
Dynamic Policy Programming with Function Approximation:
Supplementary Material

Mohammad Gheshlaghi Azar Vicenç Gómez

Radboud University Nijmegen
Geert Grooteplein Noord 21

6525 EZ Nijmegen Netherlands
m.azar@science.ru.nl

Radboud University Nijmegen
Geert Grooteplein Noord 21

6525 EZ Nijmegen Netherlands
v.gomez@science.ru.nl

Hilbert J. Kappen

Radboud University Nijmegen
Geert Grooteplein Noord 21

6525 EZ Nijmegen Netherlands
m.azar@science.ru.nl

Appendices

A Definitions

A.1 Markov Decision Processes and Bellman Equation

A stationary MDP is a 5-tuple (S,A,R, T, γ), where S,A,R are, respectively, the set of all system states, the
set of actions that can be taken and the set of rewards that may be issued, such that rass′ denotes the reward of
the next state s′ given that the current state is s and the action is a. T is a set of matrices of dimension |S ×S|,
one for each a ∈ A such that T a

ss′ denotes the probability of the next state s′ given that the current state is s
and the action is a. γ ∈ (0, 1) denotes the discount factor.

Assumption 1. We assume that for every 3-tuple (s, a, s′) ∈ S ×A× S, the magnitude of the immediate reward,

|rass′ | is bounded from above by Rmax.

A stationary policy is a mapping π that assigns to each state s a probability distribution over the action space
A, one for each (s, a) ∈ S ×A such that πs(a) denotes the probability of the action a given the current state is s.
Given the policy π, its corresponding value function V π denotes the expected value of the long-term discounted
sum of rewards in each state s, when the action is chosen by policy π. The goal is to find a policy π∗ that attains
the optimal value function V ∗(s), such that V ∗(s) satisfies a Bellman equation:

V ∗(s) = max
πs

∑

a∈A

πs(a)
∑

s′∈S

T a
ss′ (r

a
ss′ + γV ∗(s′)) , ∀s ∈ S. (1)



Mohammad Gheshlaghi Azar, Vicenç Gómez

A.2 Matrix notation

We find it convenient to use matrix and vector notation for analysis of theorem 1, 2 and 3. We begin by
re-defining the variables of the MDP. T and r are, respectively, a |S||A| × |S| transition matrix with entries
T(sa, s′) = T a

ss′ and a |S||A| × |S| reward matrix with entries r(sa, s′) = rass′ . r̄ is a |S||A| × 1 column vector of
expected rewards with entries r̄(sa) =

∑

s′∈S T a
ss′r

a
ss′ .

The policy can also be re-expressed as a |S||A| × 1 vector π with entries π(sa) = πs(a). In addition, it will be
convenient to introduce a |S| × |S||A| matrix Π, given by:

Π =











πs1(a1) · · ·πs1(a|A|)
πs2(a1) · · ·πs2(a|A|)

. . .

πs|S|
(a1) · · ·πs|S|

(a|A|)











, (2)

where Π consists of |S| row blocks, each of length |A|, which are arranged diagonally. The policy matrix Π is
related to the policy vector π by π = ΠT1 with 1 denotes a |S| × 1 vector of all 1s. Further, one can easily
verify that the matrix-product ΠT gives the state to state transition matrix for the policy π.

One can also present the value function in vector space. vπ is a |S| × 1 vector with entries vπ(s) = V π(s). The
Bellman equation (1) can now be re-expressed in matrix notation as:

v∗ = M∞

(

r̄+ γTv∗
)

, (3)

whereM∞ is the max operator on the |S||A|×1 vector r̄+γTv∗, such thatM∞

(

r̄+γTv∗
)

(s) = maxa∈A

(

r̄(sa)+

γTv∗(sa)
)

.

Often it is convenient to associate value functions not with states but with state-action pairs. Therefore, we
introduce a |S||A|× 1 vector of the action-values qπ whose entries qπ(sa) denotes the expected value of the sum
of future rewards for all state-action (s, a) ∈ S ×A, provided the future actions are chosen by the policy π. qπ

satisfies the following Bellman equation:

qπ = T πq
π = r̄+ γTΠqπ, (4)

where we introduce the Bellman operator T π and qπ denotes the fixed point of T π. The optimal q, q∗, also
satisfies a Bellman equation:

q∗ = T q∗ = r̄+ γTM∞q∗, (5)

where we introduce the Bellman operator T . q∗ denotes the fixed point of the operator T .

Both T and T π are contraction mappings with the factor γ (?, chap. 1). In other words, for any two vectors q
and q′, we have:

‖T q− T q′‖∞ ≤ γ ‖q− q′‖∞ , ‖T πq− T πq
′‖∞ ≤ γ ‖q− q′‖∞ , (6)

where ‖ · ‖∞ denotes an L∞-norm on ℜ|S||A|.

