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Abstract

We present a novel approach for density esti-
mation using Bayesian networks when faced
with scarce and partially observed data. Our
approach relies on Efron’s bootstrap frame-
work, and replaces the standard model selec-
tion score by a bootstrap aggregation objec-
tive aimed at sifting out bad decisions dur-
ing the learning procedure. Unlike previ-
ous bootstrap or MCMC based approaches
that are only aimed at recovering specific
structural features, we learn a concrete den-
sity model that can be used for probabilis-
tic generalization. To make use of our ob-
jective when some of the data is missing,
we propose a bagged structural EM proce-
dure that does not incur the heavy com-
putational cost typically associated with a
bootstrap-based approach. We compare our
bagged objective to the Bayesian score and
the Bayesian information criterion (BIC), as
well as other bootstrap-based model selection
objectives, and demonstrate its effectiveness
in improving generalization performance for
varied real-life datasets.

1 Introduction

Multivariate density estimation is an important chal-
lenge in a multitude of domains ranging from bioinfor-
matics to fault diagnosis, where scarcity of the data
goes hand in hand with the complexity of the domain.
A general framework for coping with this task, that has
gained wide popularity in recent decades, is the frame-
work of Bayesian networks (BNs) (Pearl, 1988). These
models combine a qualitative graph structure that en-
codes independencies and quantitative parameters to
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compactly parameterize a joint distribution, allowing
for relatively efficient probabilistic computations and
estimation. Yet, in complex real-life scenarios with
few and partial instances, inferring such models, and
in particular a useful (for density estimation) network
structure, is still a formidable challenge.

A common approach for learning the structure of BNs
is to search for a beneficial structure using a model se-
lection score that aims to approximate the model’s pre-
dictive ability by balancing the likelihood of the train-
ing data given the model and the model’s complexity
(Lam and Bacchus, 1994; Schwarz, 1978; Heckerman
et al., 1995)). Whether via a standard hill-climbing
approach, a search in the space of network equivalence
classes (Chickering, 2002), or an ordering based algo-
rithm (Teyssier and Koller, 2005), when training data
is scarce and partially observed the quality of a learned
Bayesian network can be quite poor (see Section 6).

When the goal is discovery of structural features, the
Bootstrap (Efron and Tibshirani, 1993), a powerful
approach for estimating various properties of a given
statistic from limited data, has gained popularity in
the context of BN model selection (Friedman et al.,
1999, 2000; Pe’er et al., 2001; Steck and Jaakkola,
2003; Deforche et al., 2006). These methods evalu-
ate the confidence of a given feature in the network
(e.g. a parent-child relationship) by learning B mod-
els from B independently sampled bootstrap datasets.
The confidence of a particular feature is then estimated
via model averaging as the fraction of its occurrence
in the B models. Friedman and Koller (2003) offer
an alternative approach for this task that relies on an
order-based MCMC sampling procedure.

While the benefit of the above methods for discovering
known and novel features from data has been demon-
strated (e.g., (Pe’er et al., 2001; Friedman et al., 2000;
Deforche et al., 2006; Friedman and Koller, 2003)),
none of them give rise to a coherent density model. In
fact, Friedman et al. (1999), report that using such
measures to define a prior over structures did not lead
to improved generalization. Thus, with the goal of
learning a coherent density model, these approaches
offer no solution. Further difficulties arise in the par-
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tial data scenario: bootstrap-based methods are com-
putationally demanding and the above works do not
even explore the merit of these procedures in the face
of missing data; using the MCMC approach in this
context requires further developments (see discussion
in Friedman and Koller (2003)).

Our goal is to carry out robust density estimation in
the face of scarce and partial data. That is, we aim to
infer a single BN model that generalizes well.1 To do
so, we rely on bootstrap datasets to compute a robust
model selection criteria. Intuitively, instead of averag-
ing over B inferior models, we want to improve local
decisions before it is “too late”. That is, we want to
increase the robustness of structure modifications dur-
ing learning. We make this idea concrete by applying
bootstrap aggregation (bagging) (Breiman, 1996) to
the Bayesian Information Criterion (BIC) (Schwarz,
1978). Unlike bootstrap-based bias correction, the ex-
tensively used (for classification) bagging approach is
aimed at reducing the variance of the estimator, and is
particularly apt for the scarce data scenario, where the
variance of the model selection score is high. Bagging
in our case amount to an objective that averages over
multiple model selection “experts”, each arising from
one of the B bootstrap datasets. Importantly, this
objective allows us to learn a concrete density model
that, as our evaluation demonstrates, generalizes well.

