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Abstract

In this paper, we propose a family of ker-
nels for the data distributions belonging to
the exponential family. We call these ker-
nels generative kernels because they take into
account the generative process of the data.
Our proposed method considers the geom-
etry of the data distribution to build a set
of efficient closed-form kernels best suited for
that distribution. We compare our genera-
tive kernels on multinomial data and observe
improved empirical performance across the
board. Moreover, our generative kernels per-
form significantly better when training size is
small, an important property of the genera-
tive models.

1 Introduction

Generative models provide a useful statistical language
for describing data; discriminative methods achieve ex-
cellent classification performance. We define genera-
tive kernels, a family of kernels built around genera-
tive models for use in discriminative classifiers. The
key idea of generative kernels is to use the generative
model to automatically define a statistical manifold,
on which a particular natural divergence (based on the
Fisher information metric) can be translated directly
into a positive definite kernel. Our approach is appli-
cable to any statistical model belonging to the expo-
nential family, which includes common distributions
like the Gaussian and multinomial, as well as more
complex models. In order to compute the value of a
generative kernel, one only needs to evaluate the Leg-
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endre dual of its log-partition function, a well-studied
problem in the graphical models literature.

Apart from the geometric perspective, there are other
reasons to consider the data distribution when con-
structing the kernels. It is commonly observed that
generative models perform well when only a small
amount of data is available [15], especially when the
model is a true model of the data distribution [13].
However, as the model becomes less true, or as the
amount of data grows, discriminative approaches pre-
vail. Ideally, one would like to take advantage of both
methods, and build a hybrid method that performs
well for small training data and does not rely too much
on the generative process assumption. One way to
build such hybrid method is to encode the generative
process information in the kernel, therefore providing
the kernel method a geometry derived from the data
distribution, which in turn can be derived naturally
from the statistical manifold for that distribution fam-
ily.

There have been previous efforts to build kernels from
generative models: the Fisher kernel [10], the heat
kernel[12], the probability product (PP) kernel [11].
The first two consider the generative process by de-
riving the geometry for the statistical manifold asso-
ciated with the generative distribution family using
the fundamental principle of the information distance.
Unfortunately, these kernels are intractable to com-
pute exactly even for very simple distributions due
to the need to compute the Fisher information met-
ric. The approximations required to compute these
kernels result in a function that is not guaranteed to
be positive definite [14]. There is another family of
kernels named semi-group kernels [7] which has the
same expression as generative kernels though both are
derived completely differently. Unlike [7], we con-
sider the geometry of the data distribution and rea-
son why it is appropriate to call these kernels gener-
ative kernels. Note that semi-group kernels are not
generative kernels for general probability distributions
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Figure 1: A typical example of relative performance on

real dataset from multinomial distribution. Exp and In-

verse are the generative kernels.

therefore empirical study of these kernels under the
discriminative/generative paradigm is not considered
in [7]. We study generative kernels under genera-
tive/discriminative paradigm, in particular, we per-
form experiments to see what happens when the data
generation assumption is violated (noisy data).

Our generative kernels have a number of desirable
properties:

• They are applicable to any exponential family dis-
tribution.

• They are built using the natural geometry of the
distribution space.

• They are closed-form, efficient to compute, and
by construction are positive definite.

• Empirical comparisons to the best published ker-
nels using the same data and experimental setup
yield improved performance.

• They demonstrate that using the geometry of the
statistical manifold improves performance, which
brings up many open research questions related
to the use of geometry in learning algorithms.

• Empirical results with these kernels show that
these kernels are able to exploit the generative
properties, therefore can be called generative ker-
nels.

