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1 UPDATE FORMULAS FOR f
AND g

In this section, the recursive formulas for f and g
(Equation (18) in the main paper) are derived. The
greedy selection criterion at iteration t is:

q = arg max
i

‖ 1√
Eii

E:i‖2, (1)

where E is the residual matrix at iteration t, E:i de-
notes the i-th column of E, and Eii denotes the i-th
diagonal element of E.

As the Nyström approximation is calculated in a re-
cursive manner based on the residual matrix at the
previous iteration, E, E:i, and Eii for a candidate col-
umn i can be recursively calculated as follows:

E(t) = (E − 1

α
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(2)

Let f i = ‖E:i‖2 and gi = Eii be the numerator and
denominator of the criterion function for data point i

respectively. Based on (2), f
(t)
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Similarly, g
(t)
i can be calculated as:
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(4)

Let f = [f i]i=1..nand g = [gi]i=1..n, f (t) and g(t) can
be expressed as:

f (t) =
(
f − 2 (ω ◦ Eω) + ‖ω‖2 (ω ◦ ω)

)(t−1)
,

g(t) = (g − (ω ◦ ω))
(t−1)

,
(5)

where ◦ represents the Hadamard product operator,
and ‖.‖ is the `2 norm.

Based on the recursive formula of E, the term Eω at
iteration (t− 1) can be expressed as:
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Substitute with Eω in Equation (5), the update for-
mulas for f and g are given as:
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(7)

In the case of partition-based greedy Nyström algo-
rithm, the update formulas for f and g (Equation (19)
in the main paper) can be derived as follows.

Let E(t) and H(t) be the residual matrices of K and G
at iteration t respectively. The efficient sampling cri-
terion based on centroids can be expressed as follows:

q = arg max
i

‖ 1√
Eii

H:i‖2, (8)

where H:i denotes the i-th column of H, and Eii

denotes the i-th diagonal element of E. The term
Hji/

√
Eii is the scalar projection of the j-th centroid

onto X:i. Let δ(t) be column of E selected at itera-
tion t, α(t) be the corresponding diagonal element of
E, and γ(t) be the corresponding column of H. Define
ω(t) = δ(t)/

√
α(t), and υ(t) = γ(t)/

√
α(t). The rank-1

approximation of H(t) can be calculated as:

H̃
(t)
{q} =

1

α(t)
γ(t)δT (t) = υ(t)ωT (t), (9)

and the new residual matrix H can be calculated as:

H(t+1) = H(t) − υ(t)ωT (t) (10)
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Based on this recursive formula, the greedy sampling
criterion (Equation 8) can be calculated in a recursive
manner as follows. Similar to Equation (2), H, H:i,
and Eii can be recursively calculated as:

H(t) = (H − υωT )(t−1),
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Let f i = ‖H:i‖2 and gi = Eii be the numerator and
denominator of the criterion function for data point i

respectively. f
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Let f = [f i]i=1..n and g = [gi]i=1..n, f (t) and g(t) can
be expressed as:
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where ◦ represents the Hadamard product operator,
and ‖.‖ is the `2 norm.

The term HTυ at iteration (t − 1) can be calculated
recursively as:
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Substitute with HTυ in Equation (13), the update
formulas for f and g are given as:
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2 COMPARISON WITH
ENSEMBLE NYSTRÖM

In this section, the proposed greedy Nyström
methods (GreedyNyström and PartGreedyNys)
are compared to the ensemble Nytröm algorithm
(EnsembleNyström) proposed by Kumar et al.
(2009). The ensemble Nyström method constructs a

low-rank approximation of a kernel matrix using an
ensemble of p Nyström approximations. As suggested
by Kumar et al. (2009), the ridge regression algorithm
can be used to learn the mixture weights of different
approximations using a validation set of columns sam-
pled from the original kernel matrix. In this experi-
ment, an ensemble of p = 10 Nyström approximations
is used, and l columns are sampled to calculate each
low-rank approximation. A validation set of s = 20
columns is used for estimating the mixture weights of
the ensemble, and a hold-out set of s′ = 20 columns is
used to estimate the ridge parameter.

Tables 1 and 2 show the relative accuracies and run
time of different methods. Two values are used for
l: l = 3%n and l = 5%n, with k = 1%n. It
can be observed that both PartGreedyNys and
GreedyNyström outperforms the ensemble method
(EnsembleNyström) in term of approximation ac-
curacy for most data sets.
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Table 1: The relative accuracy of rank-k approximations K̃S,k (k = 1%n) for the proposed greedy Nyström
methods compared to the ensemble method and Nyström method with uniform sampling. The best method for
each data set is highlighted in bold, the second best method is underlined.

Datasets UniNoRep EnsembleNyström GreedyNyström PartGreedyNys-c=100

l/n= 3%

Reuters-21578 0.5306 0.5965 0.9074 0.8897

Reviews 0.7329 0.8383 0.9096 0.9135

LA1 0.8194 0.9320 0.9302 0.9294

MNIST-4K 0.5749 0.7199 0.8476 0.8174

PIE-20 0.5382 0.6918 0.9102 0.8848

Yale-B-38 0.5676 0.7119 0.8820 0.8655

l/n= 5%

Reuters-21578 0.6076 0.6593 0.9603 0.9548

Reviews 0.7998 0.8774 0.9446 0.9454

LA1 0.8546 0.9445 0.9534 0.9523

MNIST-4K 0.7131 0.8669 0.9433 0.9314

PIE-20 0.6797 0.8492 0.9792 0.9735

Yale-B-38 0.6937 0.8435 0.9637 0.9562

Table 2: The run-times (in seconds) corresponding to the relative accuracies shown in Table 1.
Datasets UniNoRep EnsembleNyström GreedyNyström PartGreedyNys-c=100

l/n= 3%

Reuters-21578 1.63 33.29 17.24 4.82

Reviews 0.86 26.02 12.61 2.31

LA1 0.57 18.54 6.41 1.21

MNIST-4K 0.79 23.93 11.98 2.13

PIE-20 0.59 19.72 7.58 1.40

Yale-B-38 0.29 11.64 2.89 0.65

l/n= 5%

Reuters-21578 1.73 35.86 28.53 6.79

Reviews 0.87 27.04 21.38 4.08

LA1 0.63 19.52 10.84 1.95

MNIST-4K 0.88 24.83 21.19 3.87

PIE-20 0.57 20.28 12.77 2.35

Yale-B-38 0.28 11.98 4.69 0.82