In the face of missing data, when the maximum likeli-
hood parameters cannot be computed in closed form,
computation of the score is demanding, and struc-
ture learning can be prohibitive. A common solu-
tion is to use the structural expectation maximization
(SEM) algorithm (Friedman, 1997) that iterates be-
tween costly computation of expected sufficient statis-
tics and maximization given these statistics. To avoid
incurring the prohibitive cost of a naive incorporation
of our bagged objective within an SEM procedure, we
present the Bagged Structural Expectation Maximiza-
tion (BSEM) algorithm: instead of performing com-
putations for each of the bootstrap datasets indepen-
dently, we compute expected statistics for all datasets
using the maximum likelihood parameters with respect
to the original data. This leads to significant savings
in running time: the costly computation of the distri-
bution of missing values conditioned on the observed
variables and the current model is carried out only
once for each instance at each BSEM iteration. As
our method is equivalent to performing (informed) ap-
proximate inference for each bootstrap dataset, unlike
standard SEM, our BSEM algorithm is guaranteed to

1One might also consider the (orthogonal to ours) ap-
proach of model averaging. However, such methods are
typically quite time consuming, both at learning and pre-
diction time.

improve the learning objective at each iteration only
asymptotically. Yet, in practice, the learning objective
always improves for a wide range of scarce datasets.

We demonstrate the effectiveness of our bagging struc-
ture learning approach for varied discrete and con-
tinuous real-life datasets. In all cases, the single co-
herent model learned by our bagging approach offers
consistent and often significant gains in generaliza-
tion performance, when compared to learning with the
Bayesian score (Heckerman et al., 1995; Geiger and
Heckerman, 1994) and the BIC score (Schwarz, 1978),
as well as alternative bootstrap-based approaches.

2 Background

A Bayesian Network (BN) M = 〈G,Θ〉 (Pearl, 1988)
encodes a joint density over a set of random variables
X = {X1, . . . , XN}. G is a directed acyclic graph
whose vertices correspond to X and formally encodes
a set of independence statements: Xi is independent
of its non-descendants given its parents Pai in G. Θ
are the of conditional probability distributions (CPDs)
P (Xi | Pai). It can be easily shown that a Bayesian
network defines a unique joint probability distribution
over X given by P (X1, . . . , XN ) =

∏n
i=1 P (Xi | Pai).

The Markov Blanket of Xi (its parents,children and
spouses) is the minimal set of variables that render Xi

independent of all other variables.

Given G and training set D = {x[1], . . . ,x[M ]} of in-
stances of X ⊂ X , we look for the maximum like-
lihood parameters θ̂ that maximize the log-likelihood
function `(D : θ,G) =

∑
m logP (x[m] | G, θ). With

fully observed data, the log-likelihood also decomposes
according to G: `(D : θ,G) =

∑
i

∑
m logP (xi[m] |

pai[m],ΘXi,Pai ,G). In this case finding θ̂ is typically
straightforward. Bayesian parameter estimation, us-
ing appropriate priors, amounts to augmenting the em-
pirical sufficient statistics with pseudo samples (DeG-
root, 1989). Thus, from now on we view the parameter
prior as modifying the empirical distribution and omit
explicit references to it.

