
 101

Online Inference for the Infinite Topic-Cluster Model: Storylines from
Streaming Text

Amr Ahmed Qirong Ho Choon Hui Teo Jacob Eisenstein Alex J. Smola Eric P. Xing
CMU CMU Yahoo! Labs CMU Yahoo! Research CMU

Abstract

We present the time-dependent topic-cluster
model, a hierarchical approach for combining
Latent Dirichlet Allocation and clustering via the
Recurrent Chinese Restaurant Process. It inherits
the advantages of both of its constituents, namely
interpretability and concise representation. We
show how it can be applied to streaming collec-
tions of objects such as real world feeds in a news
portal. We provide details of a parallel Sequen-
tial Monte Carlo algorithm to perform inference
in the resulting graphical model which scales to
hundred of thousands of documents.

1 INTRODUCTION
Internet news portals provide an increasingly important ser-
vice for information dissemination. For good performance
they need to provide essential capabilities to the reader:

Clustering: Given the high frequency of news articles —
in considerable excess of one article per second even for
quality English news sites — it is vital to group similar
articles together such that readers can sift through relevant
information quickly.

Timelines: Articles must be aggregated over time, ac-
counting not only for current articles but also for previous
news. This is especially important for storylines that are
just about to drop off the radar, so that they may be catego-
rized efficiently into the bigger context of related news.

Content analysis: We would like to group content at three
levels of organization: high-level topics, individual stories,
and entities. For any given story, we would like to be able
to identify the most relevant topics, and also the individual
entities that distinguish this event from others which are in
the same overall topic. For example, while the topic of the
story might be the death of a pop star, the identity Michael

Appearing in Proceedings of the 14th International Conference on
Artificial Intelligence and Statistics (AISTATS) 2011, Fort Laud-
erdale, FL, USA. Volume 15 of JMLR: W&CP 15. Copyright
2011 by the authors.

Jackson will help distinguish this story from similar stories.

Online processing: As we continually receive news doc-
uments, our understanding of the topics occurring in the
event stream should improve. This is often not the case
for simple clustering models — increasing the amount of
data may simply increase the number of clusters.Yet topic
models are unsuitable for direct analysis since they do not
reason well at an individual event level.

The above desiderata are often served by separate algo-
rithms which cluster, annotate, and classify news. Such an
endeavour can be costly in terms of required editorial data
and engineering support. Instead, we propose a unified sta-
tistical model to satisfy all demands simultaneously. We
show how this model can be applied to data from a major
Internet News portal.

From the view of statistics, topic models, such as Latent
Dirichlet Allocation (LDA), and clustering serve two rather
incomparable goals, both of which are suitable to address
the above problems partially. Yet, each of these tools in
isolation is quite unsuitable to address the challenge.

Clustering is one of the widely-used tools for news ag-
gregation. However, it is deficient in three regards: the
number of clusters is a linear function of the number of
days (assuming that the expected number of storylines per
day is constant), yet models such as Dirichlet Process Mix-
tures (Antoniak 1974) only allow for a logarithmic or sub-
linear growth in clusters. Secondly, clusters have a strong
aspect of temporal coherence. While both aspects can be
addressed by the Recurrent Chinese Restaurant Process
(Ahmed and Xing 2008), clustering falls short of a third
requirement: the model accuracy does not improve in a
meaningful way as we obtain more data — doubling the
time span covered by the documents simply doubles the
number of clusters. But it contributes nothing to our under-
standing of longer-term patterns in the documents.

Topic Models excel at the converse: They provide insight
into the content of documents by exploiting exchangeabil-
ity rather than independence (Blei et al. 2003). This leads
to intuitive and human understandable document represen-
tations, yet they are not particularly well-suited to cluster-
ing and grouping documents. For instance, they would not

 102

Online Inference for the Infinite Topic-Cluster Model: Storylines from Streaming Text

be capable of distinguishing between the affairs of two dif-
ferent athletes, provided that they play related sports, even
if the dramatis personae were different. We address this
challenge by building a hierarchical Bayesian model which
contains topics at its top level and clusters drawn from a Re-
current Chinese Restaurant Process at its bottom level. In
this sense it is related to Pachinko Allocation (Li and Mc-
Callum 2006) and the Hierarchical Dirichlet Process (Teh
et al. 2006). One of the main differences to these models is
that we mix different datatypes, i.e. distributions and clus-
ters. This allows us to combine the strengths of both meth-
ods: as we obtain more documents, topics will allow us to
obtain a more accurate representation of the data stream.
At the same time, clusters will provide us with an accurate
representation of related news articles.

A key aspect to estimation in graphical models is scalabil-
ity, in particular when one is concerned with news docu-
ments arriving at a rate in excess of 1 document per sec-
ond (considerably higher rates apply for blog posts). There
has been previous work on scalable inference, starting with
the collapsed sampler representation for LDA (Griffiths
and Steyvers 2004), efficient sampling algorithms that ex-
ploit sparsity (Yao et al. 2009), distributed implementations
(Smola and Narayanamurthy 2010, Asuncion et al. 2008),
and Sequential Monte Carlo (SMC) estimation (Canini
et al. 2009). The problem of efficient inference is exac-
erbated in our case since we need to obtain an online esti-
mate; that is, we need to be able to generate clusters es-
sentially on the fly as news arrives and to update topics
accordingly. We address this by designing an SMC sam-
pler which is executed in parallel by allocating particles to
cores. The data structure is a variant of the tree described
by Canini et al. (2009). Our experiments demonstrate both
the scalability and accuracy of our approach when com-
pared to editorially curated data of a major news portal.

