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Abstract
Learning discriminative features plays a significant role in action recognition. Many attempts have
been made to train deep neural networks by their labeled data. However, in previous networks,
the view or distance variations can cause the intra-class differences even larger than inter-class
differences. In this work, we propose a new contrastive self-supervised learning method for action
recognition of unlabeled skeletal videos. Through contrastive representation learning by adequate
compositions of viewpoints and distances, the self-supervised net selects discriminative features
which have invariance motion semantics for action recognition. We hope this attempt can be helpful
for the unsupervised learning study of skeleton-based action recognition.

1. Introduction

Action understanding is a fundamental study in the computer vision field. Compared with RGB
images, body joint time-series (skeletons) are effective descriptors of actions, which are robust
against the background and lighting changes. Since each joint is easily identified by a 2D or 3D
position vector, skeleton sequence becomes a high-level and abstract representation of an action.
Although recent methods have achieved remarkable progress with the development of deep neural
networks, most methods rely on strong supervision on action labels. Large-scale data annotation is
laborious and expensive, even impractical for complex data such as videos. Furthermore, annotation
is a challenging problem by itself, since some action classes are ambiguous, which are up to the
interpretation of each annotator for a given sequence. Thus, unsupervised methods that do not use
labeled data are necessary for skeleton action recognition.

Learning effective motion representations without human supervision is a long-standing and
challenging problem. Existing approaches Su et al. (2020) are mostly based on the encoder-decoder
architecture. Specifically, given a skeleton action sequence as the encoder input, the decoder pre-
dicts the encoder’s input sequence. But this idea needs to re-generate each frame in a sequence,
which is computationally expensive and often ignores the semantic association between the encoder
input and the decoder output. In that case, the generality of the learned representation is limited.
Furthermore, the auto-encoder will not be able to achieve efficient performances without particular
training strategies Su et al. (2020). Inspired by the recent successful discriminative approaches in
the latent space Bachman et al. (2019); Dosovitskiy et al. (2014); Chen et al. (2020), here we try
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to obtain effective feature representations of skeleton sequences under a simple contrast learning
framework.

Previous approaches Zhang et al. (2019); Li et al. (2018) have proven that one of the key chal-
lenges in action recognition lies in the large variety of action representation when motions are
captured from different viewpoints. But, in reality, the same action can be easily recognized by two
observers when they stand at different viewpoints or distances. This observation inspires us to obtain
effective feature representations under a contrastive self-supervised learning framework. Accord-
ingly, we define contrastive prediction tasks by the composition of multiple data augmentation op-
erations (i.e. view variations). And then we maximize the agreement between different augmented
views of the same data example via a contrastive loss in the latent space. Through contrastive rep-
resentation learning by adequate compositions of viewpoints and distances, the self-supervised net
selects discriminative features which have invariant motion semantics for action recognition.

2. Related Work

Numerous approaches have been introduced particularly for human action recognition. Most of
them are supervised where an annotated set of actions and labels should be provided for training. In
an unsupervised setup, the problem of action recognition is much more challenging and only a few
methods have been proposed. In this section, we give a brief review on the unsupervised method
and the skeleton action recognition by variant of viewpoint and distance.

2.1. Unsupervised Learning in Skeleton Action Recognition

The unsupervised setup has advantages for action recognition since it does not require the labeling
of sequences. When additional action appears, the unsupervised networks do not need re-training.
This kind of method typically aims to obtain an effective feature representation by predicting or
regenerating future frames of input sequences. Srivastava et al. Srivastava et al. (2015) proposed a
recurrent-based sequence (Seq2Seq) model as an autoencoder to learn the representation of a video.
Zheng et al. Zheng et al. (2018) proposed a GAN encoder-decoder(LongTGAN). The decoder
attempts to re-generate the input sequence and the discriminator is used to discriminate whether the
re-generation is accurate. Su et al. Su et al. (2020) make the decoder and the encoder self-organize
their hidden states into a feature space which clusters similar movements into the same cluster and
distinct movements into distant clusters. The feature representation used for action recognition is
taken from the final state of the encoder’s hidden representation. However, these typical encoder-
decoder-based unsupervised methods are computationally expensive and rely on particular training
strategies. We explore to learn robust and efficient features representation based on a simpler yet
effective idea in the contrastive learning framework.