To learn the structure G, we typically rely on a greedy
search that examines local structure changes (add,
delete or reverse an edge). This search is guided by a
scoring function (e.g. MDL (Lam and Bacchus, 1994),
BIC (Schwarz, 1978)) that penalizes the likelihood of
the data to limit the model complexity

score(G : D) = `(D : θ̂,G)− PenM (G), (1)

where θ̂ are the maximum-likelihood parameters that
correspond to the graph G and PenM (G) is a penalty
function that depends on the structure of the graph
and number of instances M in D but not on the data
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itself. For the BIC score PenM (G) = 1
2 log(M)|ΘG |

where |ΘG | is the number of free parameters associ-
ated with the graph structure G. The Bayesian score
(Heckerman et al., 1995; Geiger and Heckerman, 1994)

logP (D | G) + logP (G) =∑
m logP (x[m] | x[1], . . . , x[m− 1],G) + logP (G)

is appealing even when P (G) is uniform since the pre-
quential predictive form (each term in the sum) di-
rectly approximates the predictive ability of the model.

3 Bootstrap-based Model Selection

The bootstrap (Efron and Tibshirani, 1993) is a gen-
eral framework for estimating properties of a statistic
T (D) given a dataset D with M samples, that are as-
sumed to be generated from an unknown distribution
F . Most commonly, the framework is used to esti-
mate the finite sample bias of the statistic BiasT =
IED∼F [T (D)] − T (F), where the expectation is with
respect to datasets of size M sampled from F , and
T (F) denotes the true statistic that we are trying to
estimate (e.g., the log-likelihood function). Intuitively,
if we had access to a large number B of independent
datasets Db ∼ F with M samples, we could approx-
imate the bias of T () by using these datasets as a
surrogate for F . However, since we only have access
to the single training dataset, in the non-parametric
bootstrap we create a proxy to the desired scenario by
sampling B random datasets from D (each dataset is
independently constructed by randomly choosing M
instances from D, with repetitions). The bootstrap
simulated estimate of the bias is then

B̂iasT =
1

B

∑B
b=1 T (Db)− T (D),

where T (D) is the plug-in statistic with D replacing
F . Using this estimate, we can get an improved (bias-
wise) statistic by correcting the original estimate

TBoot(D) = T (D)− B̂iasT = 2T (D)− 1

B

∑
b T (Db).

(2)
Quite remarkably, in a wide range of settings, TBoot(D)
reduces the order of bias of T (D) as a function of N .
However, this can come at the cost of increasing the
variance of the estimate (see Efron and Tibshirani
(1993); Shao and D. Tu (1995) for more details).

The bootstrap framework can also provide a confi-
dence measure on T () by evaluating its distribution
over the different bootstrap datasets. This idea under-
lies previous bootstrap-based approaches for model se-
lection (Friedman et al., 1999, 2000; Pe’er et al., 2001)
that estimate the confidence of a feature f(M(D))
of the model given the data (e.g. the existence of
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Figure 1: Bias and standard deviation of the log-likelihood
per instance function for the synthetic Alarm network
(Beinlich et al., 1989). Shown is an estimate based on
500 independent samples (for each training size) and the
true structure. Clearly, the variance of the log-likelihood
function is significantly higher than its bias, particularly
when training data is scarce.

an edge) via C [f(M(D))] ≈ 1
B

∑
b1f (M(Db)) where

1f (M(Db)) is the indicator function for the feature
andM(Db) is the network learned fromDb. Steck and
Jaakkola (2003) show that applying standard scores to
Db leads to an additional bias that results from the
bootstrap procedure and suggest an analytical correc-
tion term (1/2 the number of parameters). We em-
phasize that both variants result in a bag of confidence
measures and not a concrete BN model. Thus, for the
purpose of density estimation which is our goal in this
work, an alternative approach must be considered.

4 Bagging the Likelihood

As noted, previous bootstrap-based approaches for
model selection of BNs do not give rise to a coher-
ent density model that can be used for generalization.
At the same time, despite its asymptotic appeal, the
prequential Bayesian score of Eq. (2) often results in
models that generalize poorly in the face of scarce data
(see Section 6). To overcome these difficulties, in this
work we aim to make use of the finite-sample power of
the bootstrap yet learn a concrete density model that
is useful in practice. To do so, instead of computing
confidence measures via an aggregation of B inferior
models, we need to somehow improve the local decision
(e.g. add an edge) at each step of the learning algo-
rithm. One possibility is to use the bootstrap datasets
to estimate the bias of the model selection score of the
form Eq. (1), and then apply Eq. (2) to get a better
measure for the benefit of structural modifications.