2 STATISTICAL MODEL
In a nutshell, our model emulates the process of generating
news articles. We assume that stories occur with an approx-
imately even probability over time. A storyline is charac-
terized by a mixture of topics and the names of the key enti-
ties involved in it. Any article discussing this storyline then
draws its words from the topic mixture associated with the
storyline, the associated named entities, and any storyline-
specific words that are not well explained by the topic mix-
ture. The associated named entities and storyline-specific
words allow the model to capture burstiness effect inside
each storyline (Doyle and Elkan 2009, Chemudugunta et al.
2006). In summary, we model news storyline clustering
by applying a topic model to the clusters, while simultane-
ously allowing for cluster generation using the Recurrent
Chinese Restaurant Process (RCRP).

Such a model has a number of advantages: estimates in
topic models increase with the amount of data available,
hence twice as much data will lead to correspondingly im-

β0

st−1 st+1std

wdi

βs

φ0

α

θd

zdi

φk

wdi

Ω0

st+1std

edi Ωs

φ0

zdi

φk

wdi

α

βs

st−1

θsd

π

π0πs

β0

Figure 1: Plate diagram of the models. Top left: Recurrent
Chinese Restaurant Process clustering; Top right: Latent
Dirichlet Allocation; Bottom: Topic-Cluster model.

proved topics. Modeling a storyline by its mixture of topics
ensures that we have a plausible cluster model right from
the start, even after observing only one article for a new sto-
ryline. Third, the RCRP identifies a continuous flow of new
storylines over time. Finally, a distinct named entity and
specific-words model ensure that we capture the charac-
teristic terms rapidly inside each storyline, and at the same
time ensures that topics are uncorrupted by more ephemeral
terms (see Figure 3 for an example).

2.1 Recurrent Chinese Restaurant Process
A critical feature for disambiguating storylines is time. Sto-
rylines come and go, and it makes little sense to try to
associate a document with a storyline that has not been
seen over a long period of time. We turn to the Recur-
rent Chinese Restaurant Process (Ahmed and Xing 2008),
which generalizes the well-known Chinese Restaurant Pro-
cess (CRP) (Pitman 1995) to model partially exchangeable
data like document streams. The RCRP provides a non-
parametric model over storyline strength, and permits in-
ference over a potentially unbounded number of stories.

For concreteness, we need to introduce some notation: we
denote time (epoch) by t, documents by d, and the position
of a word wdi in a document d by i. The storyline associ-

 103

Amr Ahmed, Qirong Ho, Choon Hui Teo, Jacob Eisenstein, Alex J. Smola, Eric P. Xing

ated with document d is denoted by sd (or sdt if we want to
make the dependence on the epoch t explicit). Documents
are assumed to be divided into epochs (e.g., one hour or one
day); we assume exchangeability only within each epoch.
For a new document at epoch t, a probability mass propor-
tional to γ is reserved for generating a new storyline. Each
existing storyline may be selected with probability propor-
tional to the sum mst + m′st, where mst is the number of
documents at epoch t that belong to storyline s, and m′st is
the prior weight for storyline s at time t. Finally, we denote
by βs the word distribution for storyline s and we let β0 be
the prior for word distributions. We compactly write

std|s1:t−1, st,1:d−1 ∼ RCRP(γ, λ,∆) (1)

to indicate the distribution

P (std|s1:t−1, st,1:d−1) ∝

{
m′st +m−tdst existing storyline
γ new storyline

(2)

As in the original CRP, the count m−tdts is the number of
documents in storyline s at epoch t, not including d. The
temporal aspect of the model is introduced via the prior
m
′

st, which is defined as

m
′

st =

∆∑
δ=1

e−
δ
λms,t−δ. (3)

This prior defines a time-decaying kernel, parametrized by
∆ (width) and λ (decay factor). When ∆ = 0 the RCRP de-
generates to a set of independent Chinese Restaurant Pro-
cesses at each epoch; when ∆ = T and λ = ∞ we ob-
tain a global CRP that ignores time. In between, the values
of these two parameters affect the expected life span of a
given component, such that the lifespan of each storyline
follows a power law distribution (Ahmed and Xing 2008).
The graphical model is given on the top left in Figure 1.

We note that dividing documents into epochs allows for
the cluster strength at time t to be efficiently computed,
in terms of the components (m,m′) in (2). Alternatively,
one could define a continuous, time-decaying kernel over
the time stamps of the documents. When processing doc-
ument d at time t′ however, computing any storyline’s
strength would then require summation over all earlier as-
sociated documents, which is not scalable. In the news
domain, taking epochs to be one day long means that the
recency of a given storyline decays only at epoch bound-
aries, and is captured by m′. A finer epoch resolution and
a wider ∆ can be used without affecting computational ef-
ficiency; from (3), it is easy to derive an iterative update
m′s,t+1 = e−1/λ(mst+m

′
st)−e−(∆+1)/λms,t−(∆+1), which

has constant runtime w.r.t. ∆.

