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Abstract

We consider linear ill-posed inverse problems
y = Ax, in which we want to infer many
count parameters x from few count observa-
tions y, where the matrix A is binary and
has some unimodularity property. Such prob-
lems are typical in applications such as con-
tingency table analysis and network tomog-
raphy (on which we present testing results).
These properties of A have a geometrical im-
plication for the solution space: It is a con-
vex integer polytope. We develop a novel ap-
proach to characterize this polytope in terms
of its vertices; by taking advantage of the ge-
ometrical intuitions behind the Hermite nor-
mal form decomposition of the matrix A,
and of a newly defined pivoting operation to
travel across vertices. Next, we use this char-
acterization to develop three (exact) poly-
tope samplers for x with emphasis on uni-
form distributions. We showcase one of these
samplers on simulated and real data.

1 INTRODUCTION

Problem settings where we have low dimensional data
and a high dimensional parameter space arise often in
model-assisted discovery of mechanistic principles in
the biological and social sciences. We consider linear
ill-posed inverse problems y = Ax with x, y ≥ 0, where
the dimension of y is less than the dimension of x.
Given y and A we want to make inferences on x.

This flavor of ill-posed linear inverse problem arise as
the core inference tasks underlying a number of appli-
cations, including image super-resolution and positron
emission tomography where we want to combine many
2D images in a 3D image consistent with 2D con-
straints (Shepp and Kruskal, 1978; Vardi et al., 1985);
blind source separation where there are more sources
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than observations (e.g., sound tracks) available (Lee
et al., 1999; Parra and Sajda, 2003); inference on
cells of a contingency table where two-way and multi-
way margins are given (Bishop et al., 1975; Dobra
et al., 2006), and network tomography (Vanderbei and
Iannone, 1994; Vardi, 1996; Tebaldi and West, 1998;
Cao et al., 2000; Medina et al., 2002; Zhang et al.,
2003; Liang and Yu, 2003; Airoldi and Faloutsos, 2004;
Lawrence et al., 2006; Fang et al., 2007; Blocker and
Airoldi, 2011). Two main approaches to these prob-
lems have been proposed in the literature: sequential
MCMC methods, in which intelligently designed pro-
posal distributions attempt to explore the space of so-
lutions efficiently, and algebraic geometry methods, in
which difficult calculations precisely characterize the
space of solutions in terms of structured polynomi-
als (Diaconis and Sturmfels, 1998; Chen et al., 2005;
Dobra et al., 2006; Dobra and Fienberg, 2008; Dobra
et al., 2009). The MCMC based are widely used, but
approximate. The algebraic methods are exact and
elegant, but already computationally infeasible in low
dimensional problems.

Here, we focus on applications where the matrix A
is a {0, 1}-matrix that is unimodular (definition be-
low). Ill-posed inverse problems with such properties
arise naturally when sampling contingency tables and
in network tomography, in which x and y have the
additional constraint of being integer-valued. Surpris-
ingly, in such problems the space of solutions has not
been characterized. However, it has a simple geomet-
rical structure: it is an integer convex polytope.

In this paper we develop polytope samplers, a fresh
new approach to inference in ill-posed linear inverse
problems. The innovation of our approach is two-fold:
(i) we develop new algorithms to identify all the ver-
tices of the solution polytope, and (ii) we develop three
strategies to build a sampling distribution on the poly-
tope, as a generalization of the Dirichlet distribution
over the simplex. We accomplish these tasks by tak-
ing advantage of the geometry of the problem, which
is well specified by the Hermite normal form decom-
position of the matrix A.

Proofs of new results are in the online suplementary
material. We provide references for existing results.
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2 IDENTIFYING THE SOLUTION
POLYTOPE

Definition 1. A square integer matrix is unimodular
if it is invertible as an integer matrix (in particular its
determinant is ±1). By extension we define a rectan-
gular matrix to be unimodular if it has full rank and
each square submatrix of maximal size is either uni-
modular or singular (0 determinant). A matrix is to-
tally unimodular (or TUM) if each square submatrix
(of any size) is either unimodular or singular (in par-
ticular entries of a TUM matrix are in {−1, 0,+1}).

