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0.1 Alternative Concavity Proof

We present an alternative derivation showing that for
log-concave potentials ¢(w) the Gaussian expectation
(log ¢(W)) nr(wim,c7c) IS concave w.r.t. m and C.
This derivation is due to Michalis K. Titsias at the
University of Manchester.

Since log ¢(w) is log concave we have that for all 8 €

[0,1] and for any wy, wo € RP

log ¢(0w1+(1—0)wsy) > Olog p(w1)+(1—6) log d(wa).
(0.1)

To show that E(m, C) = (log $(W)) x(w|m,cTc) 1S con-
cave it suffices to show that '
E(le + (1 — 6)11’12,001 + (1 — 0)02) Z

GE(ml,Cl) + (1 —Q)E(mg,CQ) (02)

This can be done by making use of the substitution
W = t9m1 + (1 — 9)1112 + (0C1 + (1 — 9)02) z. Which
gives us the following expression

91’1’11 + (1 — 6)11’12,9(31 + (1 — 9)02) =

/N 210,T) x

log ¢ (0(m1 + C12) + (1 — 0)(my + Caz)) dz

Using then the concavity of log¢(w) w.r.t. w and
using equation (0.1) where w; = m; + C;1z and wa =
ms + Cyz we have that

E(le + (1 — 0)11’12,001 + (1 — 0)02) >
H/N(Z\O,I) log ¢(my + C12z)dz

+(1-96) /N(Z\O,I) log ¢(my + Caz)dz
= 0E(m1, Cl) + (1 — e)f?(le7 Cg)

Where the last line is obtained by substituting back to
the original coordinate system.

0.1.1 Subspace Covariance Decomposition

For generalized linear models with isotropic ¥ = s%I
then the form for the optimal inverse covariance, equa-
tion (2.6), simplifies to

1
S~ = wiss HIrH' (0.3)

Thus to approximate the K leading eigenvectors of
S we wish to evaluate the K smallest eigenvectors of
S"'+HI'H". To do so we note that HTHT ~ HIVHT
where I, = T, if Ty, > 6 and zero otherwise - we
set & such that there are K diagonal terms I',,,, where
T'yn > 0. If we now calculate the eigen decomposition
to HI'H" = EAET we see that
§2
s2> E" (0.4)

1+ XN,

For L <« D we can evaluate the L eigenvectors of
HIVHT cheaply since the eigenvalues of XX coincide
with the eigenvalues of XTX!. And so approximating
K subspace eigen decomposition reduces to the com-
plexity of decomposing a K x K matrix. If ¢ is small
this method can often outperform approximate iter-
ative decompositions provided the data is non-sparse
and of moderate dimensionality.

1 —1
LQI + HI"HT} = Ediag <

0.2 VG Bound Gradients

0.2.1 Analytic forms for Laplace Priors

The expectation of Laplace site functions can be eval-
uated analytically using the following form

1
_ log(QTz‘)—; <|wi|>N(wi‘mZ,Sii)

(0.5)

(log P(wi)) A (wim,s) =

where

284

™

LA :
<|wi|>N(wi\mi,Sii) = ( ) e 2% 4m,; [1 —2® (—a;)]

1to see this consider the eigen equation for X' XE =
EA thus XX'XE = XEA
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(0.6)

where ®(z) = f N (t]0,1)dt and a; = m;/\/Si.
The requlred derlvatlveb are

0 2 1.2
ij (Jw;]) = 1—\/;%'6 2% —2® (—a;)+2a,;N (a;]0,1)

(0.7)
and
d af+l
T () = e -\ (a,10,1) (0.8)
aSJ'J' ! \/ Sjj vV Sjj i

Thus in terms of the Cholesky factorisation we have

56 () =207 dwg (50 Qi) (09)

0.2.2 Inverse Modelling Gradients

Unconstrained Cholesky factorisations of the covari-
ance results in VG bound gradients of the form:

1
OBrr _ (y™™ — MTMm)—Fai(logp( )

Om 52
(0.10)

OBgr 1 T . )
93— 252 tril (M"MC) + diag (1/Cy;)

2 flogp(w) (0.11)

where tril (X),; = Xj; for i < j and 0 otherwise.

For Chevron parameterised Cholesky covariances we
have that

0Bkr, T .
0 ﬁt ril (M'M®) + diag (1/6;;)
0
1
b2 (logp(w) (0.12)
and with respect to the diagonal elements d
0BkrL T 1
dd, = Qszd [M M]ii+ d;
+ 2d; (02’” (logp(w))) (0.13)
where [X],, refers to the i'" diagonal element of X.

0.2.3 Logistic Regression VG Gradients

This bound admits the following gradients for an un-
constrained Cholesky factorisation of the covariance.

OB al
KL _ _E*lm%— Z SnXn (1 - <f (I’L’VL + ZUTL)>Z)

n=1

om

In problems of sufficiently low dimensionality, it is use-
ful to have the bound’s Hessian with respect to m
which is

8QBKL
5mi8m]—

N
= ajal (f
n=1

The gradient with respect the Cholesky parameterisa-
tions of the variational covariance we have

oc e\,

-z

ij

(tin + 200) (1 — f (pin + ZU”))>Z

) —tril (87'C + XI'X'C)
(0.14)

where XI'X = [Zg 1 = (zf (i + 204)) } For
banded Cholesky parameterisations of the covariance

the above algebraic form is accurate but elements in-
dexed out of band width should be fixed to zero.

Chevron Chevron parameterisations of covariance
admit the following gradients with respect to ©

OBxk L = dia !
e e\ o,

) —t1il (7'@ + XI'X"©)
(0.15)

and with respect to the diagonal d we have

aBKL _i_ —1 L
8di _di [E ]z‘idl

d; [XIX'C],,
(0.16)

Subspace Letting C = blkdiag (CS"b, cILxL) where
C** is the K x K subspace Cholesky matrix, L =
D — K, and spherical prior variance ¥ = s%I,

_ (S,
= o

|E{x,]|?). The gradient

where o/2 =

where X' = ETX, I,
ICTE x| + ¢ (||xnl|* —

with respect to c is then

6BKL - L cL

Oc 52

CZ r, |C“*TE x,[|*) (0.18)

|XnH2 -