Unlike other distribution based kernels, a discrimina-
tive method based on the proposed generative kernel is
able to exploit the properties of the generative meth-
ods i.e. perform well when not enough data. In Fig-
ure 1, we show a typical result from a real world clas-
sification task on the text data. The blue curve which
represents the generative method (Naive Bayes (NB))

θ1θn θ̂ML

µ1µn µML

Θ

M

G

F

Figure 2: Duality between mean parameters and
canonical parameters. Notice the convex functions de-
fined over both spaces. these functions are dual of each
other and so are the spaces.

performs better when training size n is small but as we
increase n, discriminative methods (other curves) start
to take over. Although other discriminative methods
perform poorer than the NB for small n, discrimina-
tive method when used with generative kernel, perform
better for all n. We (red and green curves) perform
equal/better to NB when n is small, and outperform
all other methods as n gets large. Generative kernel
curves are lower envelopes of all other curves, giving
us the best of both worlds.

2 Background

In this section. we give the required background, spe-
cially, we revisit the concepts related to exponential
families and Bregman divergence.

2.1 Exponential Family

The exponential family is a set of distribution, whose
probability density function can be expressed in the
following form: p(x; θ) = po(x)exp(〈θ, φ(x)〉 − G(θ)).
Here φ(x) : Xm → Rd is a vector potentials or suffi-
cient statistics and G(θ) is the log-partition function.
With the potential functions φ(x) fixed, every θ in-
duces a particular member p(x; θ) of the family. In
our framework, we deal with the exponential family
that are regular and have minimal representation [17].

One important property of exponential family mem-
ber is that log-partition function G is convex over the
convex set Θ := {θ ∈ Rd : G(θ) < ∞}. Convexity
of log-partition function G ensures that there exists
a space M, dual to Θ and a dual function F defined
over M. Here duality refers to standard Legendre du-
ality. This convexity property also induces a Breg-
man divergence on both Θ and M. For θ1, θ2 ∈ Θ, let
BG(θ1‖θ2) be the Bregman divergence defined over the
space Θ, then BG(θ1‖θ2) = BG(θ∗1‖θ∗2) = BF (µ1|µ2),
where µ1, µ2 ∈M are the conjugate dual of θ1 and θ2

respectively. It is to be noted that Bregman divergence
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is not symmetric i.e. in general, BF (p‖q) 6= BF (q‖p),
therefore its is important what directions these diver-
gences are measured in.

Another important property of the exponential family
is the one-to-one mapping between the mean parame-
ters and the canonical parameters. For each canonical
parameter θ ∈ Θ, there exists a corresponding mean
parameter µ ∈ {µ ∈ Rd : µ =

∫
φ(x)p(x; θ) dx ∀θ ∈

Θ} such that∇G(θ) = θ∗ = µ. It can be easily shown
that space of mean parameters and dual space of Θ,
M are the same spaces. A pictorial representation of
the duality between canonical parameter space Θ and
mean parameter space M is given in Figure 2.

2.2 Statistical Manifolds and Dualistic
Structure

We now define statistical manifolds and the dualistic
structure associated with them. We in particular give
reasons why it is important to choose the KL diver-
gence to define the kernel for the exponential family.
A statistical manifold S is a d-dimensional manifold
S = {θ ∈ Θ} such that every θ ∈ Θ induces a proba-
bility distribution over some space X.

Following [1], it is well known that all arbitrary diver-
gences induce a dualistic structure and a metric. In
particular, for statistical manifolds, the most natural
divergence is the one that induces the Fisher infor-
mation metric. A divergence function that induces
the Fisher information metric on the exponential fam-
ily manifolds is KL divergence. It is also known as
D−1 divergence (a special case of Dα divergence for
α = −1). Since exponential family manifolds have du-
alistic structure (in fact they are dually flat), there
exists a dual space, where one can define the dual di-
vergence i.e. D1 divergence. Following [18], this du-
ality is called referential duality. In referential dual-
ity, for two points p, q ∈ Θ D1(p‖q) = D−1(q∗‖p∗) or
KL(p‖q) = KL∗(q∗‖p∗). There exists another form of
duality (Legendre duality) based on the convex analy-
sis which allows us to define the Bregman divergence,
is called representational duality, and in such duality,
BF (p‖q) = BG(q∗‖p∗), where F and G are dual of
eachother.