Our goal is to sample solutions of

Ax = y, x ≥ 0 (1)

where A is a given unimodular m × n matrix with
{0, 1} entries and y is a given integer positive vector
(solutions to 1 generalize straightforwardly to solutions
of the problem where y is non-negative).

2.1 Integer geometry preliminaries

Definition 2. A polyhedron of dimension d in Rn,
n ≥ d is the intersection of finitely many half spaces
that is not contained in an affine space of dimension
d − 1. A polytope of dimension d is defined as the
convex hull of finitely many points not all lying in a
d− 1 affine space.

It is straightforward that the space of solutions to 1
is a polyhedron of dimension n − m. That this poly-
hedron is bounded (and therefore a polytope) results
from A having non-negative entries and y being strictly
positive. Moreover we have:

Lemma 2.1 (Sup. Mat.). The space of real solutions
x to equation 1 is an integral polytope.

Proof. The vertices are the intersections of the affine
solution space of Ax = y with the (n−m)-coordinate
planes bording the non-negative orthant. So a vertex x
has n−m zero coordinates. Let’s gather the rest of the
coordinates into a positive integer vector x′ of dimen-
sion m. And let’s gather the corresponding columns
of A into a square matrix A1; so we get the equation
A1x′ = y. If A1 was singular, the latter system would
have either none or infinitely many solutions, which
would contradict that x is a vertex. So A1 is unimod-
ular and x′ = A−1

1 y. And since y is integer, x′ is also
integer.

Since A is unimodular, it has at least one unimod-
ular submatrix A1 of maximal size. Without loss of
generality we can assume A is decomposed into blocks
A = (A1, A2). It is straightforward that

(A1, A2)

(
A−1

1 −A−1
1 A2

0 In−m

)
= (Im, 0)

This is the Hermite normal decomposition of A, and
the n×n square matrix on the left hand side is denoted
Q as is usual in such decomposition. So Q is naturally
decomposed into two or four blocks Q = (Q1, Q2) =(

Q11 Q12

Q21 Q22

)
. Here Q1 =

(
Q11

Q21

)
, Q11 = A−1

1 ,

etc. In particular, it should be clear from the Hermite
normal decomposition that the columns of Q2 generate
the null-space of A.

2.2 Finding a first vertex of the solution
polytope

After defining the operation of pivoting on a matrix
(algorithm 1) which is central to our algorithms, we
restrict our attention to matrices A that are TUM.
However, Corollary 0.1 (in sup. mat.), shows that A
can be only unimodular for our algorithms to work.

Lemma 2.2 (Sup. Mat.). If A is TUM, then blocks
Q2 and Q12 of Q introduced above are also TUM.

In particular Q12 has entries in {−1, 0,+1}.
Proposition 2.3 (Sup. Mat.). Given a TUM matrix
Q2 as above, a row index i, and a column index j as
input, the algorithm 1 returns a matrix Q′

2 of the same

form than Q2, that is, Q′
2 =

(
Q′

12
In−m

)
. Moreover,

Q′
2 is also TUM.

Algorithm 1 Pivot(Q2, i, j)

Q′
2[, j] ← Q2[, j]

for k = 1, . . . , n excluding k = j do
Q′

2[, k] ← Q2[, k]−Q2[i, j] ∗Q2[i, k] ∗Q2[, j]
Q′

2[, j] ← Q′
2[k, j] ∗Q′

2[, j]
Swap rows i and m+ j of Q′

2
return Q′

2

For short-hand we call a vertex, a vertex of the solu-
tion polytope. A coordinate m-plane is the set of all
points with a given set of n − m coordinates always
zero. Vertices of the solution polytope are intersec-
tions of the n − m dimensional affine space Ax = y
with the portions of coordinate m-planes that border
the non-negative orthant. Let x′ = Q−1x, so finding
solutions to system y = Ax amounts to finding solu-
tions to AQx′ = y, Qx′ ≥ 0. Since AQ = (Im, 0), the
system AQx′ = y has the obvious solution x′ =

(y
0

)
.