2.2. Variant of Viewpoints and Distance in Skeleton Action Recognition

For humans, it will not affect us to recognize the action class from arbitrary observing viewpoints
and distances. Human actions can be captured from arbitrary camera setups, while it is a challeng-
ing problem for recognition algorithms. Researchers have paid much attention to this issue and
proposed various view-invariant approaches. Zhang et al. Zhang et al. (2019) proposed a view-
adaptive idea to leverage content-dependent and view-adaptation models to automatically learn and
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Figure 1: The framework for contrastive learning of skeleton sequence using the semantic invari-
ance under the variant of distance and viewpoint. Two separate transformations of view-
point and distance are applied to a given skeleton sequence to obtain a correlated pair. A
base encoder network and a projection function f(·) are trained to maximize agreement
by using a contrastive loss.

determine the suitable viewpoint. And for each sequence, the skeletons are transformed into rep-
resentations under those views. This improvement has proved that viewpoints are crucial for the
model to learn features representation in skeleton-based action recognition. Furthermore, the dis-
tance of a subject to the camera may influence the scale of the skeletons. In order to learn the robust
and effective features representation in an unannotated skeleton sequence, we design a simple con-
trastive learning method based on the idea of semantic invariance under the variant of distance and
viewpoint.

3. Methodology

We learn our feature representations by maximizing agreement between different viewpoints and
distance setups of the same skeleton sequence via the contrastive loss in the latent space. As il-
lustrated in Figure 1, we just using the base encoder network (e.g. ResNet He et al. (2016) and
representation vector h for following action recognition task.

3.1. View Augmentation for Contrastive Representation Learning

The raw 3D skeleton is recorded corresponding to the camera coordinate system (global coordinate
system), with the origin located at the position of the camera sensor. Note that the input skeleton
Vt to our system as in Figure 1 is the skeleton representation under this initial camera coordinate
system. To be insensitive to the initial position of action, for each sequence, we translate the global
coordinate system to the body center of the first frame as our new global coordinate system. One can
choose to observe the action from stochastic positions. Thanks to the availability of the 3D skeletons
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captured from a fixed view, it is possible to set up a movable virtual camera and observe the action
from new observation viewpoints. The given skeleton can be transformed into a representation
under the movable virtual camera coordinate system, which is also referred to as the observation
coordinate system.

Given a skeleton sequence S with T frames, under the global coordinate system, we denote the
set of joints in the t-th frame as Vt = {vt,1, · · · ,vt,J}. For the t-th frame, we assume the movable
virtual camera is placed at a stochastic viewpoint and distance, with the corresponding observation
coordinate system obtained from a translation by dt ∈ R3, and a rotation of αt, βt, γt radians
anticlockwise around the x-axis, y-axis, and z-axis, respectively, of the global coordinate system.

Therefore, the representation of the j-th skeleton joint v′t,j =
[
x′t,j , y

′
t,j , z

′
t,j

]T
of the t-th frame

under this observation coordinate systemO is

v′t,j =
[
x′t,j , y

′
t,j , z

′
t,j

]T
= Rt × (vt,j − dt) . (1)

Rt can be represented as
Rt = Rx

t,α ×Ry
t,β ×Rz

t,γ , (2)

where Ry
t,β denotes the coordinate transformation for rotating the original coordinate system around

the y-axis by βt radians anticlockwise, which is defined as

Ry
t,β =

 cos (βt) sin (βt) 0
− sin (βt) cos (βt) 0

0 0 1

 . (3)

Similarly, Rx
t,α and Rz

t,γ denote the coordinate transforms for rotating the original coordinate
system around the x-axis by αt radians, and around the z-axis by γt radians anticlockwise, respec-
tively. Note that all the skeleton joints in the t-th frame share the same transform parameters, i.e.,
αt, βt, γt, dt, considering that the changing of viewpoints and distance is a rigid transformation.
Given these transformation parameters, the skeleton representation Vt = {vt,1, · · · ,vt,J} under
the new observation coordinate can be obtained from Eq.1. Besides, the viewpoint and distance
can be varied for different frames or on a sequence level. The key problem becomes how to obtain
an effective feature representations in skeleton sequence under the contrast learning framework by
adequate compositions of viewpoints and distances.