While the above approach appears reasonable, it can
be problematic when training data is scarce. In this
scenario, the most acute problem is that the variance
of the log-likelihood can be quite high, as demon-
strated in Figure 1. Thus, because of the bias-variance
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trade off, using Eq. (2) to “improve” the score by re-
ducing bias can make things worse. A reasonable al-
ternative motivated by idea of expert aggregation is
to average over multiple model selection criteria, each
based on a different bootstrap dataset Db, thereby re-
ducing the variance of the score and ultimately that of
the structural decision based on this score.

It is precisely such intuition that motivated the exten-
sively used bootstrap aggregation (bagging) approach
of Breiman (1996) in the context of classification. In
this approach, the original statistic is replaced with
TBag(D) = 1

B

∑
b T (Db). For model selection scores

of the form of Eq. (1) this amounts to replacing the
log-likelihood term with its bagged estimate

TBag(D) ≡ `Bag(D : {θ̂b},G)− PenM (G)

= (1/B)
∑
b`(Db : θ̂b,G)− PenM (G)

where θ̂b are the maximum likelihood parameters with
respect to the bootstrap dataset Db. It is important
to note that TBag is quite different from the standard
bootstrap estimate TBoot of Eq. (2). In fact, although
not noted in the original paper of Breiman (1996),
TBag happens to equal (via simple algebra) to adding
the bootstrap bias estimate to the original estimate
of T (D). While this may sound alarming, given the
bias-variance trade-off, it should not come as a great
surprise when we explicitly aim to reduce variance.

Our bagged objective is the sum of independent terms
and thus finding the maximum likelihood parame-
ters {θ̂b} can be carried out by maximizing the like-

lihood with respect to each Db independently θ̂b =
arg maxθ `(Db : θ). This can be done efficiently when
the data is complete and, as we demonstrate in Sec-
tion 6, leads to consistent improvement in generaliza-
tion performance. In the next section we present a
bagged structural expectation maximization approach
that allows us to use our bagged score in the compu-
tationally intensive scenario of partial observations.

5 Bagged Structural EM (BSEM)

In the case of partial observations, the maximum likeli-
hood parameters can no longer be found in closed form
and we typically use the Structural Expectation Max-
imization (SEM) algorithm (Friedman, 1997; Demp-
ster et al., 1977). Building on the ability to carry out
estimation when the data is complete, the SEM algo-
rithm iterates between “guessing” the missing values
using the current parameters (E-Step) and then us-
ing the “completed” data to maximize the parameters
and structure (M-Step). Concretely, given the max-

imum likelihood parameters θ̂t and model Gt of the
previous iteration t, we find the graph and parameters

that (locally) maximize the expected score

Q(G, θ | Gt, θ̂t) ≡∑
mIEP (h[m]|θ̂t)[logP (x[m], h[m] | θ,G)]− PenM (G)

where P (h[m]|θ̂t) is a shorthand for

P (h[m]|x[m], θ̂t,Gt) so that the expectation of
the hidden variables h[m] for each instance is com-
puted with respect to the model of the previous
iteration. Appealingly, the penalized log-likelihood of
the observed data can only increase at each iteration
of the algorithm, and convergence to a local maximum
is guaranteed. Note, however, that this only holds
when exact inference is used. When approximate
inference is needed, SEM is no longer guaranteed to
improve at each iteration or converge at all.

5.1 The BSEM Algorithm

While typically effective, the SEM procedure can be
costly as the computation of P (h[m] | x[m], θ̂t,G) is
in general NP-hard and often quite demanding. Thus,
applying SEM independently to each of the B boot-
strap datasets can be prohibitive. Instead, we now
present a bagged SEM procedure that offers dramatic
computational savings over independent optimization.

The idea is straightforward and builds on the fact that
computation of statistics ofDb amounts to collection of
these statistics from instances of D, weighed according
to their frequency in Db. This suggests that in the E-
Step, instead of computing P (h[m] | x[m], θ̂b,t,G) for

each b, we compute P (h[m] | x[m], θ̂t,G) once for each
instance, and then efficiently collect the appropriate
statistics for each dataset Db. Concretely, we define
our learning objective to be the bagged expected score:

QBag(G, {θb} | Gt, θ̂t) ≡ (3)
1
B

∑
b

∑
m∈Db

IEP (h[m]|θ̂t)
[
logP (x[m], h[m]|θb,G)

]
−Pen(G).