Let y′ = Q11y so a solution to Ax = y is x = Qx′ =
(Q1, Q2)x′ = Q1y =

(y′

0

)
.

Since x has n−m zero coordinates it belongs to a co-
ordinate m-plane. However this might not be in the
portion that borders the non-negative orthant, that is,
x might have negative coordinates. We call the inter-
section of the affine space Ax = y with a coordinate
m-plane a pseudo-vertex and we use the letter ν to
denote it.
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We have a first pseudo vertex ν(0) =
(y′

0

)
, in the

x-space, but we want a true vertex. We will con-
struct a sequence ν(0), ν(1), . . . such that ν(i+1)

has one less negative coordinate than ν(i), or its
smallest negative coordinate in absolute value is
strictly smaller than the one from ν(i). Therefore
the sequence terminates at a real vertex ν(s). More
precisely, the sequence will be a sequence of triplets

(ν(0), Q(0)
2 ,π(0)), (ν(1), Q(1)

2 ,π(1)), . . . , (ν(s), Q(s)
2 ,π(s)),

where Q(0)
2 = Q2 computed above, π(0) is the identity

permutation and one triplet is deduced from the
previous as described in section 2.3.

2.3 The generic local geometry at a
pseudo-vertex

A coordinate m-plane is the intersection of n−m coor-
dinate hyperplanes. Each of these hyperplane xi = 0
intersects the affine space Ax = y into a hyperplaneHi

of the affine space that we call a c-hyperplane. Gener-
ically 1 a pseudo-vertex is the intersection of n − m
c-hyperplane, that is, it has exactly m non-zero co-
ordinates (non-generically it might have less than m).
The union of all these hyperplanes borders cones inside
which, locally, all points have the same sign vector. We
call these cones the sign cones.

Adding a scalar factor of Q2[, j] to ν(0) changes the
zero coordinate at position m + j into a non-zero co-
ordinate. Therefore by continuously adding infinitesi-
mal factors of Q2[, j] we get a point moving away from
the c-hyperlane xm+j = 0, but remaining in the c-
hyperplanes xm+1 = · · · = xm+j−1 = xm+j+1 = · · · =
xn = 0. That is, we get a point moving along the edge
of a sign-cone.

One of the sign-cones with apex ν(0) has a sign vector
with least number of −1; let’s call it the most positive
sign-cone. Adding a positive scalar factor of Q2[, j] to
ν(0) changes the zero m+ j coordinate into a positive
coordinate. Therefore if the infinitesimal factors are
positive the moving point moves along the correspond-
ing edge of the most positive sign-cone. That is, the
columns of Q2 define the directions of the edges of the
most positive sign-cone at ν(0). Let’s define a base at
ν(0) to be the set of vectors B = {b1, b2, . . . } defining
the directions of the edges of the most positive sign-
cone. We just showed that we can take bj = Q2[, j],
so we call Q2 a base matrix at ν(0). See figure 1.

1A d-dimensional polyhedron with its defining half-
spaces in generic position has exactly d supporting hyper-
plane intersecting at a vertex, but no constraint on the
shape of the facets. A polytope with its defining points in
generic position has facets that are simplexes but no con-
straint on the degree of the vertices. Our solution poly-
tope is defined as a bounded polyhedron so generically the
(pseudo)-vertices have degree d = n−m.

Figure 1: An example of 2-dimensional solution space
with n = 5 and where ν(1) has the same number of
negative coordinates than ν(0) for any choice of base
vector.