3 Generative Kernels

In this section, we develop a family of generative ker-
nels, In Section 3.1, we first consider the exponen-
tial family that generated the data, and transform
the maximum likelihood estimation (MLE) problem
for the generative model into a Bregman median prob-
lem in Θ-space. As discussed earlier, a natural diver-
gence in Θ-space is KL divergence. We use this KL

divergence to build a metric in Θ-space. Using duality,
we project this metric into M-space, and then in Sec-
tion 3.2, we convert this projected metric into a p.d.
kernel.

3.1 Generative Model to Metric

Here, we first consider the generative model. Let X be
the input data space, and Θ be the parameter space
such that for each θ ∈ Θ, p(x; θ) is the likelihood of the
point x ∈ X under distribution given by θ. Now, for a
set of i.i.d. observed points Xn = {x1. . . . xn} ⊂ X, the
log likelihood of Xn is

∑n
i=1 log p(xi; θ). A standard

estimate of the “best” parameters for this data is the
MLE which solves the following problem:

Definition 1. MLE. Given a set of data points Xn

and a family of distribution p(x; θ) parametrized by
θ ∈ Rd, MLE finds θ̂ML ∈ Θ such that θ̂ML =
arg minθ∈Rd

∑n
i=1 log p(xi; θ).

It turns out that for exponential family distributions,
the MLE problem can transformed into a geometric
problem, in particular into a Bregman median prob-
lem:

Lemma 1. Let Xn be a set of n i.i.d. training data
points drawn from the exponential family distribution
with the log partition function G and F be the dual
function of G. Then the dual of the MLE (θ̂ML) of Xn

under the assumed exponential family model solves the
following Bregman median problem:

θ̂∗ML = µ̂ML = min
µ∈M

n∑
i=1

BF (φ(xi)‖µ) (1)

Proof. The proof is simply a combination of many
known facts [1, 6]. For the sake of understanding, we
briefly reprove it. For an exponential family distribu-
tion, −log p(x; θ) = log (p0(x)−〈φ(x), θ〉+G(θ) which
using the relationships, F (∇G(θ)) + G(θ) = ∇G(θ)θ
and ∇F (∇G(θ)) = θ, gives log p(x; θ) = log po(x) +
F (φ(x))−BF (φ(x)‖∇G(θ)). Now using Definition 1,

θ̂ML = max
θ∈Θ

nX
i=1

“
log po(xi) + F (φ(xi))−BF (φ(xi)‖∇G(θ))

”
= min

θ∈Θ

nX
i=1

BF (φ(xi)‖∇G(θ)) (2)

which using ∇G(θ) = µ, takes the entire problem into
the M-space and gives the desired result.

We now take the above Bregman median problem from
M-space to Θ-space where we will be able to use KL
divergence. For this. we need the following result.

Corollary 1 (ML Estimation for Single Point).
Let xi be the only point observed, then MLE µ̂i,ML

under this observed point is φ(xi)
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Figure 3: MLE as Bregman median problem into Θ
and M spaces for exponential family distributions. In
Θ space, it is a problem over θis with optimal θ ap-
pearing in the first argument of the divergence function
while in M-space, it is a problem over mean parame-
ters with optimal µ appearing in the second argument
in the divergence function.

Proof. In Lemma 1, for single point, (1) is minimized
when µ̂i,ML = φ(xi).

Unless otherwise stated, we will use µi instead of µ̂i,ML

to make notations less cluttered.
Theorem 1. Let M and Θ be dual spaces as defined
earlier, θi be the MLE of data point xi under the ex-
ponential family parametric model p(x; θ). Given such
{θi, . . . , θi} for all points {xi, . . . , xn}, θ̂ML is equiva-
lent to:

θ̂ML = arg min
θ∈Θ

n∑
i=1

BG(θ‖θi) (3)

Proof. From Corollary 1, φ(xi) = µi, now replacing
this in (1) gives µ̂ML = minµ∈M

∑n
i=1BF (µi‖µ). Now

for µ1, µ2 ∈ M and θ1, θ2 ∈ θ, using the relationship
BF (µ1‖µ2) = BG(θ1‖θ2) takes the entire problem from
M-space to Θ-space giving the desired result.