3.2. The Contrastive Learning Framework

Firstly, given a skeleton sequence Vt that is captured at an initial position and orientation, we adopt
two stochastic transforms setups on it to provide a positive pair, denoted Vi,t and Vj,t. Secondly, a
base encoder network that extracts representation vectors h from transformed skeleton sequences.
Similar to other typical contrastive learning methods, this simple framework design conveniently
decouples the predictive task from other components such as the base encoder network architecture,
and this base encoder network is shared by both branches of our framework. The base encoder
network serves as the skeleton-based motion features extractor. Here, we can adopt the commonly
used ResNet He et al. (2016)scheme to extract spatial and temporal features. Finally, projection
function f(·) will map representations to space where contrastive loss is applied. We opt for sim-
plicity and use 2-layer MLP as a projection function. The base encoder network and projection
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function are trained to maximize the agreement by using contrastive loss. After that, we just use the
pretrained base encoder network and the representation vector h for downstream tasks.

We randomly sample a minibatch of N examples and define the contrastive prediction task on
pairs of view-augmented examples derived from the minibatch, resulting in 2N data points. For
a given positive pair, we treat other 2(N − 1) as negative samples. The contrastive loss function
is used to maximize the agreement between positive pair, meanwhile minimizing the agreement
between negative pairs. Here, we adopt a common formulation of loss function used in the previous
contrastive learning work. Then the loss function of a positive pair of examples (i, j) is defined as

`i,j = − log
exp (sim (zi, zj) /τ)∑2N

k=1 1[k 6=i] exp (sim (zi, zk) /τ)
, (4)

where sim(zi, zj) = zi
>zj/‖zi‖‖zj‖ denotes the dot product between `2 normalized zi and zj

(i.e. cosine similarity). 1[k 6=i] is an indicator function evaluating to 1 iff k 6= i and τ denotes a
temperature parameter. After that the final loss function is

L =
1

2N

N∑
k=1

[`(2k − 1, 2k) + `(2k, 2k − 1)]. (5)

As illustrated in Eq.5, the final loss is calculated across all positive pairs, both (i, j) and (j, i).

4. Experimental Protocol

Here, we lay out the protocol for our empirical studies, which aims to understand different design
choices in our framework and improve representation quality by combining our findings.

4.1. Dataset and Metrics

Following the above description in the data augmentation, skeleton action samples will be rotated in
three-dimensional space. Thus some datasets (e.g. Kinetics Skeleton 400 dataset) are inappropriate
to evaluation since their each skeleton joints are recorded along with their 2D spatial coordinates.
For learning feature representations without labels by the base encoder networks, we conduct un-
supervised pretraining on NTU-RGB+D 60 and NTU-RGB+D 120 dataset. To evaluate the learned
representations, we follow the widely used linear evaluation protocol, where a linear classifier is
trained on the representation vector obtained from the frozen base neural network. The test accu-
racy is used as a proxy for the representation quality.

4.1.1. NTU-RGB+D 60 DATASET

The NTU RGB+D 60 Shahroudy et al. (2016) is a large-scale action recognition dataset collected by
three Kinect cameras simultaneously. It contains 56,578 skeleton sequences and 60 action classes
performed by 40 different subjects. Each human skeleton is represented by 25 joints with 3D
coordinates. The authors recommend evaluating the model performance under two settings: (1)
Cross-Subject(X-Sub), where half of 40 subjects are used for training and the rest for testing. (2)
Cross-View(X-View), where the sequences captured by two of three cameras are used for training,
and those captured by the last cameras are used for testing.
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4.1.2. NTU-RGB+D 120 DATASET

This dataset Liu et al. (2019) is an extension of NTU-RGB+D 60 and currently the largest dataset
for 3D action recognition. It contains 114,480 skeleton sequences and 120 action classes performed
by 106 different subjects. It provides two types of evaluating setting: (1) Cross-Subject(X-Sub),
where half of 106 subjects are used for training and the rest for testing. (2) Cross-Setup(X-Set),
where the sequences captured by half of cameras are used for training and the rest for testing.