2.2 Topic Models
The second component of the topic-cluster model is given
by Latent Dirichlet Allocation (Blei et al. 2003), as de-
scribed in the top right of Figure 1. Rather than assum-
ing that documents belong to clusters, we assume that there

exists a topic distribution θd for document d and that each
word wdi is drawn from the distribution φt associated with
topic zdi. Here φ0 denotes the Dirichlet prior over word
distributions. Finally, θd is drawn from a Dirichlet distri-
bution with mean π and precision α. The generative story
for such a model is:

1. For all topics t draw
(a) word distribution φk from word prior φ0

2. For each document d draw
(a) topic distribution θd from Dirichlet prior (π, α)
(b) For each position (d, i) in d draw

i. topic zdi from topic distribution θd
ii. word wdi from word distribution φzdi .

The key difference from the basic clustering model is that
the topics should improve as we receive more data.

2.3 Time-Dependent Topic-Cluster Model
We now combine clustering and topic models into our sto-
rylines model by imbuing each storyline with a Dirich-
let distribution over topic strength vectors with parameters
(π, α). For each article in a storyline the topic proportions
θd are drawn from this Dirichlet distribution – this allows
documents associated with the same story to emphasize
various aspects of the story with different degrees.

Words are drawn either from the storyline or one of the
topics. This is modeled by adding an element K + 1 to
the topic proportions θd. If the latent topic indicator zn ≤
K, then the word is drawn from the topic φzn ; otherwise
it is drawn from a distribution linked to the storyline βs.
This story-specific distribution captures the burstiness of
the characteristic words in each story.

Topic models usually focus on individual words, but news
stories often center around specific people and locations
For this reason, we extract named entities edi from text in
a preprocessing step, and model their generation directly
from the storylines (ignoring the topic). Note that we make
no effort to resolve names “Barack Obama” and “President
Obama” to a single underlying semantic entity, but we do
treat these expressions as single tokens in a vocabulary over
names. The generative story is:

1. For each topic k ∈ 1 . . .K, draw a distribution over
words φk ∼ Dir(φ0)

2. For each docuproposedment d ∈ {1, · · · , Dt}:
(a) Draw the storyline indicator

std|s1:t−1, st,1:d−1 ∼ RCRP (γ, λ,∆)
(b) If std is a new storyline,

i. Draw a distribution over words
βsnew |G0 ∼ Dir(β0)

ii. Draw a distribution over named entities
Ωsnew

|G0 ∼ Dir(Ω0)
iii. Draw a Dirichlet distribution over topic pro-

portions πsnew
|G0 ∼ Dir(π0)

 104

Online Inference for the Infinite Topic-Cluster Model: Storylines from Streaming Text

(c) Draw the topic proportions θtd|std ∼ Dir(απstd)
(d) Draw the words

wtd|std ∼ LDA
(
θstd , {φ1, · · · , φK , βstd}

)
(e) Draw the named entities etd|std ∼ Mult(Ωstd

)

where LDA
(
θstd , {φ1, · · · , φK , βstd}

)
indicates a proba-

bility distribution over word vectors in the form of a Latent
Dirichlet Allocation model (Blei et al. 2003) with topic pro-
portions θstd and topics {φ1, · · · , φK , βstd}. The base dis-
tribution of the RCRP is G0, and is comprised of the set of
symmetric Dirichlet priors {β0,Ω0, π0}.

3 INFERENCE

Our goal is to compute online the posterior distribution
P (z1:T , s1:T |x1:T), where xt, zt, st are shorthands for doc-
uments at epoch t (xtd = 〈wtd, etd〉), the topic indica-
tors at epoch t and storyline indicators at epoch t. Markov
Chain Monte Carlo (MCMC) methods which are widely
used to compute this posterior are inherently batch meth-
ods and do not scale well to the amount of data we consider.
Furthermore they are unsuitable for streaming data.

3.1 Sequential Monte Carlo

Instead, we apply a sequential Monte Carlo (SMC) method
known as a particle filter (Doucet et al. 2001). A par-
ticle filter approximates the posterior distribution over
the latent variables up until document t, d − 1, i.e.
P (z1:t,d−1, s1:t,d−1|x1:t,d−1), where (1 : t, d) is a shorthand
for all documents up to document d at time t. When a
new document td arrives, the posterior is updated yielding
P (z1:td, s1:td|x1:td). The posterior approximation is main-
tained as a set of weighted particles that each represent a
hypothesis about the hidden variables; the weight of each
particle represents how well the hypothesis maintained by
the particle explains the data.

The structure is described in Algorithms 1 and 2. The al-
gorithm processes one document at a time in the order of
arrival. This should not be confused with the time stamp of
the document. For example, we can chose the epoch length
to be a full day but still process documents inside the same
day as they arrive (although they all have the same times-
tamp). The main ingredient for designing a particle filter is
the proposal distribution Q(ztd, std|z1:t,d−1, s1:t,d−1,x1:td).
Usually this proposal is taken to be the prior distri-
bution P (ztd, std|z1:t,d−1, s1:t,d−1) since computing the
posterior is hard. We take Q to be the posterior
P (ztd, std|z1:t,d−1, s1:t,d−1,x1:td), which minimizes the
variance of the resulting particle weights (Doucet et al.
2001). Unfortunately computing this posterior for a sin-
gle document is intractable, so we use MCMC and run a
Markov chain over (ztd, std) whose equilibrium distribu-
tion is the sought-after posterior. The exact sampling equa-
tions af s and ztd are given below. This idea was inspired
by the work of (Jain and Neal 2000) who used a restricted

Gibbs scan over a set of coupled variables to define a pro-
posal distribution, where the proposed value of the vari-
ables is taken to be the last sample. Jain and Neal used this
idea in the context of an MCMC sampler, here we use it in
the context of a sequential importance sampler (i.e. SMC).

