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1 Supplementary Material

1.1 Proof of Theorem 3.1

Here we outline a proof based on a reduction to the
block RIP and a theorem of Eldar and Mishali [1].
We construct a matrix Ψ ∈ ℜm×n as follows. For
every block i, we orthogonalize the columns of Φi to
obtain Ψi. We further normalize the columns in Ψi

to have unit ℓ2-norm. Thus the columns of Ψi form
an orthonormal basis of the column space of Φi. Thus
for any xi, there exists x′

i such that Φixi = Ψix
′
i and

vice versa. Now from the definition of kernel block
RIP, it is clear that the kernel block isometry constants
of Φ are identical to those of Ψ. Furthermore, since
‖Ψix

′
i‖2 = ‖x′

i‖2, the kernel block isometry constants
of Ψ are identical to its block isometry constants. Thus
the block isometry constant of Ψ satisfies δ2s <

√
2−1.

We now consider the program

min

k
∑

i=1

‖x′
i‖2 subject to y = Ψx′.

From the theorem of Eldar and Mishali [1], this pro-
gram has a unique optimum solution x̂′ that forms
a unique s-block-sparse solution to the program y =
Ψx′.

Now note that any s-block-sparse solution x̂ to y = Φx
satisfies Φix̂i = Ψix̂

′
i for all i and vice versa. Fur-

thermore, any optimum solution x̂ to (4) also satisfies
Φix̂i = Ψix̂

′
i for all i and vice versa. Thus the proof

of Theorem 2.1 follows.

1.2 Proof of Theorem 3.2

We begin with some notation. For a positive integer n,
let [n] = {1, 2, . . . , n}. For a vector x ∈ ℜn, we use ‖x‖
to denote ‖x‖2. For a matrix Φ ∈ ℜm×n and a subset

T ∈ [k] of blocks B of Φ, let ΦT ∈ ℜm×
∑

i∈T
ni be the

matrix Φ restricted to blocks T . Similarly, let xT ∈
ℜ
∑

i∈T
ni denote the vector x restricted to blocks T

and let IT denote the identity matrix of size
∑

i∈T ni×
∑

i∈T ni.

In order to simplify the presentation, we first assume
that Φ⊤

i Φi = I ∈ ℜni×ni , i.e., the columns in Φi form
an orthonormal basis of their span. We can transform
Φi to satisfy this property as follows. If a column in
block i lies in the span of the other columns in block
i, we can discard it. Therefore we assume that Φ⊤

i Φi

is a full rank symmetric matrix. Let Ai ∈ ℜni×ni be
a symmetric matrix such that A−2

i = Φ⊤
i Φi. We now

apply change of basis by replacing Φi with ΦiAi. This
change of basis does not affect the original problem,
since the system Φixi = yi has a non-zero solution
xi ∈ ℜni×ni if and only if ΦiAix

′
i = yi has a non-

zero solution x′
i = A−1

i xi ∈ ℜni×ni . Thus we have
‖Φixi‖ = ‖xi‖ for all xi ∈ ℜni .

The above change of basis transformation, however,
will affect the bound on ‖x∗−x‖2

2 as we describe later.

Our proof is similar to and motivated by [2]. Before
we begin, we prove two important lemmas.

Lemma 1.1 For any x ∈ ℜn and a subset T ⊆ [k] of

blocks, we have ‖(IT − Φ⊤
T ΦT )xT ‖ ≤ δB|T |‖xT ‖.

Proof. Observe that the largest and the smallest
eigenvalues, σmax and σmin, of the symmetric matrix
IT − Φ⊤

T ΦT can be bounded as

σmax = max
v:‖v‖=1

v⊤(IT − Φ⊤
T ΦT )v

≤ 1 − min
v:‖v‖=1

v⊤Φ⊤
T ΦT v ≤ 1 − (1 − δB|T |) = δB|T |,

σmin = min
v:‖v‖=1

v⊤(IT − Φ⊤
T ΦT )v

≤ 1 − max
v:‖v‖=1

v⊤Φ⊤
T ΦT v ≤ 1 − (1 + δB|T |) = −δB|T |.

Thus all the eigenvalues lie in the range [−δB|T |, δ
B
|T |]

and the lemma follows.