The operator O defined can be written in matrix notation as:

Op = p+ r̄+ γTMηp−ΞMηp. (7)

Here, p denotes a |S||A| × 1 vector of the action preferences. Mη is the soft-max operator on the vector p with
Mηp(s) = MηP (s). Ξ is a |S||A| × |S| matrix given by:

Ξ =















1 · · · 1
1 · · · 1

. . .

1 · · · 1















T

, (8)



Mohammad Gheshlaghi Azar, Vicenç Gómez

where Ξ consists of |S| column blocks of 1s, each of length |A|, which are arranged diagonally. Ξ transforms the
|S| × 1 vector Mηp to the |S||A| × 1 vector ΞMηp with ΞMηp(sa) = Mηp(s). Further, one can easily verify
that for any policy matrix defined by (2):

ΠΞ =

















∑

a∈A

π(s1a)
∑

a∈A

π(s2a)

. . .
∑

a∈A

π(s|S|a)

















= I, (9)

where I is a |S| × |S| identity matrix.

We know that limη→∞ Mηp = M∞p. Further, It is not difficult to show that the following inequality holds for
‖M∞p−Mηp‖∞:

Lemma 1. Let p be a |S||A| × 1 vector of action preferences and η be a positive constant, then an upper bound

for ‖Mηp−M∞p‖∞ can be obtained as follows:

‖Mηp−M∞p‖∞ ≤
1

η
log(|A|).

Proof. (sketch) First, we note that Mηp − M∞p = Mη(p − M∞p) ≤ 0. Then we apply equation (12)
of the main article to each entries of p − M∞p. Now, one can easily show that Lη(p − M∞p)(s) ≤ 0
for all s ∈ S. This combined with the fact that for the probability distribution π: Hπ(s) ≤ log(|A|) derive
0 ≤ M∞p−Mηp ≤ 1

η
log(|A|). The result then follows by taking the sup-norm.

Defining pn as the action preference resulted by the nth iteration of (7), we have:

pn = pn−1 + r̄+ γTMηpn−1 −ΞMηpn−1

= pn−1 + r̄+ γTΠn−1pn−1 −ΞΠn−1pn−1

, n = 1, 2, 3, · · · , (10)

where p0 = p and Πn is a policy distribution matrix associated with the policy distribution vector πn given by:

πn(sa) =
exp (ηpn(sa))

Z(s)
, ∀(s, a) ∈ S ×A, (11)

and Z(s) =
∑

a∈A exp (ηpn(sa)) is the normalization factor.

B Proof of Lemma 1 of The Main Article

The optimal value value function is defined as follows:

V ∗
π̄ (s) = max

πs∈Πs

[

∑

a∈A

πs(a)
∑

s′∈S

T a
ss′ (r

a
ss′ + γV ∗

π̄ (s
′))−

1

η
KL(πs‖π̄s)

]

(12)

The maximization in (12) can be performed in closed form using Lagrange multipliers:

L (s, λs) =
∑

a∈A

πs(a)
∑

s′∈S

T a
ss′ (r

a
ss′ + γV ∗

π̄ (s
′))−

1

η
KL (πs‖π̄s)− λs

[

∑

a∈A

πs(a)− 1

]

.

The necessary condition for the extremum with respect to πs is:

0 =
∂L (s, λs)

∂πs(a)
=

∑

s∈S

T a
ss′ (r

a
ss′ + γV ∗

π̄ (s))−
1

η
−

1

η
log

(

πs(a)

π̄s(a)

)

− λs.



Mohammad Gheshlaghi Azar, Vicenç Gómez

So, the solution is:

πs(a) = π̄s(a) exp (−ηλs − 1) exp

[

η
∑

s′∈S

T a
ss′ (r

a
ss′ + γV ∗

π̄ (s
′))

]

, ∀s ∈ S. (13)

The Lagrange multipliers can be solved from the constraints:

1 =
∑

a∈A

πs(a) = exp (−ηλs − 1)
∑

a∈A

π̄s(a) exp

[

η
∑

s′∈S

T a
ss′ (r

a
ss′ + γV ∗

π̄ (s
′))

]

,

λs =
1

η
log

∑

a∈A

π̄s(a) exp

[

η
∑

s′∈S

T a
ss′ (r

a
ss′ + γV ∗

π̄ (s
′))

]

−
1

η
. (14)

By plugging (14) in to (13) we have:

πs(a) =

π̄s(a) exp

[

η
∑

s′∈S

T a
ss′ (r

a
ss′ + γV ∗

π̄ (s
′))

]

∑

a∈A

π̄s(a) exp

[

η
∑

s′∈S

T a
ss′ (r

a
ss′ + γV ∗

π̄ (s
′))

] , ∀(s, a) ∈ S ×A. (15)

Substituting policy (15) in (12), we obtain:

V ∗
π̄ (s) =

1

η
log

∑

a∈A

π̄s(a) exp

[

η
∑

s′∈S

T a
ss′ (r

a
ss′ + γV ∗

π̄ (s
′))

]

.