Sampling topic indicators: For the topic of word i in doc-
ument d and epoch t, we sample from

P (ztdi = k|wtdi = w, std = s, rest) (4)

=
C−itdk + α

C−isk +π0

C−is. +π0(K+1)

C−itd. + α

C−ikw + φ0

C−ik. + φ0W

where rest denotes all other hidden variables, C−itdk refers
to the count of topic k and document d in epoch t, not in-
cluding the currently sampled index i; C−isk is the count of
topic k with storyline s, while C−ikw is the count of word w
with topic k (which indexes the storyline if k = K+1); tra-
ditional dot notation is used to indicate sums over indices
(e.g. C−itd. =

∑
k C
−i
tdk). Note that this is just the standard

sampling equation for LDA with the prior over θ replaced
by its storyline mean topic vector.

Sampling storyline indicators: The sampling equation for
the storyline std decomposes as follows:

P (std|s−tdt−∆:t, ztd, etd,w
K+1
td , rest) ∝ P (std|s−tdt−∆:t)︸ ︷︷ ︸

Prior

×P (ztd|std, rest)P (etd|std, rest)P (wK+1
td |std, rest)︸ ︷︷ ︸

Emission

(5)

where the prior follows from the RCRP (2), wK+1
td are the

set of words in document d sampled from the storyline-
specific language model βstd , and the emission terms for
wK+1
td , etd are simple ratios of partition functions. For ex-

ample, the emission term for entities, P (etd|std = s, rest)
is given by:

Γ

(
E∑

e=1

[C−td
se + Ω0]

)
Γ

(
E∑

e=1

[Ctd,e + C−td
se + Ω0]

) E∏
e=1

Γ
(
Ctd,e + C−td

se + Ω0

)
Γ
(
C−td
se + Ω0

) (6)

Since we integrated out θ, the emission term over ztd does
not have a closed form solution and is computed using the
chain rule as follows:

P (ztd|std = s, rest) =

ntd∏
i=1

P (ztdi|std = s, z−td,(n≥i)td , rest) (7)

where the superscript −td, (n ≥ i) means excluding
all words in document td after, and including, position i.
Terms in the product are computed using (4).

We alternate between sampling (4) and (5) for 20 iterations.
Unfortunately, even then the chain is too slow for online in-
ference, because of (7) which scales linearly with the num-
ber of words in the document. In addition we need to com-
pute this term for every active story. To solve this we use a

 105

Amr Ahmed, Qirong Ho, Choon Hui Teo, Jacob Eisenstein, Alex J. Smola, Eric P. Xing

Algorithm 1 A Particle Filter Algorithm

Initialize ωf1 to 1
F for all f ∈ {1, . . . F}

for each document d with time stamp t do
for f ∈ {1, . . . F} do

Sample sftd, z
f
td using MCMC

ωf ← ωfP (xtd|zftd, sftd,x1:t,d−1)
end for
Normalize particle weights
if ‖ωt‖−2

2 < threshold then
resample particles
for f ∈ {1, . . . F} do

MCMC pass over 10 random past documents
end for

end if
end for

proposal distribution

q(s) = P (std|s−tdt−∆:t)P (etd|std, rest)

whose computation scales linearly with the number of enti-
ties in the document. We then sample s∗ from this proposal
and compute the acceptance ratio r which is simply

r =
P (ztd|s∗, rest)P (wK+1

td |s∗, rest)

P (ztd|std, rest)P (wK+1
td |std, rest)

.

Thus we need only to compute (7) twice per MCMC it-
eration. Another attractive property of the proposal distri-
bution q(s) is that the proposal is constant and does not
depend on ztd. As made explicit in Algorithm 2 we pre-
compute it once for the entire MCMC sweep. Finally, the
unnormalized importance weight for particle f at epoch t,
ωft , is equal to (see supplementary material):

ωf ← ωfP (xtd|zftd, sftd,x1:t,d−1), (8)

which has the intuitive explanation that the weight for par-
ticle f is updated by multiplying the marginal probability
of the new observation xt, which we compute from the last
10 samples of the MCMC sweep over a given document.
Finally, if the effective number of particles ‖ωt‖−2

2 falls
below a threshold we stochastically replicate each particle
based on its normalized weight. To encourage diversity in
those replicated particles, we select a small number of doc-
uments (10 in our implementation) from the recent 1000
documents, and do a single MCMC sweep over them, and
then finally reset the weight of each particle to uniform.

We note that an alternative approach to conducting the par-
ticle filter algorithm would sequentially order std followed
by ztd. Specifically, we would use q(s) defined above as
the proposal distribution over std, and then sample ztd se-
quentially using Eq (4) conditioned on the sampled value
of std. However, this approach requires a huge number of
particles to capture the uncertainty introduced by sampling

Algorithm 2 MCMC over document td
q(s) = P (s|s−tdt−∆:t)P (etd|s, rest)
for iter = 0 to MAXITER do

for each word wtdi do
Sample ztdi using (4)

end for
if iter = 1 then

Sample std using (5)
else

Sample s∗ using q(s)

r =
P (ztd|s∗,rest)P (wK+1

td |s∗,rest)

P (ztd|std,rest)P (wK+1
td |std,rest)

Accept std ← s∗ with probability min(r, 1)
end if

end for
Return ztd, std

std before actually seeing the document, since ztd and std
are tightly coupled. Moreover, our approach results in less
variance over the posterior of (ztd, std) and thus requires
fewer particles, as we will demonstrate empirically.