2.3.1 From one pseudo-vertex to the next in
the generic case

By leaving ν(0) we leave a c-hyperplane, and by mov-
ing along an edge of the most positive sign-cone long
enough we meet a next c-hyperplane (say xk = 0,
1 ≤ k ≤ m), that is, a next pseudo-vertex, ν(1). The
points along the edge of the most positive cone have
one more positive coordinate than ν(0) (at position
m + j), and ν(1) has one more zero coordinate than
the points on the edge (at position k). Therefore ν(1)

cannot have more negative coordinates than ν(0). It
has either less (which is what we eventually want) if
ν(0)[k] < 0, or it has the same number if ν(0)[k] > 0.

When we are at ν(0) we have n−m choices of edge to
move along. If we could choose an edge which guaran-
tees that we ν(1) has less negative coordinate than ν(0)

we would certainly choose this one. However, such a
choice does not always exist (see figure 1). Instead,
we choose an edge so that even if ν(1) has the same
number of negative coordinates, we still are better off.
That is, we choose the edge such that the smallest (in
absolute value) negative coordinate of ν(1) is strictly
smaller than the smallest negative coordinate of ν(0).
To explain this we need lemma 2.4.

Lemma 2.4 (Sup. Mat.). If ν(0)[i] ≤ 0, then the row
vector Q2[i, ] has at least one entry equal to 1.

Let i be the argument of min |ν(0)[u]| over all u where
ν(0)[u] < 0. Lemma 2.4 ensures there is a j such that
bj [i] = 1. Let k be the argument of min |ν(0)[u]| over
all u where ν(0)[u] < 0 and bj [u] = +1 or ν(0)[u] > 0
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and bj [u] = −1. Finally let

ν(1) = ν(0) + ν(0)[k]bj

If k = i, then ν(1)[i] = 0 and ν(1) has one less negative
coordinate than ν(0). If k '= i, then 0 > ν(1)[i] >
ν(0)[i], and ν(1)[i] is still the minimum in absolute
value among all ν(1)’s negative coordinates.

Once we got ν(1) we need to reshape it so that it has
the same form as ν(0) (we want a pseudo vertex to have
its last n−m coordinates zero). This is easy: We just
swap coordinates ν(1)[k] = 0 with ν(1)[m+ j] > 0 (and
we still write it ν(1)). We record this in the permuta-
tion vector π(1) = Swap(π(0), k,m + j), the result of
swapping entries k and m+j in π(0). And for the same
reason of form preserving, we perform a Pivot opera-

tion (see algorithm 1) to get Q(1)
2 = Pivot(Q2, k, j).

We just described how to get from ν(0) to ν(1). Clearly
the same apply from ν(i) to ν(i+1).

2.3.2 From one pseudo-vertex to the next in
the non-generic case

In the generic case, a pseudo-vertex ν(0) is the inter-
section of exactly n − m c-hyperplanes. In the non-
generic case, ν(0) is the intersection of z > 0 extra
c-hyperplane, that is, ν(0) has exactly m− z non-zero
coordinates. This might pose a problem in the algo-
rithm described above. Assume for instance ν(0)[1] = 0
and 2 = argmin |ν(0)[i]| over all i with ν(0) < 0. It may
happen that for all base vector bj with bj [2] = +1 we
have as well bj [1] = −1. So any positive factor of bj
will create a negative coordinate at ν(1)[1], thus possi-
bly increasing the number of negative coordinates.

A solution to this problem is to pretend the z extra
zero coordinates are actually not zero but infinitesimal
(virtual) negative values δ1, δ2, . . . , δz. This resolves
the singularity by blowing it up into a virtual poly-
tope. So ν(0) splits into the (generic) pseudo-vertices

ν(0)1 , ν(0)2 , . . . of the virtual polytope. Each new pseudo

vertex ν(0)i , being generic, has its own generic base
and the base we got for ν(0) is actually a base for a

the virtual pseudo vertex ν(0)0 . We can now navigate
along the virtual pseudo vertices as if they were nor-
mal generic ones and find a path up to the next real
(non-virtual) pseudo vertex ν(1). (see figure 2 or 6 in
the suplementary material). Therefore we get:

Proposition 2.5 (Sup. Mat.). Given a pseudo vertex,
its base matrix, and its permutation vector, (ν, Q2,π),
algorithm 2 returns a vertex of the solution polytope.