C Proof of Theorem 1

This section provides a formal analysis of the convergence behavior of DPP. Our objective is to establish a rate
of convergence for the value function of the policy induced by DPP.

Our main result is that at iteration n of DPP we have:

‖qπn − q∗‖∞ < δn, where δn = O

(

1

n

)

. (16)

Here, qπn is a vector of the action-values under the policy πn and πn is the policy induced by DPP at iteration
n. Equation (16) implies that, asymptotically, the policy induced by DPP, π = limn→∞ πn, converges to the
optimal policy π

∗.

To derive (16) one needs to relate qπn to the optimal q∗. Unfortunately, finding a direct relation between qπn

and q∗ is not an easy task. Instead, we can relate qπn to q∗ via an auxiliary qA
n , which we define later in this

section. In the remainder of this section, we first express πn in terms of qA
n . Then, we obtain an upper bound

on the normed error
∥

∥qA
n − q∗

∥

∥

∞
in lemma 2. Finally, we use these two results to derive a bound on the normed

error ‖qπn − q∗‖∞.

In order to express πn in terms of qA
n , we expand the corresponding action preference pn by recursive substitution

of (10):

pn = pn−1 + r̄+ γTΠn−1pn−1 −ΞΠn−1pn−1

= pn−2 + 2r̄+ γTΠn−2pn−2 −ΞΠn−2pn−2 + γTΠn−1pn−2 + γTΠn−1r̄

+ γ2TΠn−1TΠn−2pn−2 − γTΠn−1ΞΠn−2pn−2 −ΞΠn−1pn−2 −ΞΠn−1r̄ (17)

− γΞΠn−1TΠn−2pn−2 +ΞΠn−1ΞΠn−2pn−2

= 2r̄+ γTΠn−1r̄+ pn−2 + γTΠn−1pn−2 + γ2TΠn−1TΠn−2pn−2 −ΞΠn−1r̄

−ΞΠn−1pn−2 − γΞΠn−1TΠn−2pn−2 by (9).



Mohammad Gheshlaghi Azar, Vicenç Gómez

Equation (17) expresses pn in terms of pn−2, where in the last step we have canceled some terms because of (9).
To express pn in terms of p0, we proceed with the expansion of (10):

pn = nr̄+
∑n−1

k=1
(n− k)γk

(

∏k

j=1
TΠn−j

)

r̄+ p0 +
∑n

k=1
γk

(

∏k

j=1
TΠn−j

)

p0

−ΞΠn−1

[

(n− 1)r̄+
∑n−2

k=1
(n− k − 1)γk

(

∏k

j=1
TΠn−j−1

)

r̄
]

−ΞΠn−1

(

p0 +
∑n−1

k=1
γk

(

∏k

j=1
TΠn−j−1

)

p0

)

= n
(

r̄+
∑n−1

k=1
γk

(

∏k

j=1
TΠn−j

)

r̄
)

− γ
∑n−1

k=1
kγk−1

(

∏k

j=1
TΠn−j

)

r̄+ p0

+
∑n

k=1
γk

(

∏k

j=1
TΠn−j

)

p0 − (n− 1)ΞΠn−1

(

r̄+
∑n−2

k=1
γk

(

∏k

j=1
TΠn−j−1

)

r̄
)

+ΞΠn−1

[

γ
∑n−2

k=1
kγk−1

(

∏k

j=1
TΠn−j−1

)

r̄− p0 −
∑n−1

k=1
γk

(

∏k

j=1
TΠn−j−1

)

p0

]

.

(18)

We define the auxiliary action-values qA
n = r̄ +

∑n−1
k=1 γ

k
(
∏

k
j=1TΠn−j

)

r̄ and qp
n = p0 +

∑n
k=1 γ

k
(
∏

k
j=1TΠn−j

)

p0 and write (18) as:

pn = nqA
n − γ

∂qA
n

∂γ
+ qP

n −ΞΠn−1

(

(n− 1)qA
n−1 − γ

∂qA
n−1

∂γ
+ qP

n−1

)

= nqA
n + cn −Ξdn. (19)

Here, cn = qP
n − γ∂qA

n

/

∂γ is a |S||A| × 1 vector bounded by:

‖cn‖∞ ≤ cmax =
γ

(1− γ)2
R̄max +

1

(1− γ)
‖p0‖∞, n = 1, 2, 3, · · · , (20)

and dn = Πn−1

(

(n− 1)qA
n−1 − γ∂qA

n−1

/

∂γ+ qP
n−1

)

is a |S| × 1 vector. From its definition, it is easy to see that
qA
n satisfies the following Bellman equation:

qA
n = r̄+ γTΠn−1q

A
n−1. (21)

Note the difference between (21) and (4): whereas qπ evolves according to a fixed policy π, qA
n evolves according

to a policy that evolves according to DPP.