3.2 Speeding up the Sampler

While the previous section defines an efficient sampler, the
key equations still scale linearly with the number of topics
and stories. Yao et al. (2009) noted that samplers that fol-
low (4) can be made more efficient by taking advantage of
the sparsity structure of the word-topic and document-topic
counts: each word is assigned to only a few topics and each
document (story) addresses only a few topics. We leverage
this insight here and present an efficient data structure in
Section 3.3 that is suitable for particle filtering.

We first note that (4) follows the standard form of a col-
lapsed Gibbs sampler for LDA, albeit with a story-specific
prior over θtd. We make the approximation that the docu-
ment’s story-specific prior is constant while we sample the
document, i.e. the counts C−isk are constants. This turns the
problem into the same form addressed in (Yao et al. 2009).
The mass of the sampler in (4) can be broken down into
three parts: prior mass, document-topic mass and word-
topic mass. The first is dense and constant (due to our ap-
proximation), while the last two masses are sparse. The
document-topic mass tracks the non-zero terms inC−itdk, and
the word-topic mass tracks the non-zero terms in C−ikw.

The sum of each of these masses can be computed once at
the beginning of the sampler. The document-topic mass can
be updated inO(1) after each word (Yao et al. 2009), while
the word-topic mass is very sparse and can be computed for
each word in nearly constant time. Finally the prior mass
is only re-computed when the document’s story changes.
Thus the cost of sampling a given word is almost constant
rather than O(k) during the execution of Algorithm 1.

Unfortunately, the same idea can not be applied to sam-

 106

Online Inference for the Infinite Topic-Cluster Model: Storylines from Streaming Text

pling s, as each of the components in (5) depends on mul-
tiple terms (see for example (6)). Their products do not
fold into separate masses as in (4). Still, we note that the
entity-story counts are sparse (C−tdse = 0), thus most of the
terms in the product component (e ∈ E) of (6) reduce to
the form Γ(Ctd,e + Ω0)/Γ(Ω0). Hence we simply compute
this form once for all stories with C−tdse = 0; for the few
stories having C−tdse > 0, we explicitly compute the prod-
uct component. We also use the same idea for computing
P (wK+1

td |std, rest). With these choices, the entire MCMC
sweep for a given document takes around 50-100ms when
using MAXITER = 15 and K = 100 as opposed to 200-
300ms for a naı̈ve implementation.

Hyperparameters:

The hyperparameters for topic, word and entity distribu-
tionss, φ0,Ω0 and β0 are optimized as described by Wal-
lach et al. (2009) every 200 documents. The mean topic
prior π0,1:K+1 is modeled as asymmetric Dirichlet prior
and is also optimized as in (Wallach et al. 2009) every 200
documents. For the RCRP, the hyperparameter γt is epoch-
specific with a Gamma(1,1) prior; we sample its value after
every batch of 20 documents (Escobar and West 1995). The
kernel parameters are set to ∆ = 3 and λ = 0.5 — results
were robust across a range of settings. We fix α = 1.

3.3 Implementation and Storage
Implementing parallel SMC algorithms for large datasets
poses memory challenges. Since our implementation is
multi-threaded, we require a thread-safe data structure sup-
porting fast updates of individual particles’ data, and fast
copying of particle during re-sampling step. We employ
an idea from Canini et al. (2009), in which particles main-
tain a memory-efficient representation called an “inheri-
tance tree”. In this representation, each particle is asso-
ciated with a tree vertex, which stores the actual data. The
key idea is that child vertices inherit their ancestors’ data,
so they need only store changes relative to their ancestors.
To ensure thread safety, we augment the inheritance tree by
placing each particle at a leaf, while storing common in-
formation in the internal nodes. This makes particle writes
thread-safe, since no particle is ever an ancestor of another
(see (Ahmed et al. 2011) for more details).

Extended inheritance trees Parts of our algorithm re-
quire storage of sets of objects. For example, our story
sampling equation (5) needs the set of stories associated
with each named entity, as well as the number of times
each story-to-entity association occurs. To solve this prob-
lem, we extend the basic inheritance tree by making its
hash maps store other hash maps as values. These second-
level hash maps then store objects as key-value pairs; note
that individual objects can be shared with parent vertices.
Using the story sampling equation (5) as an example, the
first-level hash map uses named entities as keys, and the
second-level hash map uses stories as keys and association

Root

1

India: [(I-P tension,3),(Tax bills,1)]
Pakistan: [(I-P tension,2),(Tax bills,1)]
Congress: [(I-P tension,1),(Tax bills,1)]

2

3

(empty) Congress: [(I-P tension,0),(Tax bills,2)]

Bush: [(I-P tension,1),(Tax bills,2)]
India: [(Tax bills,0)]

India: [(I-P tension,2)]
US: [(I-P tension,1),[Tax bills,1)]

Extended Inheritance Tree

[(I-P tension,2),(Tax bills,1)] = get_list(1,’India’)

set_entry(3,’India’,’Tax bills’,0)

Note: “I-P tension” is short for “India-Pakistan tension”

Figure 2: Operations on an extended inheritance tree, which
stores sets of objects in particles, shown as lists in tables con-
nected to particle-numbered tree nodes. Our algorithm requires
particles to store some data as sets of objects instead of arrays
— in this example, for every named entity, e.g. “Congress”, we
need to store a set of (story,association-count) pairs, e.g. (“Tax
bills”,2). The extended inheritance tree allows (a) the particles
to be replicated in constant-time, and (b) the object sets to be
retrieved in amortized linear time. Notice that every particle is
associated with a leaf, which ensures thread safety during write
operations. Internal vertices store entries common to leaf vertices.

counts as values (Figure 2 shows an example with stories
taken from Figure 3). Observe that the count for a partic-
ular story-entity association can be retrieved or updated in
amortized constant time. Retrieving all associations for a
given entity is usually linear in the number of associations.
Finally note that the list associated with each key (NE or
word) is not sorted as in Yao et al. (2009) as this will pre-
vent sharing across particles. Nevertheless, our implemen-
tation balances storage and execution time.