Figure 3 gives a pictorial summarization of these
MLE(s) as Bregman median problems in Θ and M

spaces. Now we transform this Bregman median prob-
lem in Θ-space into a KL minimization problem using
the following Lemma.
Lemma 2 (KL and Bregman for Exponential
Family). Let KL(θ1‖θ2) be the KL divergence for
θ1, θ2 ∈ Θ, then KL(θ1‖θ2) = BG(θ2‖θ1)

Proof. This directly follows from the definitions of KL
divergence and exponential family; and from the rela-
tion, Eθ(x) = ∇G(θ) for exponential family.

KL(θ1‖θ2) = Eθ1(log p(x; θ1)− log p(x; θ2)

= Eθ1
(
〈x, θ1 − θ2〉 − (G(θ1)−G(θ2))

)
= 〈∇G(θ1), θ1 − θ2〉 − (G(θ1 −G(θ2))
= BG(θ2‖θ1)

Theorem 2. MLE θ̂ML of data points Xn generated
from exponential family is now given by:

θ̂ML = arg min
θ∈Θ

n∑
i=1

KL(θi‖θ) (4)

Proof. From Lemma 2, KL(θi‖θ) = BG(θ‖θi), substi-
tuting this in (3) gives the desired result.

Note that the MLE θ̂ML can also be compute
from a rather well known relation: θ̂ML =
arg minθ∈ΘKL(Pn‖θ) where Pn is the empirical dis-
tribution of Xn. This relationship holds true for all
parametric distributions. In (4), It is worth nothing
that parameter being estimated comes in the second
argument of KL divergence. This observation along
with the following definition is used to construct a met-
ric in Θ-space.

Definition 2 (JS Divergence). For θ1, θ2 ∈ Θ and
θ̃ = (θ1+θ2)

2 , JS(θ1, θ2) is defined as:

JS(θ1, θ2) =
1
2

(
KL(θ1‖θ̃) +KL(θ2‖θ̃)

)
It is well known that

√
JS is a metric.

√
JS have also

been shown to be Hilbertian [8, 2]. A metric d(x, y) is
said to be Hilbertian metric if and only if d2(x, y) is a
negative definite(n.d.) [16]. Since

√
JS is a Hilbertian

metric, JS is n.d..

It is important to understand the purpose of the above
analysis in deriving the metric based on the JS diver-
gence (JS metric). This analysis builds a bridge be-
tween the JS metric and the generative models. The
JS metric can therefore be used to build kernels that
can exploit the generative properties of the data. Es-
tablishing the connection between the JS metric and
the generative models in theory, and showing the effi-
cacy of the kernels based on this metric in practice, is
the main contribution of this work.

The JS metric, which is based on symmetrized KL di-
vergence has been known for a long time [7]. However,
what is not known is the generative behavior of the
JS metric. In the existing literature, JS metric is usu-
ally derived for any probability distribution, and for
a general probability distribution, JS metric does not
consider the generative model of the data, and there-
fore can not be used to build the generative kernels.
We, in this work, only consider the distributions be-
longing to the exponential families, for which, the JS
metric can be shown to have been derived considering
the generative model. This connection between the
JS metric and the generative model allows us to build
kernels that can be used to build hybrid (discrimina-
tive+generative) models.
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Definition 3 (Dual JS Divergence). For µ1, µ2 ∈
M and µ̃ = (µ1+µ2)

2 , let KL∗(.‖.) be the dual of KL
divergence then the dual JS divergence DJS(µ1, µ2) is
defined as:

DJS(µ1, µ2) =
1
2

(
KL∗(µ̃‖µ1) +KL∗(µ̃‖µ2)

)
Theorem 3. DJS is negative definite.