2.4 Finding all the vertices

Our strategy to find all the vertices amounts to actu-
ally find the one-skeletton of the solution polytope (all

Algorithm 2 Get Vertex(ν, Q2,π)

while ν has a negative coordinate do
blow up ν if it is non-generic
I ← {i : ν[i] < 0}
i ← argmin |ν[s]| for s ∈ I

5: Find j such that Q2[i, j] = 1
K ← {k : Q2[k, j] = −1, ν[k] > 0}
k ← argmin |ν[s]| for s ∈ K ∪ {i}
ν ← ν + |ν[k]| ∗Q2[, j]
ν ← Swap(ν, k, j)

10: Q2 ← Pivot(Q2, k, j)
π ← Swap(π, k, j)

return (ν, Q2,π)

Figure 2: The virtual polytope method solves the
problem of not being able to move from ν(0) to ν(1)

along the given base vectors.

vertices and all edges). We use this extra structure in
the polytope sampler 3.2. We do that by starting at a
known vertex (which we got in section 2.2), then find-
ing all its neighbors, moving to a neighbor, finding all
its neighbors, etc. We chose to do so with a breadth-
first search kind of algorithm (although a depth-first
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kind of algorithm would work as well). So we use two
data-structures:

• A one-skeletton sk which is an ordered list of pairs
(V,N) where V ∈ Rn is a vertex, and N is the list
of indexes of all the other pairs (V ′, N ′) in sk such
that V and V ′ are neighbors.

• A vertex queue vq containing triplets (v,B,π)
where v is a vertex in compact form (its permuted
n − m non-zero components), B is a set of base
vectors (directions to positive neighbors of v), and
π is the permutation that allows us to recover the
expanded form V ∈ Rn of the vertex from its
compact form v ∈ Rm.

For conciseness of description, we present the alo-
gorithm (3) only in the generic case (all vertices are
generic). In the non-generic case, when we encounter
a non-generic vertex v, we blow it up into a virtual
polytope like in section 2.3.2 and gather in B the pos-

itive directions from the matrices Q(i)
2 at each virtual

vertex v(i).

Algorithm 3 Get Skel(v0, Q12,π0) (generic case)

Initiate queue vq and one-skeleton sk
Push (v0, Q12,π0) into queue vq
while vq not empty do
(v0, Q12,π0) ← Pop(vq)

5: Append n−m zeros to v0 and V0 ← π0(v0)
Append (V0, ∅) to sk
for j = 1 to n−m do
k ← argmin(v0[s]) over {s : Q2[s, j] = −1}
v1 ← v0 + v0[k]Q2[, j]

10: π1 ← Swap(π0, k,m+ j)
if (v1, ·,π1) is not in vq then
get V1 as in line 5
if V1 is not in sk then
Q′

2 ← Pivot(Q2, k, j)
15: append (v1, Q′

12,π1) to vq
else
Let s be the index of V1 in sk
Let t be the index of V0 in sk
Add s to the index set of V0-neighbors

20: Add t to the index set of V1-neighbors

25: return sk

Proposition 2.6 (Sup. Mat.). Algorithm 3 finds the
one-skeleton (all r vertices and all edges) of the solu-
tion polytope in time O(r nm).

2.5 Final Remarks

Algorithm 3 has two drawbacks. The first one is inher-
ent to the problem and is that the number of vertices,
r, seems to grow exponentially with the dimension of
the problem. Therefore even a running time of O(r)

will be intractable in large dimensions. The second one
is that the memory requirement is also O(r nm), since
we store in the queue the base-matrix Q12 for each
vertex. Therefore, for large dimensions the memory
requirement will also make it intractable. Other clever
and efficient algorithms, recently brought to the atten-
tion of the authors, also run in O(r nm) (see for exam-
ple Avis et al. (2009)) but require only O(1) memory.
However they output only the vertices, not the full
one-skeleton.