Finally, we express πn in terms of qA
n . By plugging (19) in (11) and taking in to account that Ξdn(sa) = dn(s),

we obtain:

πn(sa) =
exp

(

η
(

nqA
n (sa) + cn(sa)− dn(s)

))

Z(s)
=

exp
(

η
(

nqA
n (sa) + cn(sa)

))

Z ′(s)
, (s, a) ∈ S ×A, (22)

where Z ′(s) = Z(s) exp (ηdn(s)) is the normalization factor. Equation (22) establishes the relation between πn

and qA
n . To relate qA

n and q∗ we state the following lemma, that establishes a bound on
∥

∥qA
n − q∗

∥

∥

∞
:

Lemma 2 (A bound on ‖qA
n −q∗‖∞). Let assumption 1 hold, |A| denotes the cardinality of A and n be a positive

integer, also, for keeping the representation succinct, assume that both ‖r̄‖∞ and ‖p0‖∞ are bounded from above

by some constant L > 0, then the following inequality holds:

∥

∥qA
n − q∗

∥

∥

∞
≤ δ1n,

where δ1n is given by:

δ1n = 2γ
(1− γ)2 log(|A|)/η + 2L

n(1− γ)4
+ 2γn−1 L

1− γ
. (23)



Mohammad Gheshlaghi Azar, Vicenç Gómez

Proof.

∥

∥qA
n − q∗

∥

∥

∞
=

∥

∥

∥

∥

∥

n−1
∑

k=1

(

T
k−1qA

n−k+1 − T
kqA

n−k

)

+ T
n−1qA

1 − q∗

∥

∥

∥

∥

∥

∞

≤
n−1
∑

k=1

∥

∥

∥T
k−1qA

n−k+1 − T
kqA

n−k

∥

∥

∥

∞
+
∥

∥T
n−1qA

1 − q∗
∥

∥

∞

≤
n−1
∑

k=1

γk−1
∥

∥qA
n−k+1 − T qA

n−k

∥

∥

∞
+ γn−1

∥

∥qA
1 − q∗

∥

∥

∞
by (6).

(24)

For 1 ≤ k ≤ n− 1 we obtain:

∥

∥qA
n−k+1 − T qA

n−k

∥

∥

∞
= γ

∥

∥TΠn−kq
A
n−k −TM∞qA

n−k

∥

∥

∞
by (21) and (5)

≤ γ
∥

∥Πn−kq
A
n−k −M∞qA

n−k

∥

∥

∞
by Hölder’s inequality.

(25)

By monotonicity property for any action-value vector q and distribution matrix Π we have:

Πq(s) =
∑

a∈A

π(sa)q(sa)≤M∞q(s), ∀s ∈ S. (26)

By comparing (26) with (25), we obtain:

∥

∥qA
n−k+1 − T qA

n−k

∥

∥

∞
≤ γmax

s∈S

(

M∞qA
n−k(s)−Πn−kq

A
n−k(s)

)

≤ γmax
s∈S

(

M∞

(

qA
n−k +

cn−k

n− k

)

(s) +
cmax

n− k
−Πn−kq

A
n−k(s)

)

= γ

∥

∥

∥

∥

M∞

(

qA
n−k +

cn−k

n− k

)

−Πn−kq
A
n−1

∥

∥

∥

∥

∞

+
γcmax

n− k

≤ γ

∥

∥

∥

∥

M∞

(

qA
n−k +

cn−k

n− k

)

−Πn−k

(

qA
n−k +

cn−k

n− k

)

∥

∥

∥

∥

∞

+
2γcmax

n− k

= γ

∥

∥

∥

∥

Mη(n−k)

(

qA
n−k +

cn−k

n− k

)

−M∞

(

qA
n−k +

cn−k

n− k

)

∥

∥

∥

∥

∞

+
2γcmax

n− k

≤ γ
log(|A|)/η + 2cmax

n− k
by lemma 1.

(27)

By substitution of (27) in (24), we obtain:

∥

∥qA
n − q∗

∥

∥

∞
≤ (log(|A|)/η + 2cmax)

n−1
∑

k=1

γk

n− k
+

2γn−1L

1− γ
. (28)

It is not difficult to show that
∑n−1

k=1
γk

n−k
≤ 2γ

/

(n(1 − γ)2). Combining this with (28) yields:

∥

∥qA
n − q∗

∥

∥

∞
≤ 2γ

log(|A|)/η + 2cmax

n(1 − γ)2
+ 2γn−1 L

1− γ

≤ 2γ
(1− γ)2 log(|A|)/η + 2L

n(1− γ)4
+ 2γn−1 L

1− γ
by (37).