Proof. Result is direct consequence of the fact that
JS divergence is symmetric. Using the relation-
ship between KL and KL∗, one can simply take the
dual of JS which is DJS(θ1, θ2) = 1

2 (KL(θ1‖θ̃) +
KL(θ2‖θ̃)) = JS(θ1, θ2) which is n.d..

Theorem 4. Let ψ(µ1, µ2) = DJS(µ1, µ2) be a n.d.
function on M, then

ψ(µ1, µ2) =
F (µ1) + F (µ2)

2
− F (

µ1 + µ2

2
) (5)

Proof. Using the duality, KL∗(µ1‖µ2) = BF (µ2‖µ1);
DJS(µ1, µ2) = 1

2 (BF (µ1‖µ̃) +BF (µ2‖µ̃)). Expanding
the expression for the Bregman divergence and using
some algebra yields the result.

Though not analyzed, this expression is also observed
in [5]. It is to be noted that this metric (5) is de-
fined over the mean parameters, so in order to de-
fine the metric over the data points Xn, one can
use Corollary 1, according to which, ψ(µ1, µ2) =
ψ(φ(x1), φ(x2))

3.2 Metric to Kernel

In this section, we convert the previously constructed
Hilbertian metric (n.d. function) into a family of ker-
nels that we will use later in our experiments. We now
state some results that can be used along with (5) to
build the kernels called “generative kernels“. Although
there could be many ways [2, 16] to transform a metric
into a kernel, we mention a few here:
Proposition 1 (Centering). Let function ψ : X ×
X → R be a symmetric function, and x0 ∈ X. Let
ϕ : X× X→ R be

ϕ(x, y) = ψ(x, x0) + ψ(y, x0)− ψ(x, y)− ψ(x0, x0),

then ϕ is n.d. if and only if ψ is positive definite (p.d.).
Proposition 2 (Exponentiated(Exp)). The func-
tion ψ : X× X→ R is n.d. if and only if exp(−tψ) is
p.d. for all t > 0.
Proposition 3 (Inverse). The function ψ : X×X→
R is n.d. if and only if (t+ ψ)−1 is p.d. for all t > 0.

Note that the computation complexity of generative
kernels depends on the computational complexity of
the dual of log-patition function.

4 Related Work

In this section, we briefly discuss the kernels that
are close to generative kernels. One of the earliest
distribution-based kernels is Fisher kernels [10]. These
kernels are constructed by taking the inner product in
the tangent space of Θ using the Fisher information
metric. Although constructed in a principled manner,
these kernels are impractical due to the intractability
of the Fisher information metric computation.

Other kernels (heat kernels) based on the principle of
the Fisher information metric are proposed by [12].
Similar to generative kernels, these kernels also con-
sider the geometry of the statistical manifold. Like
Fisher kernels, these kernels also suffer from the in-
tractability issue, and so for even most simple geome-
tries, there is closed-form solution.

[11] propose a family of kernels which is most similar to
generative kernels, and at the same time, is fundamen-
tally very different. Similar to our work, they define
kernels by considering the data distribution. Their
kernel is defined on the parameters space Θ while our
kernel is defined on dual of Θ. For exponential family
their results reduce to the Bhattacharyya kernels [3]
K(θ1, θ2) = exp

“
G( θ1+θ2

2
) − G(θ1)+G(θ2)

2

”
while our ker-

nel (Exp form) look like K(µ1, µ2) = exp
“
F (µ1+µ2

2
) −

F (µ1)+F (µ2)
2

”
. In our formulation, we use the dual of

the log-partition function F while they use the log-
partition function G. These two kernels are very differ-
ent, one because of the space they are defined over, and
other because, there is no explanation as such what
divergence (or metric) Bhattacharyya kernels induce
on the statistical manifold while generative kernels by
construction, induce the Fisher information metric.