4.2. Default Setting

Benefitting from the experiences of several previous contrast learning methods, we realize that
contrastive learning benefits from the larger batch size and more training steps compared to su-
pervised learning. Thus, we will conduct training experiments with slightly larger batch sizes and
steps purposefully. However, training with a large batch size may be unstable when using stan-
dard SGD/Momentum with linear learning rate scaling. To stabilize the training, we use the LARS
optimizer for all batch sizes. Besides, in distributed training with data parallelism, the mean and
variance of Batch Normalization (BN) are typically aggregated locally per device. In contrastive
learning, as positive pairs are computed in the same device, the model can exploit the local infor-
mation leakage to improve the prediction accuracy without improving representations. We address
this issue by aggregating BN mean and variance overall devices during the training.

4.3. Variant of Viewpoints and Distance for Contrastive Representation Learning

Previous work has realized that viewpoint is crucial for features representation in supervised meth-
ods. Furthermore, the distance of a subject to the camera does influence the scale of the skeletons.
To exploit this semantic invariance under the variants of distance and viewpoint, we conduct a con-
trastive learning framework for learning robust feature representations in an unannotated skeleton
sequence. In the following experiments, we will adopt variants of viewpoints and distance to define
the contrastive prediction task in a systematic way. We consider that frame-wise transformation is
inferior to the sequence level transformation because the former loses more information, e.g. the
motion across frames. Thus, we will conduct transformations on the sequence level in following
experiments. To comprehensively study the impact of viewpoint and distance, we define positions
of raw 3D skeletons are initial state, and provide several viewpoints and distance transformations,
respectively. For each viewpoint setup, α, β, γ are randomly selected from the degree set (i.e.
30◦, 60◦, 90◦, 180◦). For each distance setup, d is a random times the unit distance where the alter-
native multiplier is 1 ∼ 5×. To understand the effects of individual transformation of the skeleton
and the importance of transformations composition, the experiment will be repeated multiple times:

• on stochastic viewpoints and distance setups with alternative α, β, γ, d options.

• on stochastic viewpoints setups with random α, β pair and a fixed γ.

• on stochastic viewpoints setups with random α, γ pair and a fixed β.

• on stochastic viewpoints setups with random β, γ pair and a fixed α.

• on stochastic distance setups with a fixed viewpoints setup.

56



CONTRASTIVE SELF-SUPERVISED LEARNINGFOR SKELETON ACTION RECOGNITION

Table 1: Ablation for models trained with compositions of data augmentation.

Viewpoint Augmentation Distance Augmentation Accuracy
Top-1 Top-5

X 35.0% 68.0%
X 23.1% 45.6%

X X 45.0% 78.3%

Table 2: NTU-RGB+D 60 X-Sub accuracies of linear classifiers trained on representations learned
with different viewpoints and distance setups.

Viewpoint

Accuracy Distance
1× 2× 3× 4× 5×

[-30◦, 30◦] 43.7% 44.1% 45.0% 45.5% 46.8%
[-60◦, 60◦] 44.0% 44.5% 45.5% 45.0% 47.0%
[-90◦, 90◦] 45.7% 46.0% 46.7% 46.9% 46.5%

[-180◦, 180◦] 47.3% 47.9% 48.0% 47.4% 47.2%

• with base encoder architectures of different complexity (i.e. models with varied depth and
width).

5. Experimental Results

5.1. Ablation study

To verify the effectiveness of each component of our method, we conduct extensive ablation studies
following the above experimental protocol. Unless stated, the performance reported in the ablation
study is base on 20 epochs pre-training on the NTU-RGB+D 60 X-Sub dataset.
Effects of Data Augmentation. To understand the effects of individual augmentation of the skele-
ton and the importance of augmentations composition, we pre-train the model with different aug-
mentation choices. As shown in the Table 1, we observe that no single transformation suffices
to learn good representations, and both viewpoint and distance augmentations are indispensable.
Specifically, using both viewpoint and distance augmentations yields 45.0% top-1 accuracy. To fur-
ther understand the effects of various viewpoint and distance setups on the final representation, we

Table 3: Ablation for models trained with different choices of rotation coordinate axis and angle
range for viewpoint augmentation.