4 EXPERIMENTS
We examine our model on three English news samples of
varying sizes extracted from Yahoo! News over a two-
month period. Details of the three news samples are listed
in Table 1. We use the named entity recognizer in (Zhou
et al. 2010), and we remove common stop-words and to-
kens which are neither verbs, nor nouns, nor adjectives.
We divide each of the samples into a set of 12-hour epochs
(corresponding to AM and PM time of the day) according
to the article publication date and time. For all experiments,
we use eight particles running on an 8-core machine, and
unless otherwise stated, we set MAXITER=15.

4.1 Structured Browsing
In Figure 3 we present a qualitative illustration of the util-
ity of our model for structure browsing. The storylines
include the UEFA soccer championships, a tax bill under
consideration in the United States, and tension between
India and Pakistan. Our model identifies connections be-
tween these storylines and relevant high-level topics: the
UEFA story relates to a more general topic about sports;
both the tax bill and the India-Pakistan stories relate to the
politics topics, but only the latter story relates to the topic
about civil unrest. Note that each storyline contains a plot

 107

Amr Ahmed, Qirong Ho, Choon Hui Teo, Jacob Eisenstein, Alex J. Smola, Eric P. Xing

Sports

games
won
team
final

season
league
held

Politics

government
minister

authorities
opposition
officials
leaders
group

Unrest

police
attack
run
man
group

arrested
move

India-Pakistan tension

nuclear
border
dialogue
diplomatic
militant
insurgency
missile

Pakistan
India
Kashmir
New Delhi
Islamabad
Musharraf
Vajpayee

UEFA-soccer

champions
goal
leg
coach
striker
midfield
penalty

Juventus
AC Milan
Real Madrid
Milan
Lazio
Ronaldo
Lyon

Tax bills

tax
billion
cut
plan
budget
economy
lawmakers

Bush
Senate
US
Congress
Fleischer
White House
Republican

T
O

P
IC

S
S
T
O

R
Y
L
IN

E
S

Figure 3: Some example storylines and topics extracted by
our system. For each storyline we list the top words in the
left column, and the top named entities at the right; the plot
at the bottom shows the storyline strength over time. For
topics we show the top words. The lines between storylines
and topics indicate that at least 10% of terms in a storyline
are generated from the linked topic.

Middle-east-conflict

Peace
Roadmap
Suicide
Violence
Settlements
bombing

Israel
Palestinian
West bank
Sharon
Hamas
Arafat

Show similar stories
by topic

Nuclear programs

Nuclear
summit
warning
policy
missile
program

North Korea
South Korea
U.S
Bush
Pyongyang

Show similar stories,
require word nuclear

Figure 4: An example of structure browsing of documents
related to the India-Pakistan tensions (see text for details).

of strength over time; the UEFA storyline is strongly mul-
timodal, peaking near the dates of matches. This demon-
strates the importance of a flexible nonparametric model
for time, rather than using a unimodal distribution.

End users can take advantage of the organization obtained
by our model, by browsing the collection of high-level top-
ics and then descending to specific stories indexed under
each topic. In addition, our model provides a number of af-
fordances for structured browsing which were not possible
under previous approaches. Figure 4 shows two examples
that are retrieved starting from the India-Pakistan tension
story: one based on similarity of high-level topical content
θs, and the other obtained by focusing the query on simi-
lar stories featuring the topic politics but requiring the key-
word nuclear to have high salience in the term probability
vector of any story returned by the query. This combina-
tion of topic-level analysis with surface-level matching on
terms or entities is a unique contribution of our model, and
was not possible with previous technology.

4.2 Evaluating Clustering Accuracy

We evaluate the clustering accuracy of our model over the
Yahoo! news datasets. Each dataset contains 2525 edito-

Table 1: Details of Yahoo! News dataset and correspond-
ing clustering accuracies of the baseline (LSHC) and our
method (Story), K = 100.

Sample Sample Num. Num. Story LSHC
size words entities acc. acc.

1 111,732 19,218 12,475 0.8289 0.738
2 274,969 29,604 21,797 0.8388 0.791
3 547,057 40,576 32,637 0.8395 0.800

Table 2: Clustering accuracies vs. number of topics.

Sample K=50 K=100 K=200 K=300
1 0.8261 0.8289 0.8186 0.8122
2 0.8293 0.8388 0.8344 0.8301
3 0.8401 0.8395 0.8373 0.8275

Table 3: The effect of hyperparameters on Sample-1, with
K = 100, φ0 = .01, and no hyperparameter optimization.

β0 = .1 β0 = .01 β0 = .001
Ω0 = .1 0.7196 0.7140 0.7057
Ω0 = .01 0.7770 0.7936 0.7845
Ω0 = .001 0.8178 0.8209 0.8313

Table 4: Component contribution, Sample-1, K = 100.