There has also been some recent work on the kernels
on the probability measures [14, 9] which are very re-
stricted because they are only defined on the proba-
bility measures not on the arbitrary spaces. Although
we take a completely different approach to derive the
generative kernels, it can be shown that for the expo-
nential family distributions, Jensen Tsallis q-kernels
[14] reduce to generative kernels for q = 1.

As mentioned earlier, generative kernels have the same
expression as the semi-group kernels [7] for the expo-
nential family, though both are derived completely dif-
ferently. We emphasize that semi-group kernels are
defined for the general probability distributions by
considering the symmetrized KL divergence, and for
general probability distributions, these kernels are not
the generative kernels because in general, they do not
induce the natural divergence (or natural metric) on
the statistical manifold. For general probability distri-
butions, KL divergence is not the natural divergence,
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therefore use of JS divergence to define the kernel is
questionable. Moreover, semi-group kernels do not
justify why KL divergence (with θ̃ in the second ar-
gument) is the appropriate divergence. In our work,
we take an information geometric approach to derive
these kernels and show that these kernels are actually
the natural kernel because they induce the Fisher in-
formation metric. Semi-group kernels only consider
(both in theory and their evaluation) exp form of the
kernel while we consider a different number of kernels
e.g. exp, inv, centering, and study them in discrim-
inative/generative framework. Note that exp version
usually does not perform as well as others (see Tables 1
and 2).

5 Experiments

In this section we evaluate generative kernels on sev-
eral text categorization tasks. We use the multinomial
distribution for this evaluation for two reasons. First,
multinomial is one of the most widely used distribu-
tions after Gaussian1. Second, other principally simi-
lar kernels which we would like to compare against,
have been shown to work only for the multinomial
geometry, for computational reasons. Note that for
multinomial distribution, φ(x) is simply the observed
frequency vector.

We have performed experiments with six kernels: gen-
erative(centering, exp and inverse), linear, Heat and
PP kernels. For multinomial geometry, one can also
use other probability measure based kernels for com-
parison (e.g. Tsallis-q kernels) but we will not use
them because heat kernels are usually more effective
[14]. It is emphasized here that our real competitors
are heat and PP kernels, mainly because they both are
distribution dependent kernels. In order to see the dis-
criminative/generative behavior, we also include the
results of a generative model (NB with α-smoothing).
For each of these kernels including heat and PP, we
report the results for the best parameters. Also, we
run our competitors in the best possible settings i.e.
heat kernel is applied on the `2 normalized frequency
vector which is known to outperform `1. In order to
make graphs look less cluttered, we exclude genera-
tive centering and linear kernels. In most of the cases
they underperformed other kernels. For statistical sig-
nificance, all of the results are averaged over 20 runs.
Although in our results, we only report the mean er-
ror, variance was found to be very low (∼ 0.0001), and
hence not reported for the clarity. For evaluation, we
use SVM toolbox[4].

1Gaussian is uninteresting because all kernels, heat, PP
and generative reduce to RBF
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Figure 4: Performance variation with n on random multi-

nomial dataset in sparse and dense settings
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Figure 5: Performance variation with different noise lev-