3 THREE POLYTOPE SAMPLERS

We developed three strategies for drawing exact sam-
ples from the solution polytope that we identified in
Section 2. We focus on uniform sampling from a mea-
sure with unit volume.

3.1 Basic polytope sampler

The following algorithm straightforwardly produces a
distribution on P .

Algorithm 4 Basic Polytope Sampler(P )

Associate coefficients α0, . . . ,αr−1 to P ’s vertices
V0, . . . , Vr−1

Draw a vector Z ∼ Dirichlet (α0,α1, . . . ,αr−1)
return X ←

∑
Z[i]Vi

Notice that this algorithm amounts to lift the poly-
tope to a simplex S of dimension r − 1, draw a point
with a Dirichlet distribution, and project it back. A
Dirichlet distribution on S cannot project to an ex-
act uniform distribution on P , but by letting α0 =
α1 = · · · = 1/(r − s), we get a distribution on P that
appoximates very well the uniform distribution (see
figure 4). Indeed the density of the projection over a
small s-volume element is proportional to the comple-
mentary (r − 1− s)-volume above it. We compensate
with a distribution on the simplex with weights in-
versely proportional to this excess of dimension, that
is, 1/(1 + r − 1− s).

This is the sampler we implemented to obtain the re-
sults in Section 4.

3.2 Triangulation polytope sampler

Here we find a triangulation of the polytope P (a de-
composition of P into simplexes), and then sample
points from P in two steps: sample a simplex; sam-
ple a point in the simplex (details in algorithm 5).

By taking all αi = 1 and pi = Vol(Si)/Vol(P ), we
clearly get a uniform distribution on P . Notice that
by using interior points to the polytope P , one can de-
compose P into more simplexes, therefore providing a
richer family of distributions. In section 2.4 we got the
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Algorithm 5 Triangulation Polytope Sampler(P )

Find a triangulation P = S1 ∪ S2 ∪ · · · ∪ St

Associate weights pi to simplexes Si with
∑

i pi = 1

Associate coefficients αi to vertices Vi of P
Draw a simplex Si with probability pi.
Let vi0, vi1, . . . , vin be the vertices of Si

Draw a vector Z ∼ Dirichlet (αi0,αi1, . . . ,αis)
return X ←

∑
Z[j]Vj for j = i0, . . . , is

1-skeleton of P . If we continue and get the 2-skeleton,
the 3-skeleton, and finally the full face-decomposition
of P , the we can work a triangulation of P recursively
as follows:

• In every 2-face of P , fix a point x and triangulate
the face by joining the edges of the face to x.

• In every k-face of P , fix a point x and triangulate
the face by joining the (previously constructed)
simplexes of its (k − 1)-faces to x.

Other well known triangulation algorithms, like the
placing or the pulling algorithm can be used (see
De Loera et al. (2010)).

3.3 Moment-map polytope sampler

Here we define a generalization of the Dirichlet distri-
bution by placing a distribution on positive orthant of
the affine space Rs or the projective space P(R)s and
use the moment map to induce a distribution on the
polytope.

Let v1, v2, . . . , vr be the vertices of the s-dimensional
solution polytope P . Let

di =
r∑

j=1

vj [i], d0 = max di

And set an extra coordinate vi[0] = d0 − di to each
vertex. This amounts to lifting P to a polytope P ′ ⊂
{
∑s

i=0 xi = d0} ⊂ Rs+1.