Removed Time Names Story Topics
component entities words (equiv. RCRP)
Accuracy 0.8225 0.6937 0.8114 0.7321

Table 5: Number of particles, Sample-1, K = 100.

#Particles 4 8 16 32 50
Accuracy 0.8101 0.8289 0.8299 0.8308 0.8358

rially judged “must-link” (45%) and “cannot-link” (55%)
article pairs. Must-link pairs refer to articles in the same
story, whereas cannot-link pairs are not related.

For the sake of evaluating clustering, we compare against
a variant of a strong 1-NN (single-link clustering) base-
line (Connell et al. 2004). This simple baseline is the best
performing system on TDT2004 task and was shown to
be competitive with Bayesian models (Zhang et al. 2004).
This method finds the closest 1-NN for an incoming docu-
ment among all documents seen thus far. If the distance to
this 1-NN is above a threshold, the document starts a new
story, otherwise it is linked to its 1-NN. Since this method
examines all previously seen documents, it is not scalable
to large datasets. In (Petrovic et al. 2010), the authors
showed that using locality sensitive hashing (LSH), one can
restrict the subset of documents examined with little effect
of the final accuracy. Here, we use a similar idea, but we
even allow the baseline to be fit offline. First, we compute
the similarities between articles via LSH (Haveliwala et al.
2000, Gionis et al. 1999), then construct a pairwise simi-
larity graph on which a single-link clustering algorithm is
applied to form larger clusters. The single-link algorithm is
stopped when no two clusters to be merged have similarity
score larger than a threshold tuned on a separate validation
set (our algorithm has no access to this validation set). We

 108

Online Inference for the Infinite Topic-Cluster Model: Storylines from Streaming Text

1 2 3 4 5 6 7 8 9 10 11

x 10
4

40

60

80

100

120

140

160

180

200

220

240

T
im

e
 i
n

 m
ill

is
e

c
o

n
d

s
 t

o
 p

ro
c
e

s
s
 o

n
e

 d
o

c
u

m
e

n
t

Number of documents seen

Time−Accuracy Trade−off

MAXITER=15, Acc=0.8289

MAXITER=30, Acc=0.8311

Figure 5: Effect of MAXITER, sample-1, K = 100

will simply refer to this baseline as LSHC.

From Table 1, we see that our online, single-pass method
compares favorably with the offline and tuned baseline on
all the samples and that the difference in performance is
larger for small sample sizes. We believe this happens as
our model can isolate story-specific words and entities from
background topics and thus can link documents in the same
story even when there are few documents in each story.

4.3 Hyperparameter Sensitivity

We conduct five experiments to study the effect of various
model hyperparameters and tuning parameters. First, we
study the effect of the number of topics. Table 2 shows how
performance changes with the number of topics K. It is
evident thatK = 50−100 is sufficient. Moreover, since we
optimize π0, the effect of the number of topics is negligible
(Wallach et al. 2009) For the rest of the experiments in this
section, we use Sample-1 with K = 100.

Second, we study the number of Gibbs sampling iterations
used to process a single document, MAXITER. In Figure 5,
we show how the time to process each document grows
with the number of processed documents, for different val-
ues of MAXITER. As expected, doubling MAXITER in-
creases the time needed to process a document, however
performance only increases marginally.

Third, we study the effectiveness of optimizing the hyper-
parameters φ0, β0 and Ω0. In this experiment, we turn
off hyperparameter optimization altogether, set φ0 = .01
(which is a common value in topic models), and vary β0

and Ω0. The results are shown in Table 3. Moreover,
when we enable hyperparameter optimization, we obtain
(φ0, β0,Ω0) = (0.0204, 0.0038, 0.0025) with accuracy
0.8289, which demonstrates its effectiveness.

Fourth, we tested the contribution of each feature of our
model (Table 4). As evident, each aspect of the model im-
proves performance. We note here that removing time not
only makes performance suboptimal, but also causes sto-

ries to persist throughout the corpus, eventually increasing
running time to a glacial two seconds per document.

Finally, we show the effect of the number of particles in
Table 5. This validates our earlier hypothesis that the re-
stricted Gibbs scan over (ztd, std) results in a posterior with
small variance, thus only a few particles are sufficient to get
good performance.

5 RELATED WORK
Our problem is related to work done in the topic detection
and tracking community (TDT), which focuses on cluster-
ing documents into stories, mostly by way of surface level
similarity techniques and single-link clustering (Connell
et al. 2004). Moreover, there is little work on obtaining
two-level organizations (e.g. Figure 3) in an unsupervised
and data-driven fashion, nor in summarizing each story us-
ing general topics in addition to specific words and entities
– thus our work is unique in this aspect.

Our approach is non-parametric over stories, allowing the
number of stories to be determined by the data. In similar
fashion Zhang et al. (2004) describe an online clustering
approach using the Dirichlet Process. This work equates
storylines with clusters, and does not model high-level top-
ics. Also, non-parametric clustering has been previously
combined with topic models, with the cluster defining a
distribution over topics (Yu et al. 2005, Wallach 2008). We
differ from these approaches in several respects: we incor-
porate temporal information and named entities, and we
permit both the storylines and topics to emit words.

Recent work on topic models has focused on improving
scalability; we focus on sampling-based methods, which
are most relevant to our approach. Our approach is most
influenced by the particle filter of Canini et al. (2009), but
we differ in that the high-order dependencies of our model
require special handling, as well as an adaptation of the
sparse sampler of Yao et al. (2009).