els on random multinomial dataset in sparse and dense

settings

5.1 Artificial Dataset

In this section, we give a proof of concept by evaluating
our kernels on synthetic data. For the multinomial dis-
tribution, the relative size of each trial w compared to
the dimension of the data d is important because that’s
what makes problems difficult or easier. if multinomial
distributions are considered to be the documents, then
long documents compared to the vocabulary size(low
d/w, dense setting) makes problem easier while short
documents (high d/w, sparse settings) makes the prob-
lem difficult. We show results for both dense and
sparse settings. For each of these settings, we per-
form two kind of experiments, In one we vary n (no
noise), and in other we vary the noise level( n = 50).
Noise is introduced by copying the result of previous
trial with probability p =noise level. In sparse setting
d/w = 100 while in dense d/w = 5 with w = 20. These
results are shown in Figure 4 and Figure 5 respectively.
Since in all of these experiments, we outperform other
kernel methods, an important comparison would be to
see how our method perform compared to the genera-
tive method (NB) mainly because discriminative mod-
els based on generative kernels can be thought of as a
mixture of discriminative/generative models.
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In all of these experiments, results are found to be very
interesting and consistent with previous known facts.
In the non-noise dense settings, we see that we outper-
form all other methods except for NB. It is well known
[13] that in case of correct model assumption, genera-
tive models outperform discriminative methods hence
in this case, one can not hope to beat NB, though we
beat all other discriminative models for all n. It is also
emphasized that when n is small we perform as well
as the NB because for small n, generative properties
dominate discriminative properties in our method, but
as we increase the data, discriminative properties tend
to dominate and model starts to perform poor. Sim-
ilar results are obtained for the sparse setting except
that problem is now harder, and for hard problem, rel-
ative difference between generative and discriminative
is not very high.

An interesting phenomena occurs when we introduce
noise. Results are presented in Figure 5. For simple
problem (dense setting), NB outperforms all discrimi-
native methods for all noise levels. In simple problem,
introducing noise does not make much difference, and
problem is still simple enough for NB to perform better
therefore, it is the hard problem that is more interest-
ing. In hard problem (sparse setting), NB performs
better when there is less noise (∼ 10%), but as we in-
crease the noise, correct model assumption breaks and
our method starts to outperform.

5.2 Real Datasets

We now show the results for the real world datasets.
We consider two standard datasets WebKB and
Reuters2. Datasets were preprocessed in a standard
manner (short words and stopwords removal, stem-
mer)3.

WebKB dataset contains webpages classified into four
categories, student, faculty, course and student. We
take all four classes and construct binary classifica-
tion tasks by choosing class pairs, giving us a total of
six tasks. For two such tasks, performance variation
with n is shown in Figure 6. These are typical results
and were found to be consistent among other tasks.
Our results are very promising, giving the ideal re-
sults for the discriminative/generative hybrid models.
Generative kernel curves form the lower envelopes of
the discriminative and generative curves. Though, we
outperform all models in all cases, we perform signifi-
cantly better ∼ 10%) when n is small. Observe that
NB performs better than other discriminative models

2Available at http://www.cs.cmu.edu/afs/cs.
cmu.edu/project/theo-20/www/data/ and http:
//www.daviddlewis.com/resources/testcollections/

3http://web.ist.utl.pt/~acardoso/datasets/

0 50 100 150 200

10
−1

10
0

Training examples per class

C
la

ss
ifi

ca
tio

n 
er

ro
r

course vs. project

 

 

Exp

Inverse

PP

Heat

NB

0 50 100 150 200

10
−1

10
0

Training examples per class

C
la

ss
ifi

ca
tio

n 
er

ro
r

student vs. project

 

 

Exp

Inverse

PP

Heat

NB

Figure 6: Performance variation with n on WebKB

dataset. Note that Y -axis is log-scaled hence relative dif-

ference is not equal along the X-axis. Although not visible

from plot, relative improvement for n = 1) is ∼ 10%
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Figure 7: Performance variation with n on Reuters

dataset. Y -axis is log-scaled.

when n is small, an important property of the genera-
tive models [15], which we are able to exploit, and per-
form better/equivalent to generative models for small
n, and better than discriminative methods for large
n. Table 5.2 shows the results for all six tasks for
n = 20. For WebKB dataset, Generative-centering
does not perform very good but other generative ker-
nels outperform all methods. In some case i.e. faculty
vs.student difference is as much as 5%.

