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1 Introduction

This is a discussion of Larochelle and Murray (2011).

The Restricted Boltzmann Machine (Smolensky, 1986;
Hinton et al., 2006) has inspired much research in re-
cent years, in particular as a building block for deep
architectures (see Bengio (2009) for a review). The Re-
stricted Boltzmann Machine (RBM) is an undirected
graphical model with latent variables, exact inference,
rather simple sampling procedures (block Gibbs), and
several successful learning algorithms based on approx-
imations of the log-likelihood gradient. However, when
it comes to actually computing the distribution or
density function, it is intractable, except when either
the number of inputs or latent variables is very small
(about 25 binary hidden units with current computers
and about an hour of computing, on MNIST).

With applications in mind where the exact likelihood
would be useful (e.g. when combining the model with
other graphical models, or in order to perform ex-
act likelihood comparisons between different models),
Larochelle and Murray have introduced a new proba-
bilistic model that is inspired by the RBM but whose
likelihood can be computed very cheaply.

2 The NADE

Larochelle and Murray called this model the Neu-
ral Autoregressive Distribution Estimator (NADE) be-
cause it actually is a fully visible directed graphical
model without any latent variable and with a left-to-
right connectivity, i.e., each variable gets to be pre-
dicted by the previous ones in some order (like in au-
toregressive statistical models):

P (x) =
∏

i

P (xi|x<i)
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where x<i denotes (x1, . . . xi−1). However, NADE’s
parametrization is obtained by performing a single step
of a mean-field recursion to approximate P (xi|x<i) in
an RBM, yielding a very simple parametric form:

P (xi = 1|x<i) = sigm(bi +Wi,.sigm(c+W.,<ix<i))

with W.,<i denoting the submatrix of W with columns
1 to i−1, c a vector of length H, and W having D rows
and H columns. Note this is a neural network with a
very special shared weights structure. The hidden units
are organized in groups hi = sigm(c+W.,<ix<i) (one
per variable), each input variable xi is connected to all
groups hj for j > i, the same weight matrix (or sub-
matrices of it) is used across the different groups, both
in the hidden layer (to compute hi) and in the output
layer (to compute the probability prediction for each
binary variable). Because the likelihood is tractable,
so is its gradient, so the model is trained by stochastic
gradient ascent on the log-likelihood. Note that com-
putations can be greatly speeded-up by noting that
most of the work to compute hi has already been done
when computing hi−1, and can be re-used.

Apart from the weight sharing, this is the same archi-
tecture that we already proposed (Bengio and Bengio,
2000) eleven years ago, a model that is a non-linear
generalization of the logistic autoregressive Bayesian
network (Frey, 1998) proposed just before (where
P (xi = 1|x<i) is just a logistic regression), called
FVSBN here (Fully Visible Sigmoid Belief Network).

3 Main Results

NADE is compared with several other models for
which the likelihood can be computed tractably, in-
cluding small RBMs (with 23 hidden units), FVSBNs,
mixtures of multivariate Bernoulli’s, and two other re-
cently proposed models (Larochelle et al., 2010) for
which the likelihood is tractable (to some extent),
the RBM multinomial (an RBM with a small num-
ber of groups of multinomials as hidden units) and
the RBForest (similar to the RBM multinomial, but
with each multinomial structured into a tree of hidden
units). The comparisons are performed on 8 datasets
(with several of the likelihood values obtained from
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earlier papers). The results are striking, showing a
very strong advantage of NADE (or of FVSBN, in two
cases, but where NADE also performs well).

What is impressive with those results is that the im-
provements in terms of log-likelihood are not just sta-
tistically significant, they are plainly large. NADE
is also compared with large RBMs, using Annealed
Importance Sampling to estimate the log-likelihood
on a binarized version of the MNIST. It was found
that NADE actually yields similar likelihoods, suggest-
ing that tractability was achieved at almost no cost in
generalization performance. Finally, note that NADE
samples appeared good, and furthermore can be ob-
tained through an exact left-to-right sampling (not re-
quiring convergence of an MCMC).

4 Discussion

The model without weight constraints, i.e., from Ben-
gio and Bengio (2000), was not included in the com-
parison. However, on two of the datasets (DNA and
Mushroom) one can compare with Bengio and Bengio
(2000), and indeed NADE is doing better1, suggesting
that the RBM-inspired constraint on the parametriza-
tion of the neural network indeed buys something in
terms of generalization performance. The weight shar-
ing also greatly reduces the number of free parameters,
of course, as well as the actual computation (because
of the shared computation between successive hi’s).
An approach explored in Bengio and Bengio (2000) to
reduce capacity was to prune the directed belief net-
work structure, by keeping a connection (in the graph-
ical model) between the pairs of variables for which
a statistical dependency test was above a threshold.
On the DNA dataset, the pruned but otherwise un-
constrained network slightly outperforms NADE (but
then the same strategy could be used to possibly im-
prove NADE as well).

An important discussion element raised by reviewers
is the fact that NADE is dependent on a particular
ordering of the variables. Although any ordering yields
a valid model, some orderings could be more or less
favorable. To address this issue, the authors ran tests
in which a dozen separate models were trained, each
with a different randomly chosen order. They found
that the variation induced by the order was an order
of magnitude smaller than the uncertainty due to the
finite test set, which is very reassuring.

One should note that part of the explanation for the
better performance of NADE with respect to the small
RBMs, RBM multinomial, and RBForest, could be due
simply to the smaller capacity enforced upon the latter

1On mushroom the comparison is more difficult because
of differences in data splits and input representation.

to achieve tractability. The improvement with respect
to the mixture of Bernoulli’s might be due to other
reasons, though, such as the use of a distributed rep-
resentation in the latent variables (an RBM is just a
mixture model with a huge number of components but
very strong constraints on their parametrization, so
the number of parameters remains exponentially small
compared to the number of mixture components).

One intriguing question is that as one goes from h1

to hD, the hidden units will saturate more and more
(since we are summing the contributions from more
and more of the variables). This is unusual for a neural
network, and one may wonder if it would make opti-
mization inefficient. On the other hand, it does make
sense that hi become more saturated as one considers
more evidence (more variables). Since we are in the
realm of “inspiration” from the RBM, one could eas-
ily try variants in which the saturation effect could be
reduced (e.g., by defining hi = sigm(αi(c+W.,<ix<i))
with αi a free parameter initialized to 1/i).

To summarize NADE is a very easy to implement and
train model for joint distributions, yielding a tractable
distribution function. It should be easy to extend it to
continuous variables or a mix of discrete and continu-
ous ones (e.g., either taking inspiration from a corre-
sponding RBM parametrization, such as the Gaussian
RBM, or simply parametrizing the output densities
appropriately based on the hidden units). In this con-
text, it is not clear if the constraint that the input-
to-hidden weights are the transpose of the hidden-to-
output weights is strictly necessary.
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