6 CONCLUSIONS
We present a scalable probabilistic model for extracting
storylines in news and blogs. The key aspects of our model
are (1) a principled distinction between topics and story-
lines, (2) a non-parametric model of storyline strength over
time, and (3) an online efficient inference algorithm over a
non-trivial dynamic non-parametric model. We contribute
a very efficient data structure for fast-parallel sampling and
demonstrated the efficacy of our approach on hundreds of
thousands of articles from a major news portal.

Acknowledgments We thank the anonymous reviewers for
their helpful comment. This work is supported in part by
grants NSF IIS- 0713379, NSF DBI-0546594 career award,
ONR N000140910758, DARPA NBCH1080007, AFOSR
FA9550010247, and Alfred P. Sloan Research Fellowship
to EPX.

 109

Amr Ahmed, Qirong Ho, Choon Hui Teo, Jacob Eisenstein, Alex J. Smola, Eric P. Xing

References
Ahmed, A., Q. Ho, J. Eisenstein, E. P. Xing, A. J. Smola,

and C. H. Teo (2011). Unified analysis of streaming
news. In WWW.

Ahmed, A. and E. P. Xing (2008). Dynamic non-parametric
mixture models and the recurrent chinese restaurant pro-
cess: with applications to evolutionary clustering. In
SDM, pp. 219–230. SIAM.

Antoniak, C. (1974). Mixtures of Dirichlet processes with
applications to Bayesian nonparametric problems. An-
nals of Statistics 2, 1152–1174.

Asuncion, A., P. Smyth, and M. Welling (2008). Asyn-
chronous distributed learning of topic models. In
D. Koller, D. Schuurmans, Y. Bengio, and L. Bottou
(Eds.), NIPS, pp. 81–88. MIT Press.

Blei, D., A. Ng, and M. Jordan (2003, January). Latent
Dirichlet allocation. Journal of Machine Learning Re-
search 3, 993–1022.

Canini, K. R., L. Shi, and T. L. Griffiths (2009). Online
inference of topics with latent dirichlet allocation. In
Proceedings of the Twelfth International Conference on
Artificial Intelligence and Statistics (AISTATS).

Chemudugunta, C., P. Smyth, and M. Steyvers (2006).
Modeling general and specific aspects of documents
with a probabilistic topic model. In NIPS.

Connell, M., A. Feng, G. Kumaran, H. Raghavan, C. Shah,
and J. Allan (2004). Umass at tdt 2004. In TDT 2004
Workshop Proceedings.

Doucet, A., N. de Freitas, and N. Gordon (2001). Sequen-
tial Monte Carlo Methods in Practice. Springer-Verlag.

Doyle, G. and C. Elkan (2009). Accounting for burstiness
in topic models. In ICML.

Escobar, M. and M. West (1995). Bayesian density estima-
tion and inference using mixtures. Journal of the Amer-
ican Statistical Association 90, 577–588.

Gionis, A., P. Indyk, and R. Motwani (1999). Similar-
ity search in high dimensions via hashing. In M. P.
Atkinson, M. E. Orlowska, P. Valduriez, S. B. Zdonik,
and M. L. Brodie (Eds.), Proceedings of the 25th VLDB
Conference, Edinburgh, Scotland, pp. 518–529. Morgan
Kaufmann.

Griffiths, T. and M. Steyvers (2004). Finding scientific
topics. Proceedings of the National Academy of Sci-
ences 101, 5228–5235.

Haveliwala, T., A. Gionis, and P.Indyk. (2000). Scalable
techniques for clustering the web. In WebDB.

Jain, S. and R. Neal (2000). A split-merge markov chain
monte carlo procedure for the dirichlet process mixture
model. Journal of Computational and Graphical Statis-
tics 13, 158–182.

Li, W. and A. McCallum (2006). Pachinko allocation: Dag-
structured mixture models of topic correlations. ICML.

Petrovic, S., M. Osborne, and V. Lavrenko (2010). Stream-
ing first story detection with application to twitter. In
NAACL.

Pitman, J. (1995). Exchangeable and partially exchange-
able random partitions. Probability Theory and Related
Fields 102(2), 145–158.

Smola, A. and S. Narayanamurthy (2010). An architec-
ture for parallel topic models. In Very Large Databases
(VLDB).

Teh, Y., M. Jordan, M. Beal, and D. Blei (2006). Hierar-
chical dirichlet processes. Journal of the American Sta-
tistical Association 101(576), 1566–1581.

Wallach, H. (2008). Structured topic models for language.
Technical report, PhD. Cambridge.

Wallach, H. M., D. Mimno, and A. McCallum. (2009). Re-
thinking lda: Why priors matter. In NIPS.

Yao, L., D. Mimno, and A. McCallum (2009). Efficient
methods for topic model inference on streaming docu-
ment collections. In KDD’09.

Yu, K., S. Yu, , and V. Tresp (2005). Dirichlet enhanced
latent semantic analysis. In AISTATS.

Zhang, J., Y. Yang, and Z. Ghahramani (2004). A proba-
bilistic model for online document clustering with appli-
cation to novelty detection. In Neural Information Pro-
cessing Systems.

Zhou, Y., L. Nie, O. Rouhani-Kalleh, F. Vasile, and
S. Gaffney (2010, August). Resolving surface forms to
wikipedia topics. In Proceedings of the 23rd Interna-
tional Conference on Computational Linguistics COL-
ING, pp. 1335–1343.

