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0.1 Alternative Concavity Proof

We present an alternative derivation showing that for
log-concave potentials φ(w) the Gaussian expectation
〈log φ(w)〉N (w m,CTC) is concave w.r.t. m and C.
This derivation is due to Michalis K. Titsias at the
University of Manchester.

Since log φ(w) is log concave we have that for all θ ∈
[0, 1] and for any w1,w2 ∈ RD

log φ(θw1+(1−θ)w2) ≥ θ log φ(w1)+(1−θ) log φ(w2).

(0.1)

To show that E(m,C) = 〈log φ(w)〉N (w m,CTC) is con-
cave it suffices to show that

E(θm1 + (1− θ)m2, θC1 + (1− θ)C2) ≥
θE(m1,C1) + (1− θ)E(m2,C2). (0.2)

This can be done by making use of the substitution
w = θm1 + (1 − θ)m2 + (θC1 + (1− θ)C2) z. Which
gives us the following expression

E(θm1 + (1− θ)m2, θC1 + (1− θ)C2) =∫
N (z 0, I)×

log φ (θ(m1 + C1z) + (1− θ)(m2 + C2z)) dz

Using then the concavity of log φ(w) w.r.t. w and
using equation (0.1) where w1 = m1 + C1z and w2 =
m2 + C2z we have that

E(θm1 + (1− θ)m2, θC1 + (1− θ)C2) ≥

θ

∫
N (z 0, I) log φ(m1 + C1z)dz

+ (1− θ)
∫
N (z 0, I) log φ(m2 + C2z)dz

= θE(m1,C1) + (1− θ)E(m2,C2).

Where the last line is obtained by substituting back to
the original coordinate system.

0.1.1 Subspace Covariance Decomposition

For generalized linear models with isotropic Σ = s2I
then the form for the optimal inverse covariance, equa-
tion (2.6), simplifies to

S−1 =
1

s2
I + HΓHT (0.3)

Thus to approximate the K leading eigenvectors of
S we wish to evaluate the K smallest eigenvectors of
Σ−1+HΓHT. To do so we note that HΓHT ≈ HΓ′HT

where Γ′nn = Γnn if Γnn > δ and zero otherwise - we
set δ such that there are K diagonal terms Γnn where
Γnn > δ. If we now calculate the eigen decomposition
to HΓ′HT = EΛET we see that[

1

s2
I + HΓ′HT

]−1
= Ediag

(
s2

1 + λ′nns
2

)
ET (0.4)

For L � D we can evaluate the L eigenvectors of
HΓ′HT cheaply since the eigenvalues of XXT coincide
with the eigenvalues of XTX1. And so approximating
K subspace eigen decomposition reduces to the com-
plexity of decomposing a K ×K matrix. If δ is small
this method can often outperform approximate iter-
ative decompositions provided the data is non-sparse
and of moderate dimensionality.

0.2 VG Bound Gradients

0.2.1 Analytic forms for Laplace Priors

The expectation of Laplace site functions can be eval-
uated analytically using the following form

〈log p(wi)〉N (w m,S) = − log(2τi)−
1

τi
〈|wi|〉N (wi mi,Sii)

(0.5)

where

〈|wi|〉N(wi|mi,Sii)
=

(
2Sii
π

) 1
2

e−
1
2a

2
i +mi [1− 2Φ (−ai)]

1to see this consider the eigen equation for XTXE =
EΛ thus XXTXE = XEΛ
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(0.6)

where Φ(x) =
∫ x
−∞N (t 0, 1) dt and ai = mi/

√
Sii.

The required derivatives are

∂

∂mj
〈|wj |〉 = 1−

√
2

π
aje
− 1

2a
2
j−2Φ (−aj)+2ajN (aj 0, 1)

(0.7)

and

∂

∂Sjj
〈|wj |〉 =

a2j + 1√
2πSjj

e−
1
2a

2
j−

a2j√
Sjj
N (aj 0, 1) (0.8)

Thus in terms of the Cholesky factorisation we have

∂

∂C
〈|wj |〉 = 2CTdiag

(
∂

∂Sjj
〈|wj |〉

)
(0.9)

0.2.2 Inverse Modelling Gradients

Unconstrained Cholesky factorisations of the covari-
ance results in VG bound gradients of the form:

∂BKL
∂m

=
1

s2
(
yTM−MTMm

)
+

∂

∂m
〈log p(w)〉

(0.10)

∂BKL
∂C

= − 1

2s2
tril
(
MTMC

)
+ diag (1/Cii)

+
∂

∂C
〈log p(w)〉 (0.11)

where tril (X)ij = Xij for i ≤ j and 0 otherwise.

For Chevron parameterised Cholesky covariances we
have that

∂BKL
∂Θ

=
1

2s2
tril
(
MTMΘ

)
+ diag (1/Θii)

+
∂

∂Θ
〈log p(w)〉 (0.12)

and with respect to the diagonal elements d

∂BKL
∂di

=
1

2s2
di
[
MTM

]
ii

+
1

di

+ 2di

(
∂

∂Sii
〈log p(w)〉

)
(0.13)

where [X]ii refers to the ith diagonal element of X.

0.2.3 Logistic Regression VG Gradients

This bound admits the following gradients for an un-
constrained Cholesky factorisation of the covariance.

∂BKL
∂m

= −Σ−1m +

N∑
n=1

snxn (1− 〈f (µn + zσn)〉z)

In problems of sufficiently low dimensionality, it is use-
ful to have the bound’s Hessian with respect to m
which is

∂2BKL
∂mi∂mj

= −
[
Σ−1

]
ij

−
N∑
n=1

xni x
n
j 〈f (µn + zσn) (1− f (µn + zσn))〉z

The gradient with respect the Cholesky parameterisa-
tions of the variational covariance we have

∂BKL
∂C

= diag

(
1

Cii

)
− tril

(
Σ−1C + XΓXTC

)
(0.14)

where XΓX =
[∑N

n=1
xnx

T
n

σn
〈zf (µn + zσn)〉z

]
. For

banded Cholesky parameterisations of the covariance
the above algebraic form is accurate but elements in-
dexed out of band width should be fixed to zero.

Chevron Chevron parameterisations of covariance
admit the following gradients with respect to Θ

∂BKL
∂Θ

= diag

(
1

Θii

)
−tril

(
Σ−1Θ + XΓXTΘ

)
(0.15)

and with respect to the diagonal d we have

∂BKL
∂di

=
1

di
−
[
Σ−1

]
ii
di − di

[
XΓXTC

]
ii

(0.16)

Subspace Letting C = blkdiag
(
Csub, cIL×L

)
where

Csub is the K × K subspace Cholesky matrix, L =
D −K, and spherical prior variance Σ = s2I,

∂BKL
∂Csub

= diag

(
1

Csubii

)
− tril

(
Σ−1Csub + X′Γ′X′TCsub

)
(0.17)

where X′ = ET
1X, Γ′nn =

〈zf(µn+zσ
′
n)〉

z

σ′
n

where σ′2n =

‖CsubTET
1xn‖2 + c2(‖xn‖2 − ‖ET

1xn‖2). The gradient
with respect to c is then

∂BKL
∂c

=
L

c
− cL

s2
−

c
∑
n

Γ′nn
(
‖xn‖2 − ‖CsubTET

1xn‖2
)

(0.18)