Equation (22) expresses the policy πn in terms of the auxiliary qA
n . Lemma 2 provides an upper bound on the

normed-error
∥

∥qA
n − q∗

∥

∥

∞
. We use these two results to derive a bound on the normed-error ‖qπn − q∗‖∞:



Mohammad Gheshlaghi Azar, Vicenç Gómez

We start by noting that qπn is obtained by infinite application of the operator T πn
to an arbitrary initial

q-vector, for which we take q∗, then:

‖qπn − q∗‖∞ = lim
m→∞

∥

∥

∥

∥

∥

m
∑

k=1

(

T
k
πn

q∗ − T
k−1
πn

T q∗
)

∥

∥

∥

∥

∥

∞

≤ lim
m→∞

m
∑

k=1

∥

∥

∥T
k
πn

q∗ − T
k−1
πn

T q∗
∥

∥

∥

∞

≤ lim
m→∞

m
∑

k=1

γk−1 ‖T πn
q∗ − T q∗‖∞ by (6)

≤
1

1− γ
‖T πn

q∗ − T q∗‖∞

=
γ

1− γ
‖TΠnq

∗ −TM∞q∗‖∞

≤
γ

1− γ
‖Πnq

∗ −M∞q∗‖∞ by Hölder’s inequality.

(29)

Along similar lines with the proof of lemma 2, we obtain:

‖qπn − q∗‖∞ ≤
γ

1− γ
‖Πnq

∗ −M∞q∗‖∞

=
γ

1− γ
max
s∈S

(M∞q∗(s)−Πnq
∗(s))

≤
γ

1− γ

[

max
s∈S

(

M∞qA
n (s)−Πnq

∗(s)
)

+ δ1n

]

by lemma 2

≤
γ

1− γ
max
s∈S

(

M∞

(

qA
n +

cn

n

)

(s)−Πnq
∗(s)

)

+
γ

1− γ

(

δ1n +
cmax

n

)

by (37)

≤
γ

1− γ

∥

∥

∥M∞

(

qA
n +

cn

n

)

−Πn

(

qA
n +

cn

n

)∥

∥

∥

∞

+
γ

1− γ

(

2δ1n +
2cmax

n

)

=
γ

1− γ

∥

∥

∥M∞

(

qA
n +

cn

n

)

−Mηn

(

qA
n +

cn

n

)∥

∥

∥

∞

+
γ

1− γ

(

2δ1n +
2cmax

n

)

≤
γ

1− γ

[

log(|A|)

nη
+ 2δ1n +

2cmax

n

]

by lemma 1

=
γ

1− γ

[

(1 − γ)2 log(|A|)/η + 2L

n(1− γ)2
+ 2δ1n

]

by (37)

=
γ

1− γ

[

(1 − γ)2 log(|A|)/η + 2L

n(1− γ)2
+ 4γ

(1− γ)2 log(|A|)/η + 2L

n(1− γ)4
+ 4γn−1 L

1− γ

]

=
γ

1− γ

[

4
(1− γ)2 log(|A|)/η + 2L

n(1− γ)4
+ 4γn−1 L

1− γ

]

This completes the proof.

D Proof of Theorem 2

First, we show that there exists a limit for pn in infinity. Then, we compute this limit. Before we proceed with
the proof we review the following assumption and corollary from the main article



Mohammad Gheshlaghi Azar, Vicenç Gómez

Assumption 2. We assume that MDP has a unique deterministic optimal policy π
∗ given by:

π
∗(sa) =

{

1 a = a∗(s)
0 otherwise

, ∀s ∈ S,

where a∗(s) = argmaxa∈A q∗(sa).

Corollary 1. The following relation holds in limit:

lim
n→+∞

qπn = q∗, ∀(s, a) ∈ S ×A.

The convergence of pn to a limit can be established by proving the convergence of all the terms in RHS of (19).
We have already proven the convergence of qA

n to q∗ in lemma 2. Then, the convergence of ∂qA
n

/

∂γ to ∂q∗
/

∂γ
is immediate. Corollary 1 together with assumption 2 yields the convergence of πn to π

∗. The convergence of
qp
n to some limit qp then follows. Accordingly, there exists a limit for pn.

Now, we compute the limit of pn. Combining corollary 1 with (19) and taking in to account that v∗ = Π∗q∗

yields:

lim
n→∞

pn(sa) = lim
n→∞

[

nq∗(sa)− γ
∂q∗(sa)

∂γ
+ qp(sa)− (n− 1)v∗(s) + γ

∂v∗(s)

∂γ
− qp(sa∗)

]

= lim
n→∞

n(q∗(sa)− v∗(s))

+ γ
(∂v∗(s)

∂γ
−

∂q∗(sa)

∂γ

)

+ qp(sa)− qp(sa∗) + v∗(s)

=

{

v∗(s) a = a∗(s)
−∞ otherwise

.

