
SUPPLEMENTARY MATERIAL

Figure 6: A singular (non-generic) vertex v is blown-
up into a virtual polytope with vertices v1, v2, v3, v4.
Notice the base at each virtual vertex contains only 2
directions along the actual positive sign cone.

We have so far restricted our attention to matrices
A that are TUM. This was useful to guarantee that
Q12 has entries in {−1, 0. + 1} and that the pivoting
operation actually works to pass from one vertex to
the next. However, as a corollary to lemma ?? we get
that the difference between two neighbor vertices is an
integer, therefore a multiple of a column of Q2. Since
by varying y we can get all possible positive vertices
(since A1 is unimodular), we get that Q2 has the sam
form before and after pivoting:

Corollary 0.1. If A is unimodular, Q′2 =
Pivot(Q2, i, j) has the same form that Q2, that is,

Q′2 =
(

Q′12
In−m

)
.

This means that our algorithms work for A unimodular
as well.

The following proposition is rather obvious and its
proof is left to the reader.

Proposition 0.2. If A is totally unimodular, then the
matrix A′ obtained from A by any one of the following
operations is still totally unimodular.

1. Permuting rows and columns.

2. Removing a row or column from A.

3. Adding to A one more row or column containing
only 0’s except one 1.

4. Adding to A one more row or column already in
A.

5. Multiplying a row or column by −1.

Following Schrijver (1998) we call a m×m submatrix
of a full rank integer m × n matrix, n ≥ m, a basis if
it has full rank.

Theorem 0.3 (Theorem 19.5 in Schrijver (1998)). Let
A be an integral matrix. The following two assertions
are equivalent.

1. For every basis A1 of A, the matrix A−1
1 A is in-

tegral

2. For every basis A1 of A, the matrix A−1
1 A is to-

tally unimodular

Lemma 2.2 becomes a corollary of this theorem.

Proof. (of Lemma 2.2) A is totally unimodular, there-
fore every basis A1 is unimodular, therefore A−1

1 is
integral and so is A−1

1 A = (I,A−1
1 A2). Therefore

(I, A−1
1 A2) is totally unimodular. Therefore, Q12 =

−A−1
1 A2 is totally unimodular (a consequence of prop

0.2). Therefore Q2 =
(
Q12

I

)
is totally unimodular.

Proof. (of Proposition 2.3) The pivoting operation of
algorithm 1 is easily seen to be a combination of oper-
ations from proposition 0.2 and the pivoting operation
defined in Schrijver (1998) by:(

ε c
b D

)
→

(
ε −εc
εb D − εbc

)
The latter operation is proved in Schrijver (1998) to
preserve TUM.

Proof. (of Lemma 2.4) Any solution has the form
ν(0) + Q2w with w a non-negative n −m vector. Let
J = {j : Q2[i, j] 6= 0} and assume Q2[i, j] < 0 for all
j ∈ J . Any non-zero scalar Q2[i, ]w would be nega-
tive, so y′[i] +Q2[i, ]w would again be negative and so
would never be the coordinate of a solution. Therefore
the columns bj , j ∈ J are unecessary to express any
solution in the form

(
y′

0

)
+Q2w. The solution polytope

has dimension n −m, and therefore contains at least
n−m+1 linearly independent solutions. One solution
might be

(
y′

0

)
(if ν(0) is actually a vertex), but there

are at least n−m other linearly independent solutions.
However, the remaining columns Q2[, k], k 6∈ J , being
less than n − m in number, cannot express linearly
independent n−m solutions; a contradiction.

Proof. (of Proposition 2.6) Both in the queue vq and
the one-skeleton data structure sk, vertices are accom-
panied by their base-matrix (or set of base-matrices
if it is a non-generic vertex) and their corresponding
permutations. We place our first vertex in the queue,
then each vertex v popped out of the queue is ap-
pended to the one-skeleton data structure and checked



for its neighbors. So vq contains vertices with neigh-
bors unchecked and sk contains vertices with neigh-
bors checked. If a neighbor v′ is not already in vq, we
check if it is already in sk so far (if it is already in
vq, we ignore it and look at the next one). If it is in
sk, we update the list N of neighbors of both v and
v′ in sk. If it is not in sk, then it is a new vertex and
we add it to the queue. This should be clear that this
exhausts all vertices and their neighboring relations.
For the running time, the number of iterations of the
while loop on line 3 is equal to the number of vertices
v. For each iteration, the dominating operation is the
pivot operation (which occurs only when a vertex is
appended to the queue). Checking in line 11 and 13
that a vertex neighbor (that is, a vertex candidate) is
not in the queue and not in the skeleton can be done
in O(1) time with a hash table sufficiently large.