Reuters dataset is a collection of newswire articles clas-
sified according to the topics. Although there are more
than 140 topics, we take topics with largest number of
labeled examples: acq, earn, crude, grain and money-
fx. We again consider class pair as a binary classifi-
cation task which gives us a total of 10 tasks. Perfor-
mance variation with n for two such tasks is shown in
Figure 7. Results are similar to the WebKB dataset,
generative kernel curves being the lower envelopes of
all other curves. Table 5.2 shows the results for all 10
tasks for n = 20. We see that generative kernels are
able to outperform all other methos but here unlike
WebKB dataset, difference among different version of
generative kernels is not as high, in fact all of the gen-
erative kernels perform almost equally good.

http://www.cs.cmu.edu/afs/cs.cmu.edu/project/theo-20/www/data/
http://www.cs.cmu.edu/afs/cs.cmu.edu/project/theo-20/www/data/
http://www.daviddlewis.com/resources/testcollections/
http://www.daviddlewis.com/resources/testcollections/
http://web.ist.utl.pt/~acardoso/datasets/
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Task Generative Kernels Linear PP Heat Naive
Centering Exp Inverse Kernel Kernel Kernel Bayes

faculty vs. course 0.1727 0.0443 0.0413 0.1268 0.0616 0.0593 0.0719
student vs. project 0.2735 0.1142 0.1114 0.2166 0.1386 0.1364 0.1340
course vs. project 0.2120 0.0602 0.0602 0.1747 0.0699 0.0687 0.0663
faculty vs. project 0.2012 0.1310 0.1256 0.2259 0.1539 0.1509 0.2036
faculty vs. student 0.2945 0.1499 0.1476 0.2272 0.1926 0.1896 0.2098
student vs. course 0.3165 0.0541 0.0515 0.1227 0.0858 0.0819 0.0590

Table 1: Error comparison of generative kernels with other kernels on WebKB dataset

Task Generative Kernels Linear PP Heat Naive
Centering Exp Inverse Kernel Kernel Kernel Bayes

acq vs. earn 0.0694 0.0747 0.0664 0.0754 0.0673 0.0671 0.0684
acq vs. crude 0.0432 0.0410 0.0407 0.0966 0.0472 0.0469 0.0696
acq vs. money-fx 0.0074 0.0078 0.0071 0.0596 0.0110 0.0106 0.0191
earn vs. grain 0.0119 0.0142 0.0116 0.0776 0.0142 0.0123 0.0164
grain vs. money-fx 0.0138 0.0134 0.0131 0.0687 0.0198 0.0194 0.0265
acq vs. grain 0.0131 0.0153 0.0134 0.0791 0.0168 0.0168 0.0194
crude vs. money-fx 0.0082 0.0096 0.0089 0.0394 0.0121 0.0117 0.0209
earn vs. money-fx 0.0117 0.0142 0.0121 0.0567 0.0142 0.0135 0.0199
earn vs. crude 0.0326 0.0366 0.0329 0.0814 0.0363 0.0348 0.0450
grain vs. crude 0.0179 0.0194 0.0183 0.0705 0.0246 0.0246 0.0448

Table 2: Error comparison of generative kernels with other kernels on Reuters dataset.

6 Conclusion and Future work

We have proposed a family of generative kernels for
exponential family distributions, based on the princi-
ple of information distance. These kernels are simple
and have a closed-form. Empirically, they outperform
other kernels based on probability distributions, es-
pecially, they are able to exploit the properties of the
generative process therefore, perform significantly well
for small training data.

This work opens up many research questions and can
be extended in many ways. One is to understand the
behaviors of these kernels: There exists a unique nat-
ural Hilbertian metric for a given statistical manifold
but there is no unique kernel. Because of the multiple
mappings from metric to kernel, one can build many
kernels and it has been observed that not all of these
kernels perform equally. Another direction for the fu-
ture work would be to understand the fundamental ge-
ometry of these statistical manifold and to use them in
problems other than classification i.e. clustering. Al-
though in principle, these kernels can be used for any
exponential family models, one has yet to establish the
practical evidence. One future work of this could be
to use these kernels together with exponential families
derived from complex graphics model structures in the
context of classification.
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