Note that this can be viewed as standard SEM where
(informed) approximate inference is applied to each
dataset Db. Thus, given G and the posterior probabil-
ity of h[m] for each instance, finding each of the θ̂b,t+1

that maximize this objective is straightforward as it
amounts to maximization with respect to a complete
dataset. As an example, for the multinomial sufficient
statistics counts M(xi,pai), using wb[m] to denote the
number of times instance m appears in Db, we can
readily compute the expected sufficient statistics

IEP (H|D,θ̂t)[Mb(xi,pai)] =∑
m∈Db

wb[m]P (xi[m] = xi,pai[m] = pai | x[m], θ̂t,G).

From these statistics, θ̂b,t+1 can then be computed in
closed form. Estimation for more general parameters
of the exponential family is similarly straightforward.
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Algorithm 1: Bagged Structural EM.
Input: Training set D. Output: G, parameters Θ.

G0 ← empty graph, θ̂0 ← random // initialization

foreach t = 0, 1, . . . until convergence do
// common E-Step computation

compute P (h[m] | x[m], θ̂t,Gt) for each m
// greedy search upto local maximum

Gt+1 = arg maxQBag(G, {θb},Gt, θ̂t)
// e.g., full parametric EM

θ̂t+1 = arg maxQ(Gt+1, θ,Gt, θ̂t)
// using last completion of the data

compute {θ̂b,t+1}

return Gt+1, θ̂t+1

We can now proceed to learn the structure of a BN
model by plugging our bagged objective of Eq. (3) into
the structural EM algorithm (Friedman, 1997) as out-
lined in Algorithm 1: at each iteration, after comput-
ing posterior probabilities once for each instance us-
ing the standard maximum-likelihood parameters, we
search for the structure that (locally) maximizes the
bagged expected score (using, for example, a standard
greedy approach that relies on local structure modifi-
cations). We can then optimize parameters with re-
spect to this structure using standard parametric EM.
At convergence, we return the maximum likelihood pa-
rameters corresponding to this structure with respect
to the original data D.2 Importantly, the computa-
tion of P (h[m] | x[m], θ̂t,Gt) dominates the collection
of sufficient statistics and indeed the entire algorithm.
Thus, in practice the running time of our algorithm
grows slowly in the number of bootstrap datasets B.

5.2 Convergence of BSEM

The obvious question is whether our bagged SEM pro-
cedure is guaranteed to improve our bagged likelihood
objective of Eq. (3) at each iteration as is the case
in the standard SEM algorithm. Since we are in ef-
fect performing approximate inference with respect to
each bootstrap dataset, this is not always true and a
theoretical guarantee only exists asymptotically:

Theorem 5.1 : For CPD parameters that are a
smooth continuous function of the sufficient statistics
of the data, in the limit M →∞

`Bag(D : {θ̂b,t+1},Gt+1)− `Bag(D : {θ̂b,t},Gt) ≥̇ 0

where ≥̇ denotes greater than or equal in probability.

2We can also return a bias corrected or bagged esti-
mate instead. This, however, did not result in noticeable
differences in our experiments.

Proof: (Outline) Using IEP (h)[logP (x)] = logP (x)
(since P (x) does not depend on P (h)), and straight-
forward algebra, the likelihood difference in then left-
hand side of the theorem equals to

∑
b

∑
m∈Db

IEP (h[m]|θ̂t)

[
log

P (x[m], h[m]|θ̂b,t+1,Gt+1)

P (x[m], h[m]|θ̂b,t,Gt)

]
+

∑
b

∑
m

ID(P (h[m]|θ̂t)||P (h[m]|x[m], θ̂b,t+1,Gt+1))

−
∑
b

∑
m

ID(P (h[m]|θ̂t)||P (h[m]|x[m], θ̂b,t,Gt)),

where ID(||) is the Kullback-Leibler divergence, and us-

ing the shorthand P (h[m]|θ̂t) ≡ P (h[m]|x[m], θ̂t,Gt).
Our assumption on the parameters implies, using stan-
dard asymptotic results (Lehmann, 1999), that as Mb

grows θ̂b,t → θ̂t. Thus, since P (h[m]|x[m], θ,G) is a
smooth function of θ, the second ID(||) approaches zero,
and the first ID(||) can only be greater. The result fol-
lows from the fact that the first line is non-negative by
the construction of the maximization step.