E Proof of Theorem 3

This section provides a formal theoretical analysis of the performance of dynamic policy programming in the
presence of approximation error. Each iteration of approximate dynamic programming can be characterized
by (30). Our objective is to establish a L∞-norm performance loss bound of the policy induced by approximate
DPP.

pn = pn−1 + r̄+ γTMηpn−1 − ΞMηpn−1 + ǫn−1

= pn−1 + r̄+ γTΠn−1pn−1 −ΞΠn−1pn−1 + ǫn−1

, n = 1, 2, 3, · · · , (30)

Our main result that at iteration n of approximate dynamic policy programming, we have:

‖qπn − q∗‖∞ ≤ δn, (31)

where:

δn = 4γ
(1 − γ)2 log(|A|)/η + 4L

n(1− γ)5
+ 4γn L

(1− γ)2
+

2γ

1− γ

n
∑

k=1

γn−kε̄k.

with ε̄k =
∥

∥

∥1
/

k
∑

j=0:k−1 ǫj

∥

∥

∥

∞
. Here, qπn is a vector of the action-values under the policy πn and πn is the

policy induced after n iteration of approximate DPP.

To relate q∗ with qπn , we can relate qπn to q∗ via an auxiliary qA
n , which we define later in this section. In the

remainder of this section, we first express πn in terms of qA
n in lemma 3. Then, we obtain an upper bound on

the normed error
∥

∥qA
n − q∗

∥

∥

∞
in lemma 4. Finally, we use these two results to derive (31).

We begin our analysis with the following lemma:



Mohammad Gheshlaghi Azar, Vicenç Gómez

Lemma 3. Let n be a positive integer and p0 denotes the initial action preferences. Also, lets define the auxiliary

action-value functions qA
n and qp

n as:

qA
n = r̄+ ǭn +

n−1
∑

k=0

γk
(

∏

k
j=1TΠn−j

)

(r̄+ ǭn−k) qp
n = p0 +

n
∑

k=1

γk
(

∏

k
j=1TΠn−j

)

p0 (32)

with ǭn =
∑n−1

l=0 ǫl

/

n, then we have:

pn = nqA
n − γ

∂qA
n

∂γ
+ qP

n −ΞΠn−1

(

(n− 1)qA
n−1 − γ

∂qA
n−1

∂γ
+ qP

n−1

)

(33)

Proof. In order to express πn in terms of qA
n , we expand the corresponding action preference pn by recursive

substitution of (30):

pn = pn−1 + r̄+ γTΠn−1pn−1 −ΞΠn−1pn−1 + ǫn−1

= pn−2 + ǫn−2 + 2r̄+ γTΠn−2pn−2 + γTΠn−2ǫn−2 −ΞΠn−2pn−2 + γTΠn−1pn−2

+ γ2TΠn−1TΠn−2pn−2 + γTΠn−1r̄− γTΠn−1ΞΠn−2pn−2 −ΞΠn−1pn−2

−ΞΠn−1ǫn−2 −ΞΠn−1r̄− γΞΠn−1TΠn−2pn−2 +ΞΠn−1ΞΠn−2pn−2 + ǫn−1

= 2r̄+ γTΠn−1r̄+ pn−2 ++γTΠn−1pn−2 + γ2TΠn−1TΠn−2pn−2 −ΞΠn−1r̄

−ΞΠn−1pn−2 − γΞΠn−1TΠn−2pn−2 + ǫn−1 + ǫn−2 + γTΠn−2ǫn−2 −ΞΠn−1ǫn−2

(34)

Equation (34) expresses pn in terms of pn−2, where in the last step we have canceled some terms because of (9).
To express pn in terms of p0, we proceed with the expansion of (30):

pn =
∑n−1

k=0
(n− k)γk

(

∏k

j=1
TΠn−j

)

r̄+
∑n

k=0
γk

(

∏k

j=1
TΠn−j

)

p0

+
∑n−1

k=0
γk

(

∏k

j=1
TΠn−j

)

∑n−k−1

l=0
ǫl −ΞΠn−1

∑n−2

k=0
(n− k − 1)γk

(

∏k

j=1
TΠn−j−1

)

r̄

−ΞΠn−1

(

∑n−1

k=0
γk

(

∏k

j=1
TΠn−j−1

)

p0 +
∑n−2

k=0
γk

∏k

j=1
TΠn−j−1

∑n−k−2

l=0
ǫl

)

= n
∑n−1

k=0
γk

(

∏k

j=1
TΠn−j

)

r̄− γ
∑n−1

k=1
kγk−1

(

∏k

j=1
TΠn−j

)

r̄

+ n
∑n−1

k=0
γk

(

∏k

j=1
TΠn−j

)

ǭn−k − γ
∑n−1

k=1
kγk−1

(

∏k

j=1
TΠn−j

)

ǭn−k

+
∑n

k=0
γk

(

∏k

j=1
TΠn−j

)

p0 − (n− 1)ΞΠn−1

∑n−2

k=0
γk

(

∏k

j=1
TΠn−j−1

)

r̄

− (n− 1)ΞΠn−1

∑n−2

k=0
γk

(

∏k

j=1
TΠn−j−1

)

ǭn−k−1

+ γΞΠn−1

∑n−2

k=1
kγk−1

(

∏k

j=1
TΠn−j−1

)

ǭn−k−1

+ΞΠn−1

[

γ
∑n−2

k=1
kγk−1

(

∏k

j=1
TΠn−j−1

)

r̄−
∑n−1

k=0
γk

(

∏k

j=1
TΠn−j−1

)

p0

]

(35)

Equation (33) then follows by comparing (35) with (32).