For x = (x0, x1, . . . , xs) ∈ Rs+1
>0 and i = 1, . . . r, define

the monomials

mi(x) = xvi[0]
0 xvi[1]

1 . . . xvi[s]
s

So each monomial has degree d0. Associate a coeffi-
cient αi to each vertex vi, and set

wi(x) =
αimi(x)∑r

j=1 αjmj(x)
vi

Notice that wi(λx) = wi(x) for any non-zero λ. The
moment map (projective version) is defined as

Φ : Rs+1
>0 → int(P )

x .→ w1(x) + · · ·+ wr(x)

Theorem 3.1. Φ is an isomorphism from P(R)s+ to
int(P ).

Where P(R)s+ is the orthant of the real projective s-
dimensional space where all coordinates have same
sign. See for instance Fulton (1993), chap. 4, for a
proof of the affine version.

This results helps us to sample points on the polytope:
Draw Z for a distribution on P(R)s+ (for instance from
a distribution on the s-sphere or s-simplex) or on Rs+1.
Then set X = Φ(Z).

0

x1

x 2
0

.

.

v’  = (0,0,1)

v’  = (0,1,0)

2

v’  = (1,0,0)

1

x

0

Figure 3: The moment map associated to this triangle
yields the Dirichlet distribution.

As an illustration, consider as polytope P ⊂ R2 the
triangle with vertices (0, 0), (0, 1), (1, 0). We firstly lift
it to the triangle P ′ with vertices v′0 = (1, 0, 0), v′1 =
(0, 1, 0), v′2 = (0, 0, 1) (see figure 3). The monomials
are simply

m0 = x0, m1 = x1, m2 = x2

Set the coefficients αi = 1 for i = 0, 1, 2. The map is
Φ(x) = (x0, x1, x2)′/

∑
i xi. We easily verify that if we

take Zi ∼ Gamma(ai) then we get

X =
1∑
Zi




Z0

Z1

Z2



 ∼ Dirichlet(a1, a2, a3)

Which shows that the resulting distribution for general
polytopes is a direct generalization of the Dirichlet dis-
tribution.

4 RESULTS

We tested the basic sampler in multiple settings. We
evaluated the goodness of the basic polytope sampler
via simulations in a situation where exact sampling is
also possible. We considered the network tomography
problem posed by Vardi (1996), and compared the ef-
ficiency and accuracy of the basic polytope sampler
to the Metropolis-Hastings (MH) in Gibbs proposed
by Tebaldi and West (1998). We also considered the
problem of sampling two-way contingency tables given
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fixe margins, corresponding to both decomposable and
non-decomposable models. In both problems, the ma-
trix A is totally unimodular.

4.1 Simulation results

The simple polytope sampler worked well in practice.
We drew samples in simple known polytopes (see for

0.0 0.5 1.0 1.5 2.0

0.
0

0.
5

1.
0

1.
5

2.
0

True uniform distribution

0.0 0.5 1.0 1.5 2.0

0.
0

0.
5

1.
0

1.
5

2.
0

Projection of Dir(a,a,a,a,a,a) with a = 1/ 4

Figure 4: 900 uniform draws from a 2-polytope (left),
versus approximately uniform draws obtained using al-
gorithm 4 (right).

example figure 4) corresponding to totally unimodular
matrices for generic and non-generic cases. A battery
of statistical tests including two-sample Kolmogorov-
Smirnov and Wilcoxon-Mann-Whitney were not able
to distinguish between the exact and the polytope
sampler samples.

4.2 Network tomography

We applied the polytope sampler to solve the network
tomography problem on a network consisting of one
router and 4 computers. We used the data from the
Bell Labs router-1 data analyzed in Cao et al. (2001)
consisting of 24-hour worth of traffic data sampled ev-
ery 5 minutes (287 time points). The fixed routing
protocol in the network of interest leads to a totally
unimodular matrix A of size 7 × 16, since 16 origin-
destination (OD) traffic loads X contribute to 7 ob-
served aggregate traffic loads Y . We rearranged the
columns of A to have a nice-looking unimodular sub-
matrix A1 (for clarity we display only the 1s):

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

The goal of the analysis is to estimate the OD traf-
fic from aggregate measurements Y . Different values
of Y might lead to generic and non-generic solution
polytopes.