Admittedly, the asymptotic result seems of little use
when our goal is to improve model selection in the
face of scarce data. However, the above proof provides
insight as to when we may expect our procedure to
improve the bagged objective at each iteration: when
the distribution of the hidden values H given θ̂b,t is
closer to the distribution of H given θ̂t than to the
distribution of H given θ̂b,t+1. Intuitively, this is to
be expected since θ̂b,t are computed based on samples
from the instances used to estimate θ̂t. In practice,
since many independent ID(||) differences are summed
over independent instances and datasets, the chances
that the overall difference will be positive increase.

As noted, our approach can be viewed as performing
approximate inference at each EM iteration and the
above limitation is to be expected. That said, exceed-
ing our expectations, for all repetitions in all domains
considered in our experimental evaluation, the BSEM
algorithm always improved the bagged objective, until
convergence. Thus, our results suggests that the fact
that our method forces approximate inference does not
have significant practical ramifications.

6 Experimental Evaluation

To evaluate the merit of our method, we learn the
structure of a BN using a standard greedy approach
with local edge modifications. We compare our
BSEM approach that uses the bagged objective of
Eq. (3) to the standard BIC score (Schwarz, 1978).
We also compare to the Bayesian approach using
the BDeu score (Heckerman et al., 1995) with an
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Figure 2: Comparison
of our bagged structural
EM (BSEM) method to
structure learning with
the Bayesian score, the
standard Bootstrap cor-
rection of the BIC score
and the C-Bootstrap bias
corrected variant (Steck
and Jaakkola, 2003). Shown
is the mean (bar) and full
range (error bars) of the test
log-loss/instance relative to
the BIC baseline (dotted
line at 0) for the seven real
life datasets we consider.

equivalent sample size of 1 (an experiment for other
values is included below) for the discrete domains3,
and the BGe score (Geiger and Heckerman, 1994)
with an Inverse-Wishart standardized prior of equal
strength for the continuous datasets. We also compare
to a standard bias correction Bootstrap estimate of
the BIC score by applying Eq. (2) to the likelihood
term. Finally, we also compare a C-Bootstrap vari-
ant with the additional correction suggested by Steck
and Jaakkola (2003). We emphasize that we integrate
both bootstrap competitors into the learning process
and thus produce a coherent model which can be com-
pared to ours. We also note that all the methods con-
sidered differ only in the way that the structure of the
network is evaluated, and parameter estimation (in-
cluding the prior) is identical in all cases.

We start by demonstrating the limited ability of all
scores to recover structure when faced with scarce
training data. We attempted to recover the structure
of the 37 variable Alarm network (Beinlich et al.,
1989) from synthetically generated instances where
25% of the values were randomly hidden. With 250
instances (a higher instance/variable ratio than in the
real-life datasets we consider below), all methods re-
covered on average only ∼ 30% of the Markov Blan-
ket (MB) neighborhood. Although our objective was
slightly (yet consistently) superior to the other scores,
differences were small (1 − 2%). With 100 instances
all scores perform poorly and less than 10% of the MB

3We also tried a corrected BDeu that corrects the bias
of deterministic CPDs (common when the data is sparse).
Results however were on average and almost always worse

was recovered on average. Thus exemplifies that in
non-trivial domains we cannot aim at a density model
and at the same time expect significant true struc-
tural recovery. We now turn to our true goal: model
selection for the purpose of probabilistic density es-
timation, which we evaluate using log-probability (or
log-loss) performance on unseen test instances. We
consider the following real-life datasets:

• Temperature: measurements of 54 sensors dis-
cretized into 4 bins (Deshpande et al., 2004). 100
training instances were randomly chosen, and 25%
of the values were randomly hidden.