Lemma 1.2 For any x ∈ ℜn and two disjoint sub-

sets T, U ⊆ [k] of blocks, we have ‖Φ⊤
UΦT xT ‖ ≤

δB|T∪U|‖xT ‖.
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Proof. Let S = T∪U . Note that Φ⊤
UΦT is a submatrix

of Φ⊤
S ΦS − IS . Since the spectral norm of a submatrix

does not exceed the spectral norm of the entire matrix,
we have ‖Φ⊤

UΦT ‖ ≤ ‖Φ⊤
S ΦS − IS‖ ≤ δB|S|, where the

last inequality follows form Lemma 1.1.

Let x[t] denote the value of vector x after t iterations.
Let x∗ be the optimum solution. Let r[t] = x∗ − x[t].
We now state our key lemma which directly implies
Theorem 2.2.

Lemma 1.3 The error vector r[t] shrinks in each it-

eration. This shrinkage can be quantified in terms of

δB2s and δB3s as follows.

‖r[t+1]‖ ≤ min{
√

3 · δB2s, δ
B
3s} · φ · ‖r[t]‖.

Proof. Let Bt = suppB(x∗)∪suppB(x[t]). Let r̂[t+1] =
x∗−(x[t]+Φ⊤Φr[t]) = (I−Φ⊤Φ)r[t]. The proof is based
on the following two claims.

Claim 1.1 ‖r̂[t+1]
Bt+1

‖ ≤ min{
√

3 · δB2s, δ
B
3s} · ‖r[t]‖.

Claim 1.2 ‖r[t+1]‖ ≤ φ · ‖r̂[t+1]
Bt+1

‖.

Proof of Claim 1.1. Since suppB(r[t]) ⊆ Bt, we
have

r̂
[t+1]
Bt∪Bt+1

= IBt∪Bt+1
r
[t]
Bt∪Bt+1

− Φ⊤
Bt∪Bt+1

(Φr[t])

= IBt∪Bt+1
r
[t]
Bt∪Bt+1

−

Φ⊤
Bt∪Bt+1

ΦBt∪Bt+1
r
[t]
Bt∪Bt+1

= (IBt∪Bt+1
− Φ⊤

Bt∪Bt+1
ΦBt∪Bt+1

)r
[t]
Bt∪Bt+1

.

Thus from Lemma 1.1, we have ‖r̂[t+1]
Bt+1

‖ ≤
‖r̂[t+1]

Bt∪Bt+1
‖ ≤ δB3s · ‖r[t]

Bt∪Bt+1
‖ = δB3s · ‖r[t]‖. Thus we

have established the bound in terms of δB3s.

We now prove the bound in terms of δB2s. Since
suppB(r[t]) ⊆ Bt, we have

r̂
[t+1]
Bt

= IBt
r
[t]
Bt

− Φ⊤
Bt

(Φr[t])

= IBt
r
[t]
Bt

− Φ⊤
Bt

ΦBt
r
[t]
Bt

= (IBt
− Φ⊤

Bt
ΦBt

)r
[t]
Bt

.

Thus from Lemma 1.1, we have

‖r̂[t+1]
Bt

‖ ≤ δB2s · ‖r
[t]
Bt
‖ = δB2s · ‖r[t]‖. (1)

Similarly, we have

r̂
[t+1]
Bt+1\Bt

= IBt+1\Bt
r
[t]
Bt+1\Bt

− Φ⊤
Bt+1\Bt

(Φr[t])

= −Φ⊤
Bt+1\Bt

ΦBt
r
[t]
Bt

= −Φ⊤
Bt+1\Bt

ΦBt+1∩Bt
r
[t]
Bt+1∩Bt

−Φ⊤
Bt+1\Bt

ΦBt\Bt+1
r
[t]
Bt\Bt+1

.

Therefore

‖r̂[t+1]
Bt+1\Bt

‖2 ≤ 2‖Φ⊤
Bt+1\Bt

ΦBt+1∩Bt
r
[t]
Bt+1∩Bt

‖2 +

2‖Φ⊤
Bt+1\Bt

ΦBt\Bt+1
r
[t]
Bt\Bt+1

‖2 (2)

≤ 2 · (δB2s)
2 ·
(

‖r[t]
Bt+1∩Bt

‖2 + ‖r[t]
Bt\Bt+1

‖2
)

(3)

= 2 · (δB2s)
2 · ‖r[t]‖2. (4)

The inequality (2) follows from the identity ‖u+v‖2 ≤
2(‖u‖2+‖v‖2). The inequality (3) follows from two ap-
plications of Lemma 1.2. Now combining (1) and (4),
we get

‖r[t+1]
Bt+1

‖2 = ‖r[t+1]
Bt

‖2 + ‖r[t+1]
Bt+1\Bt

‖2

≤ (δB2s)
2 · ‖r[t]‖2 + 2 · (δB2s)

2 · ‖r[t]‖2

= 3 · (δB2s)
2 · ‖r[t]‖2.