We compared the performance of our sampler to the
Metropolis-Hasting based solution sampler proposed
by Tebaldi and West (1998). We ran the latter to
produce 10 independent chains of 100, 000 solutions at
7 time points, with a cumulative CPU time of about
9 hours. In terms of efficiency, this algorithm mixed
badly at six time points corresponding to particularly
narrow polytopes, where it required more than one
billion samples before moving. Our polytope sampler
produced exact samples at each draw (1 Million draw
at each of the 7 time point), and ran with a cumu-
lative CPU time of about 8 minutes (compare with
9 hours!), including finding all the vertices for each
solution polytope (less than 2 sec for all 7 polytopes).
For example the vector of observed aggregate traffic at
3pm, measured in bytes is y = (12053370, 14424000,
249121410, 1485729, 248498220, 2365508, 15357294),
and yields a solution polytope with 232 vertices. In
Figure 5, the modes of the posterior distributions on
the OD loads are excellent estimates for the ground
truth (black triangles), available for this data set.

We also computed the average L1 and L2 distance be-
tween the two solutions and the ground truth, across
OD loads and over 24 hours. The average distance be-
tween the MH solution and the ground truth solution
is of the order of 55 Mb (in L1), and 20 Mb (in L2).
The average distance between the basic polytope sam-
pler solution and the ground truth solution is of the
order of 17 Mb (in L1), and 6 Mb (in L2). In prac-
tice, the advantage of using the polytope sampler over
a MH with a specialized proposal was therefore quite
substantial.

4.3 Two-way, multi-way contingency tables

We considered the problem of sampling two-way
and multi-way contingency tables given fixed mar-
gins, corresponding to both decomposable and non-
decomposable models (Bishop et al., 1975), four cases
in total. The four examples we considered required
the algorithms for identifying the solution polytope in
both the generic and non-generic cases, and an algo-
rithm variants (not presented here) for dealing with
matrices A that are non-totally unimodular. The sim-
ulation results substantiate the claim that the basic
polytope sampler is a feasible strategy to tackle the
more complicated problem of sampling multi-way con-
tingency tables.

5 CONCLUDING REMARKS

The polytope samplers provide a fresh new approach
to inference for ill-posed inverse problems, y = A x,
y, x ≥ 0. The innovation is in our ability to leverage
the geometrical intuition underlying some properties
of the matrix A that arise in the real applications we
consider: namely, network tomography and sampling
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Figure 5: OD loads posterior distributions at 3pm.

contingency tables given fixed margins. For reasonably
sized problems our approach shows to be very compet-
itive with current known methods: Sequential MCMC
methods (Chen et al., 2005) (which prove much slower
mainly due to their sequential nature and less accu-
rate) and methods based on algebraic geometry (Dia-
conis and Sturmfels, 1998; Dobra et al., 2009) (which
seem to become intractable in lower dimensions than
for ours).

We developed three polytope sampling strategies and
implemented one, the basic polytope sampler. These
different strategies have advantages and disadvan-
tages. The basic sampler is easy to implement, how-
ever the sampler draws approximately uniform sam-
ples. The triangulation sampler draws exactly uni-
form samples, and allows for finer decompositions of
the polytope by using additional interior points. How-

ever, partitioning a polytope into mutually exclusive
simplexes is a non-trivial operation. An efficient algo-
rithm to produce such decompositions is needed. The
moment-map sampler is a direct method that general-
izes the construction of a Dirichlet distribution. How-
ever the computation of the Jacobian of the moment
map may be costly, and the distribution is difficult to
control—the Jacobian may not be simple. Numerical
methods to compute distributions involving a compli-
cated Jacobian should alleviate this difficulty.

Our work suggest broader applicability of polytope
samplers. To what extent relaxations to conditions
on the matrix A maintain the general geometric struc-
ture that the polytope samplers leverage? Our results
establish new and exciting research directions.
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