• Audiology: 69 variables relating to audiology dis-
functions (Bareiss and Porter, 1987). 226 instances
with missing values were randomly split into equal
train and test sets.

• Rosetta: partially missing gene expression of 6000
Saccharomyces cerevisiae genes in 300 experiments
(Hughes et al., 2000). We discretized the data and
concentrated on 35 stationary phase genes as in
[anonymous citation]. 100 train and 200 test in-
stances were chosen randomly.

• Stock: up/down changes of 20 US technology
stocks in 1516 trading days (Boyen et al., 1999).
100 samples were chosen randomly for training and
25% of the the value were randomly hidden.

• Gasch: expression of the baker’s yeast genes in 173
experiments (Gasch et al., 2000). As in [anony-
mous citation], we concentrated on 44 amino acid
(AA) genes with all values observed and 89 general
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Figure 3: Comparison of our BSEM method to the the standard Bootstrap correction and the C-Bootstrap bias
corrected variant for the Temperature dataset (the Bayesian approach which was consistently and significantly worse is
not included for readability). Shown is the average and full range (across random repetitions) test log-probability (log-
loss) per instance relative to the BIC baseline (dotted line at 0) as a function of (left) the number of training instances
and (right) the number of bootstrap datasets used.

metabolic process (MET) genes. Results reported
are for linear Gaussian models.

• Breast (prognosis): 198 records with 34 continuous
standardized attributes (Street et al., 1996) were
randomly split into equal train/test sets. 25% of
the values were randomly hidden.

Results reported are over 5 random train/test split
repetitions for the larger Met domain and 10 rep-
etitions for all other domains. Figure 2 compares
the benefit in test log-loss per instance of test data
of the different model selection objectives relative to
the standard BIC baseline (thin dotted black line
at 0). Shown is the average result (bar) as well as
the full range across the random splits (vertical er-
ror bars). While Bootstrap (green outline bar) and
C-Bootstrap (blue dotted bar) work reasonably well
on the continuous datasets AA, Met and Breast, these
bootstrap variants are inferior to the BIC baseline on
the discrete domains and often significantly so. This is
probably due to the fact that in the discrete scenario,
the sufficient statistics can undergo more drastic tran-
sitions as the data becomes scarcer. The Bayesian
approach (grid fill red) offers an advantage only for
the Audiology dataset, and is competitive only in one
other case (AA). For three datasets, the Bayesian ap-
proach results in significant degradation with respect
to the BIC baseline (result of Bayesian for the Breast
dataset is missing since using the Bayesian score for
the continuous dataset with missing values is too pro-
hibitive). In contrast, our BSEM approach (solid
black bar) consistently dominates the baseline, and is
better than all other methods in 5 of the 7 domains.
In fact, even its worst case performance is quite ap-
pealing: across all datasets and random repetitions it

is superior to the baseline in 63/65 experiments and is
only marginally inferior for 2/65 cases (one repetition
for the Temperature and Audio datasets). Importantly,
the improvement of our method is often significant:
an advantage of, for example, half a bit per instance
(y-axis) over as little as 50 test instances amounts to
the test data being 225 times more likely. Finally, note
that by bagging the likelihood, as expected, we often
achieve a significant decrease in variance of the qual-
ity of the model learned. This is particularly evident
when comparing our method to the Bayesian score,
which exhibits significant variability for all datasets.

To get a better understanding of the behavior of our
algorithm, we consider performance in more detail for
the Temperature dataset. Figure 3(a) compares the
average (marker) and full range (error bars) test log-
loss per instance of the different methods as a function
of the number of instances M (the Bayesian method
which was significantly worse is not shown for read-
ability). At 25 instances, the signal in the data is too
weak to overcome the penalty term, and for all ran-
dom repetitions all methods resulted in the empty net-
work. As M increases, our BSEM approach quickly
takes advantage of beneficial signals and improves over
the baseline as well as the other competitors. As ex-
pected, when the M grows further, all methods are
essentially equivalent. What is striking is the degrada-
tion in performance of the competitors exactly in the
“golden range” where our BSEM method offers the
greatest advantage. To understand this phenomenon,
we recall that BSEM attempts to average over scores
so as to reduce the variance, an apt approach when the
signal in the data is still quite noisy. The Bootstrap
and C-Bootstrap scores, on the other hand, attempt
to correct the bias of the score thereby increasing its
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Figure 4: Test log-loss instance perfor-
mance (y-axis) as a function of the ef-
fective sample size of the Dirichlet Prior
(x-axis) for the Rosetta domain. Shown
is the mean (circle) and full range (er-
ror bars) relative to the BIC (solid gray
line). We compare our bagged structural
EM (BSEM) method to the standard
Bootstrap correction of the BIC score
and the C-Bootstrap bias corrected
variant (Steck and Jaakkola, 2003) (the
performance of the Bayesian score was
significantly worse than all others and is
not shown for readability).

