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Discussion of “A conditional game for comparing approximations”
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Abstract

This brief paper discusses the paper by Eaton
mentioned in the title [1].

1 MOTIVATION

How should we assess the quality of an approximate
inference algorithm? One obvious approach is to see
how it performs on instances that are small enough
to solve exactly. However, this seems to be a poor
way of evaluating approximate inference algorithms,
because that is precisely where we do not need them.
Indeed, an easy way to perform well on such an evalu-
ation could be to design an algorithm as follows: run
an exact algorithm for a pre-specified amount of time,
and if it times out, run a very fast (possibly bad) ap-
proximate algorithm. While it would be natural to
prohibit such a strategy in (say) a competition, some
algorithms may have roughly the same behavior with-
out explicitly following such a two-phase strategy, re-
sulting in a difficult and perhaps subjective decision
of whether the algorithm violates the rule. It would
be much better to evaluate approximate inference al-
gorithms on large instances that are out of the reach
of exact methods; for this, after all, they are designed.

The problem is that it is hard to evaluate on such in-
stances, because, by their fundamental characteristic,
we do not know the ground truth for them. Eaton
proposes a method for addressing this. Rather than
attempting to compare the output of approximate in-
ference algorithms to ground truth, Eaton proposes to
have a pair of approximate inference algorithms com-
pete head-to-head in a game designed for this purpose.
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2 THE GAME

(This description closely follows Section 3 of the pa-
per [1].) In the basic version of the game, we have
a factor graph that specifies a distribution over (dis-
crete) variables x1, . . . , xn, where

P (x) =
1

Z

∏
α

ψα(xα)

and each α is a subset of variables corresponding to a
factor.

There are two players in the game, the marginal player
and the conditional player.1 In the i-th stage of the
game, first, the marginal player gives a marginal dis-
tribution qi(xi) over the i-th variable. The conditional
player then chooses a value x∗i to which this variable
will be fixed for the rest of the game, and play proceeds
to the next variable. The final payoff to the marginal
player is

log

∏n
i=1 qi(x

∗
i )∏

α ψα(x∗α)

(and the conditional player gets the negative of this,
the game being zero-sum). The idea is that if
the qi distributions are exact conditional distribu-
tions (qi(xi) = P (xi|x1:i−1)), then the payoff to the
marginal player is − logZ regardless of the conditional
player’s actions; however, if the conditional player be-
lieves that the marginal player has underestimated the
probability of a particular value, he can take advan-
tage of this by setting the variable to this value, driving
down the marginal player’s payoff. Eaton shows how
an approximate inference algorithm can be converted
in a natural way to a strategy for either player in the
game.

3 DESIGN CHOICES

As the author makes clear, different designs of the
game would also be possible. He suggests one where

1I will use “she” to refer to the marginal player and
“he” to refer to the conditional player. This is intended to
make it easier to determine which player is being discussed,
rather than to make any kind of statement about which
gender is more natural for each role.
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the conditioning player gets to choose not only the
value for the next variable, but also which variable
to fix next. This does not change the payoff for the
marginal player if she plays optimally (i.e., exact in-
ference), but if exact inference is not feasible, it does
seem to bestow a further advantage on the conditional
player. At worst, the conditional player could choose
at random which variable to fix; but if the condi-
tional player has any insight into for which variable the
marginal player’s approximation is particularly weak
(at a given point in the game), he can take advan-
tage of this. In fact, this is in the same vein as letting
the conditional player choose the variable’s value: the
conditional player could just choose the value at ran-
dom,2 but if he has any insight into on which values the
marginal player’s approximation is particularly weak,
he can take advantage of this. Of course, a random-
ized strategy for the conditional player makes sense if
he must move at the same time as the marginal player.

Another aspect of the game that can be changed is
the precise formula for the payoffs to the players. The
author discusses some of the properties of the function
he chose at the end of Subsection 3.2. Future research
may be devoted to arguing more formally that this
(or another) version of the game is “optimal” in some
sense.

4 OTHER APPLICATIONS

Another direction for future research is to apply this
approach to other computational problems. The fact
that the numbers being computed are probabilities
does not seem essential to the game; for example, we
never sample from the distribution (rather, the condi-
tional player fixes the values of the variables). It also
does not seem essential to have a factored represen-
tation. Rather, what seems to be needed is that the
(probability or other) function value can be calculated
efficiently once every variable has has been fixed to a
value, and that the values to be calculated at inter-
mediate stages of the game are some type of aggrega-
tion (product, sum, ...) of the function values that can
result from specifying values for the remaining vari-
ables. #P-complete problems seem a natural class to
which to apply this approach. For example, consider
the problem #SAT of counting the number of satis-
fying assignments of a given Boolean formula. The
“marginal” player could estimate the number of satis-
fying assignments that would remain for each way of

2Note that “at random” here does not mean accord-
ing to the actual distribution, since this is presumed to be
hard; rather, he could just choose it uniformly at random,
or according to his own approximation of the distribution
(see also the discussion of the code-length game [3] in Sub-
section 4.3).

fixing the next Boolean variable to a value, and the
“conditional” player would then choose the value of
this variable. (Perhaps the game can be specified in-
directly based on a reduction from the #SAT problem
to the inference problem.)

5 CONCLUSION

I believe that the specific methodology in the discussed
paper will be exciting to those in the approximate in-
ference community, because it gives a way to address
a concrete problem that researchers in that commu-
nity face. However, I also think that the approach is
exciting from a broader perspective, as an initial step
towards a more general theory of how to evaluate al-
gorithms that attempt to give approximate solutions
to hard problems, by letting them compete against
each other. This could be an attractive alternative
in settings where worst-case approximation ratios are
not satisfactory or hard to obtain. The notion of algo-
rithms that compete against each other is one that has
been receiving attention elsewhere recently [2]. Future
research may pursue a general theory that allows us to
rigorously make design choices such as those discussed
above.

ACKNOWLEDGMENTS

I thank Frederik Eaton for useful feedback. This dis-
cussion paper was written while visiting Amsterdam’s
Centrum Wiskunde & Informatica (CWI).

References

[1] Frederik Eaton. A conditional game for comparing
approximations. In Proceedings of the Fourteenth
International Conference on Artificial Intelligence
and Statistics (AISTATS-11), Ft. Lauderdale, FL,
USA, 2011.

[2] Nicole Immorlica, Adam Tauman Kalai, Brendan
Lucier, Ankur Moitra, Andrew Postlewaite, and
Moshe Tennenholtz. Dueling algorithms. In Pro-
ceedings of the 43rd ACM Symposium on Theory of
Computing (STOC-11), San Jose, CA, USA, 2011.

[3] Flemming Topsøe. Information theoretical op-
timization techniques. Kybernetika, 15(1):8–27,
1979.