Coordinate Axis

Accuracy Angle Range
[-30◦,30◦] [-60◦,60] [-90◦,90◦] [-180◦,180◦]

x 35.0% 36.1% 37.2% 37.9%
x, y 38.4% 39.7% 39.4% 38.4%

x, y, z 39.2% 41.5% 40.6% 39.7%
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Table 4: NTU60 X-Sub accuracies of linear classifiers trained on representations learned with dif-
ferent encoder architectures.

Encoder Architecture # Parameters Accuracy

ResNet-18 12.2 M 40.2%
ResNet-50 26.5 M 47.1%

ResNet-101 45.1 M 52.3%

Table 5: Comparison with hand-carfted, supervised and unsupervised methods on NTU60 dataset.
∗ represents depth image based methods.

Method X-View
Accuracy(%)

X-Sub
Accuracy(%)

Hand-Crafted Methods

HON4D∗Oreifej and Liu (2013) 7.3 30.6
Super Normal Vector∗Yang and Tian (2014) 13.6 31.8
HOG2∗Ohn-Bar and Trivedi (2013) 13.6 31.8
Skeletal QuadsEvangelidis et al. (2014) 41.1 38.6
HOPCRahmani et al. (2014) 52.8 50.1

Supervised Methods

H-RNNDu et al. (2015b) 64.0 59.1
Deep RNNShahroudy et al. (2016) 64.1 56.3
Part-aware LSTMShahroudy et al. (2016) 70.3 62.9

Unsupervised Methods

Shuffle & Learn∗Misra et al. (2016) 40.9 46.2
LongT GANZheng et al. (2018) 48.1 39.1
P&C FW Su et al. (2020) 61.1 50.6
Ours 62.1 52.3

show the accuracy performance pre-trained on each specific setup in the Table 2. We can see that
moderate data augmentation helps the encoder to learn more task-relevant information. Additional
noise introduced by the harder data augmentation may lead to degraded performance. Observed
from the Table 3 which shown the influence of rotation axis and rotation angle range in the view-
point augmentation, small rotation with multiple angles of a skeleton sequence can provide the
optimal multiview for learning action-specific features in contrastive representation.
Effects of Base Encoder. The simple design choice of our method is to conveniently decouple the
defined predictive task from other components such as the neural network architecture of the base
encoder. Here, we use ResNet He et al. (2016) as an alternative encoder to extract representations. In
addition, a skeletal sequence is transformed into an image before inputting this CNN-based encoder,
similar that in Du et al. (2015a). Observed from the Table 4, we can see that the best result obtain
from the ResNet-101. Thus, the performance of contrastive learning benefits from bigger models.
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Table 6: Comparison with supervised and unsupervised methods on NTU120 dataset.

Method X-Set
Accuracy(%)

X-Sub
Accuracy(%)

Supervised Methods

Part-Aware LSTMShahroudy et al. (2016) 26.3 25.5
Soft RNNHu et al. (2018) 44.9 36.3
ST-LSTM+Trust GateLiu et al. (2016) 57.9 55.7

Unsupervised Methods

P&C FW Su et al. (2020) 42.7 41.7
Ours 44.3 43.5

5.2. Performance Comparison

We compare our method with previous relevant unsupervised learning methods, supervised meth-
ods, and hand-crafted methods on NTU60 and NTU120 datasets. To make the comparisons fair
and convincing, for an unsupervised learning method P&C Su et al. (2020), we implement it on the
same linear evaluation protocol instead of KNN evaluations.

As shown in Table 5, our method enjoys evident advantages over existing unsupervised methods
on the NTU-RGB+D 60 dataset. Compared with re-generative learning methods (e.g. P&C Su et al.
(2020)), our method not only has a simpler framework, but also yields better performance. Similarly,
our method also surpasses P&C on the X-Set and X-Sub tests of NTU120 dataset with the 1.6% and
1.8 % accuracy improvement respectively, as shown in Table 6.
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