variance due to the bias-variance trade-off, which ul-
timately leads to a degradation of performance. It is
also interesting to note that C-Bootstrap is actually
inferior to the standard bootstrap bias correction as
it relies on the assumption that “BIC is obviously in-
tended to be applied to the given data” (Steck and
Jaakkola, 2003). We argue that in the scarce data sce-
nario, this assumption is problematic since the signals
in the given data may be too noisy.

The effect of the number of bootstrap datasets B
on our performance is shown in Figure 3(b). As B
increases and additional “experts” are available, we
benefits from the “wisdom of crowds” phenomenon,
mostly in term of worse case performance. With
B = 100, our method improves over the baseline in
9 out of the 10 random repetitions and is essentially
the same in the last. In contrast, the other bootstrap-
based methods, which do not attempt to reduce vari-
ance, continue to exhibit high variability and a perfor-
mance that is significantly inferior to the baseline.

Figure 4 explores the behavior of the different model
selection scores as a function of the equivalent sample
size (ESS) of the prior for the Rosetta domain (re-
sults were similar for the other discrete domains with
the peak performance at ESS=1 or ESS=2). As can
be clearly seen, the advantage of our BSEM approach
over the BIC baseline (solid black) as well as the other
competitors is both evident and consistent for ESS val-
ues that span two orders of magnitudes.

Finally, we consider the running time of our algorithm.
Even with a crude preliminary implementation that
caches local scores but does not fully share repeated
post-inference computations between different boot-
strap datasets, our BSEM runs took only 7-12 times

longer than standard structure learning with B = 100.
This is significantly better than a running time factor
of B we typically expect when bootstrap aggregation
is used to wrap a learning procedure.

7 Discussion and Future Work

In this work we introduced a novel approach for ro-
bustly learning a Bayesian network multivariate den-
sity model from scarce data. Our approach relies on a
bootstrap aggregation model selection objective that
sifts out inferior structural choices during the learning
procedure. We presented BSEM, an adaptation of the
Structural EM algorithm that allows for efficient ap-
plication of our objective when observations are both
scarce and partial. We demonstrated the effective-
ness of our approach for probabilistic generalization
when compared to learning with the BIC and Bayesian
model selection criteria as well as other bootstrap-
based variants on a range of real-life datasets.

Our contribution is three-fold. First, in contrast to
previous bootstrap-based model selection approaches,
our method leads to a concrete multivariate density
model that can be used for generalization (Friedman
et al., 1999; Steck and Jaakkola, 2003). Second, when
the data is particularly scarce, our objective provides
a robust model selection criteria that improves perfor-
mance over BIC (Schwarz, 1978) and the Bayesian
score (Heckerman et al., 1995), as well as the other
bootstrap-based alternative we considered. Third, we
propose a practical EM adaptation that facilitates the
use of our approach in the challenging scenario of
learning with missing value, where alternative MCMC
and model averaging methods are not practical.
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While we focused on learning the structure of BNs
(a challenge quite sensitive to the scarcity of data),
the idea of bagging a model selection objective can be
readily adapted to other settings, and we intend to ex-
plore the effectiveness of such an approach in improv-
ing other hypothesis exploration algorithms. More
generally, it would be theoretically interesting and
practically useful to develop soft measures that au-
tomatically balance the two extremes of either sub-
tracting the expected bias for the maximum likelihood
estimate or, as is done in bagging, simply adding it.
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