Thus the proof of Claim 1.1 is complete.

Proof of Claim 1.2. Since φ2 = 1 + φ, it is enough
to prove

‖r[t+1]‖2 ≤ (1 + φ) · ‖r̂[t+1]
Bt+1

‖2. (5)

Without loss of generality, we assume that
|suppB(x[t+1])| = |suppB(x∗)| = s. Let
v = x[t] + Φ⊤Φr[t] and let A = suppB(x[t+1]) \
suppB(x∗), B = suppB(x[t+1]) ∩ suppB(x∗), C =
suppB(x∗) \ suppB(x[t+1]). Note that |A| = |C|.
Since x[t+1] = Hs(v), from the definition of hard-
thresholding Hs, we get that ‖vi‖2 = ‖Φivi‖2 ≤
‖Φjvj‖2 = ‖vj‖2 for all i ∈ C and j ∈ A. Note that
r[t+1] = x∗ − Hs(v) = x∗ − vA∪B and r̂[t+1] = x∗ − v

and hence r̂
[t+1]
Bt+1

= (x∗ − v)A∪B∪C . Therefore the

right-hand-side of (5) minus the left-hand-side of (5)
is

(1 + φ)

(

∑

i∈A

‖vi‖2 +
∑

i∈B

‖x∗
i − vi‖2 +

∑

i∈C

‖x∗
i − vi‖2

)

−
(

∑

i∈A

‖vi‖2 +
∑

i∈B

‖x∗
i − vi‖2 +

∑

i∈C

‖x∗
i ‖2

)

.

The above expression is at least

φ
∑

i∈A

‖vi‖2 +
∑

i∈C

(

(1 + φ)‖x∗
i − vi‖2 − ‖x∗

i ‖2
)

≥
∑

i∈C

(

φ‖vi‖2 + (1 + φ)‖x∗
i − vi‖2 − ‖x∗

i ‖2
)

.

The inequality follows from the fact that
∑

i∈C ‖vi‖2 ≤
∑

j∈A ‖vj‖2 as observed above. Each term on the
right-hand-side of the above inequality can be simpli-
fied to

(1 + 2φ)‖vi‖2 − 2(1 + φ)x∗
i · vi + φ‖x∗

i ‖2

=

(

1 + 2φ − (1 + φ)2

φ

)

‖vi‖2 +

∥

∥

∥

∥

1 + φ√
φ

vi −
√

φx∗
i

∥

∥

∥

∥

2

.
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Thus a sufficient condition for this term to be non-
negative for any value of vi and x∗

i is (1 + 2φ)φ ≥
(1 + φ)2. This is equivalent to 1 + φ − φ2 ≤ 0. This
condition holds since in fact 1 + φ = φ2 for golden
ratio φ = (1 +

√
5)/2. Thus the proof of Claim 1.2 is

complete.

Combining Claims 1.1 and 1.2, we get Lemma 1.3.

Now recall that we transformed Φi in the beginning
so that it satisfied Φ⊤

i Φi = I ∈ ℜni×ni and therefore
‖y − Φx‖2

2 = ‖x∗ − x‖2
2. Thus the bound on the norm

of the error vector r[t] proved in Lemma 1.1 in fact
implies that

‖y − Φx‖2
2 ≤ 2‖y‖2

2 ·
[

φ · min{
√

3 · δB2s, δ
B
3s}
]t

holds after t iterations as claimed in Theorem 3.2. For
general Φi, from the definition of λmin given just before
Theorem 3.2, we have ‖x∗ − x‖2

2 ≤ 1
λmin

· ‖y − Φx‖2
2.

Thus

‖x∗ − x‖2
2 ≤ 2‖y‖2

2

λmin
·
[

φ · min{
√

3 · δB2s, δ
B
3s}
]t

holds as well after t iterations as claimed in Theo-
rem 3.2.
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