It is easy to see that qA
n , defined in lemma 3, satisfies the following Bellman equation:

qA
n = r̄+ γTΠn−1q

A
n−1 + ǭn (36)

Note the difference between (36) and (4): whereas qπ evolves according to a fixed policy π, qA
n evolves according

to a policy that evolves according to approximate DPP.



Mohammad Gheshlaghi Azar, Vicenç Gómez

For brevity we introduce the new variables cn = qP
n − γ∂qA

n

/

∂γ1 and dn = Πn−1

(

(n− 1)qA
n−1 − γ∂qA

n−1

/

∂γ +

qP
n−1

)

and re-express (33) as:

pn = nqA
n + cn −Ξdn (38)

Finally, we express πn in terms of qA
n . By plugging (33) in (11) and taking in to account that Ξdn(sa) = dn(s),

we obtain:

πn(sa) =
exp

(

η(nqA
n (sa) + cn(sa)− dn(s))

)

Z(s)

=
exp

(

η
(

nqA
n (sa) + cn(sa)

))

Z ′(s)
,

(s, a) ∈ S ×A, (39)

where Z ′(s) = Z(s) exp (dn(s)) is the normalization factor. Equation (39) establishes the relation between πn

and qA
n . To relate qA

n and q∗, we state the following lemma, that establishes a bound on
∥

∥qA
n − q∗

∥

∥

∞
:

Lemma 4 ( L∞ bound on qA
n − q∗). Let assumption 1 hold and qA

n defined according to (32). Let |A| denotes
the cardinality of A and n be a positive integer, also, for keeping the representation succinct, assume that both

‖r̄‖∞ and ‖p0‖∞ are bounded from above by some constant L > 0, then the following inequality holds:

∥

∥qA
n − q∗

∥

∥

∞
≤ δ2n,

where δ2n is given by:

δ2n = 2γ
(1 − γ)2 log(|A|)/η + 4L

n(1− γ)4
+ 2γn−1 L

1− γ
+

n
∑

k=1

γn−kε̄k. (40)

with ε̄k = ‖ǭk‖∞.

Proof.

∥

∥qA
n − q∗

∥

∥

∞
=

∥

∥

∥

∥

∥

n−1
∑

k=1

(

T
k−1qA

n−k+1 − T
kqA

n−k

)

+ T
n−1qA

1 − q∗

∥

∥

∥

∥

∥

∞

≤
n−1
∑

k=1

∥

∥

∥T
k−1qA

n−k+1 − T
kqA

n−k

∥

∥

∥

∞
+
∥

∥T
n−1qA

1 − q∗
∥

∥

∞

≤
n−1
∑

k=1

γk−1
∥

∥qA
n−k+1 − T qA

n−k

∥

∥

∞
+ γn−1

∥

∥qA
1 − q∗

∥

∥

∞
by (6).

(41)

For all l ∈ N : 2 ≤ l ≤ n− 1 we obtain:

∥

∥qA
l+1 − T qA

l

∥

∥

∞
=

∥

∥γ
(

TΠlq
A
l −TM∞qA

l

)

+ ǭl+1

∥

∥

∞
by (36) and (5)

≤ γ
∥

∥TΠlq
A
l −TM∞qA

l

∥

∥

∞
+ ε̄l+1

≤ γ
∥

∥Πlq
A
l −M∞qA

l

∥

∥

∞
+ ε̄l+1 by Hölder’s inequality.

(42)

1Note that:

‖cn‖
∞

≤ cmax =
γ

(1− γ)2
(R̄max + ǫmax) +

1

(1− γ)
‖p0‖∞, n = 1, 2, 3, · · · , (37)

with ǫmax = maxk=1,2,3,... ‖ǫk‖
∞



Mohammad Gheshlaghi Azar, Vicenç Gómez

Taking in to account that M∞qA
l ≥ Πlq

A
l (s) we obtain:

∥

∥qA
l+1 − T qA

l

∥

∥

∞
≤ γmax

s∈S

(

M∞qA
l (s)−Πlq

A
l (s)

)

+ ε̄l+1

≤ γmax
s∈S

(

M∞

(

qA
l +

cl

l

)

(s) +
cmax

l
−Πlq

A
l (s)

)

+ ε̄l+1

= γ
∥

∥

∥M∞

(

qA
l +

cl

l

)

−Πlq
A
l

∥

∥

∥

∞
+

γcmax

l
+ ε̄l+1

≤ γ
∥

∥

∥M∞

(

qA
l +

cl

l

)

−Πl

(

qA
l +

cl

l

)∥

∥

∥

∞
+

2γcmax

l
+ ε̄l+1

= γ
∥

∥

∥Mηl

(

qA
l +

cl

l

)

−M∞

(

qA
l +

cl

l

)∥

∥

∥

∞
+

2γcmax

l
+ ε̄l+1

≤ γ
log(|A|)

/

η + 2cmax

l
+ ε̄l+1 by lemma 1.

