new (target) tasks
computed just before learning the target task. We find that, justifying the construction of
our task sequence, the most similar task pairs are indeed “0” and “O”, “1” and “I”, and “2”
and “Z”. While these similarity values are below 0.5 on average, this value varies between
trials (for example the “0”-“O” similarity is above 0.5 roughly 23% of the time). From
Figure 3 we can see that the forward transfer mechanism (using α = 0.5, Nmax = 10,
and constant expansion) has a positive effect on all tasks after the first one. Given that
for many tasks, no previous task will have a similarity > 0.5, these results suggest that
avoiding transfer from dissimilar tasks is very effective at improving task performance.

4.4. Non-Confusion

The final experiment aims to determine the effectiveness of the described two-step pairwise
confusion reduction mechanism.

From Figure 4 we can see that, in line with our expectation, small confusion threshold (γ)
values lead to smaller overall confusion levels, with the average task recall error reduced from
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target
1 2 3 4 A I O Z

so
ur
ce

0 0.25 0.20 0.19 0.24 0.27 0.23 0.43 0.19

1 0.16 0.16 0.19 0.16 0.39 0.13 0.17

2 0.20 0.21 0.23 0.31 0.18 0.35

3 0.22 0.21 0.29 0.17 0.27

4 0.25 0.26 0.18 0.18

A 0.30 0.26 0.23

I 0.10 0.16

Figure 2: Similarities between previous
(source) tasks and the task to be
learned next (target). These val-
ues are estimated with target task
training data. These particular
values were computed when using
α = 0.5, Nmax = 10, and using
constant expansion.

task
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A
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25

50
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100

1 2 3 4 A I O Z

baseline forward transfer

Figure 3: The LA of individual tasks with
and without the selective forward
transfer mechanisms enabled (us-
ing the same settings as for Fig-
ure 2).
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N_confused = 0 N_confused = 5 N_confused = 10

Figure 4: Non-confusion results. We can see that the threshold for confusion reduction has
the largest effect on average task confusion, while the amount of expansion when
trying to reduce more difficult confusions has no clear effect.
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Figure 5: The maximum confusion values during training between each task and those
before it (when using γ = 0.1 and Nconfused = 10).

around 39 points to 35. From the confusion reduction only averaging around 4 points, we
can guess that some of the task confusions are especially difficult to reduce (e.g. samples of
“0” and “O” are often indistinguishable even to humans). Additionally, while we predicted
that greater expansion for confusion-reduction (Nconfused) would improve results, we do
not see any clear pattern. This may suggest that either the present network capacity is
sufficient to reduce confusion as much as it possibly can be, that the considered expansion
amounts are insufficient, or that the remaining confusions are unable to be reduced at all
due to overly-similar tasks.

When we examine the maximum amount of confusion experienced during learning by
each task (shown in Figure 5), we see that the first several tasks are not subject to much
confusion (as also suggested by Figure 2). However, for the last three tasks (which have high
similarities with previous tasks), there is significant confusion which is able to be reduced.

5. Conclusions

In this work, we introduced a lifelong learning framework based on varying consolidation
of different groups of weights over the course of learning. This framework was designed to
demonstrate several properties: the ability to continually learn tasks to high performance
while reducing parameter count, not forgetting previous tasks, leveraging previous task
knowledge to improve new task learning, and reduce confusion between similar tasks.

Our proof-of-concept experiments demonstrated that DBE was able to reduce total
model size without significantly affecting performance. Results on non-forgetting also con-
firmed that increasing consolidation strength of previous task weights (and at the extreme,
freezing them) prevented forgetting. We also found that the forward-transfer mechanism
based on selective weight copying and initialization performed surprisingly well, especially
with smaller networks. Finally, we saw that while confusion between our chosen tasks could
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be reduced on average, the total confusion reduction was rather small, and the amount of
network expansion during confusion reduction did not have a clear effect.

Reflecting on these results, there are several promising directions for improving the
design and evaluation of the framework. This includes developing a more refined under-
standing of the relationship between task difficulty and network capacity required to reach
a given performance, designing experiments to understand the contributions of the individ-
ual aspects of the forward transfer experiment, and performing more extensive testing on
confusion reduction to understand what is required to reduce difficult confusions.
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