(43)

By substitution of (43) in (41), we obtain:

∥

∥qA
n − q∗

∥

∥

∞
≤

(

log(|A|)
/

η + 2cmax

)

n−1
∑

k=1

γn−k

k
+

2γn−1L

1− γ
+

n
∑

k=1

γn−k−1ε̄k. (44)

It is not difficult to show that
∑n−1

k=1
γk

n−k
≤ 2γ

/

(n(1 − γ)2). Combining this with (44) yields:

∥

∥qA
n − q∗

∥

∥

∞
≤ 2γ

log(|A|)/η + 2cmax

n(1 − γ)2
+ 2γn−1 L

1− γ
+

n
∑

k=1

γn−kε̄k

≤ 2γ
(1− γ)2 log(|A|)/η + 4L

n(1− γ)4
+ 2γn−1 L

1− γ
+

n
∑

k=1

γn−kε̄k.

Equation (39) expresses the policy πn in terms of the auxiliary qA
n . Lemma 4 provides a upper-bound on the

normed-error
∥

∥qA
n − q∗

∥

∥

∞
. We use these two results to derive a bound on the normed-error ‖qπn − q∗‖∞.

We start by noting that qπn is obtained by infinite application of the operator T πn
to an arbitrary initial

q-vector, for which we take q∗, then:

‖qπn − q∗‖∞ = lim
m→∞

∥

∥

∥

∥

∥

m
∑

k=1

(

T
k
πn

q∗ − T
k−1
πn

T q∗
)

∥

∥

∥

∥

∥

∞

≤ lim
m→∞

m
∑

k=1

∥

∥

∥
T

k
πn

q∗ − T
k−1
πn

T q∗
∥

∥

∥

∞

≤ lim
m→∞

m
∑

k=1

γk−1 ‖T πn
q∗ − T q∗‖∞ by (6)

≤
1

1− γ
‖T πn

q∗ − T q∗‖∞

=
γ

1− γ
‖TΠnq

∗ −TM∞q∗‖∞

≤
γ

1− γ
‖Πnq

∗ −M∞q∗‖∞ by Hölder’s inequality.

(45)



Mohammad Gheshlaghi Azar, Vicenç Gómez

Along similar lines with the proof of lemma 4, we obtain:

‖qπn − q∗‖∞ ≤
γ

1− γ
‖Πnq

∗ −M∞q∗‖∞

=
γ

1− γ
max
s∈S

(M∞q∗(s)−Πnq
∗(s))

≤
γ

1− γ

[

max
s∈S

(

M∞qA
n (s)−Πnq

∗(s)
)

+ δ2n

]

by lemma 4

≤
γ

1− γ
max
s∈S

(

M∞

(

qA
n +

cn

n

)

(s)−Πnq
∗(s)

)

+
γ

1− γ

(

δ2n +
cmax

n

)

by (37)

≤
γ

1− γ

∥

∥

∥
M∞

(

qA
n +

cn

n

)

−Πn

(

qA
n +

cn

n

)∥

∥

∥

∞

+
γ

1− γ

(

2δ2n +
2cmax

n

)

‖qπn − q∗‖∞ ≤
γ

1− γ

∥

∥

∥M∞

(

qA
n +

cn

n

)

−Πn

(

qA
n +

cn

n

)∥

∥

∥

∞

+
γ

1− γ

(

2δ2n +
2cmax

n

)

=
γ

1− γ

∥

∥

∥M∞

(

qA
n +

cn

n

)

−Mηn

(

qA
n +

cn

n

)∥

∥

∥

∞

+
γ

1− γ

(

2δ2n +
2cmax

n

)

≤
γ

1− γ

[

log(|A|)

nη
+ 2δ2n +

2cmax

n

]

by lemma 1

=
γ

1− γ

[

(1− γ)2 log(|A|)/η + 4L

n(1− γ)2
+ 2δ2n

]

by (37)

=
γ

1− γ

[

4
(1− γ)2 log(|A|)/η + 4L

n(1− γ)4
+ 4γn−1 L

1− γ
+ 2

n
∑

k=1

γn−kε̄k

]

This completes the proof of theorem 3.

References

Bertsekas, D. P. (2007). Dynamic Programming and Optimal Control, volume II. Athena Scientific, Belmount,
Massachusetts, third edition.


