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1 Supplementary Material

1.1 Proof of Theorem 3.1

Here we outline a proof based on a reduction to the
block RIP and a theorem of Eldar and Mishali [1].
We construct a matrix ¥ € R™*™ as follows. For
every block i, we orthogonalize the columns of ®; to
obtain ¥;. We further normalize the columns in W;
to have unit #o-norm. Thus the columns of ¥; form
an orthonormal basis of the column space of ®;. Thus
for any x;, there exists z such that ®;2; = ¥,;z; and
vice versa. Now from the definition of kernel block
RIP, it is clear that the kernel block isometry constants
of ® are identical to those of ¥. Furthermore, since
[[@;2%||2 = ||#}]|2, the kernel block isometry constants
of U are identical to its block isometry constants. Thus
the block isometry constant of W satisfies dos < V2-1.
We now consider the program

k

min 2ills  subject to y = Ua'.
> llah j y
i—1

From the theorem of Eldar and Mishali [1], this pro-
gram has a unique optimum solution &' that forms

a unique s-block-sparse solution to the program y =
V'

Now note that any s-block-sparse solution z to y = ¢z
satisfies ®;&; = U;&; for all ¢ and vice versa. Fur-
thermore, any optimum solution & to (4) also satisfies

®,%; = U,;&; for all ¢ and vice versa. Thus the proof
of Theorem 2.1 follows.

1.2 Proof of Theorem 3.2

We begin with some notation. For a positive integer n,
let [n] ={1,2,...,n}. For a vector x € R", we use ||z|
to denote ||z||2. For a matrix ® € R™*™ and a subset

T € [k] of blocks B of ®, let &7 € K™ 2eier™ be the
matrix ® restricted to blocks 7. Similarly, let xzp €
%ZiET " denote the vector z restricted to blocks T
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and let IT denote the identity matrix of size ) ier M X
D ier Mi-

In order to simplify the presentation, we first assume
that ® ®; = I € R <" i.e., the columns in ®; form
an orthonormal basis of their span. We can transform
®; to satisfy this property as follows. If a column in
block i lies in the span of the other columns in block
i, we can discard it. Therefore we assume that @, ®;
is a full rank symmetric matrix. Let A; € R™*" be
a symmetric matrix such that 4;% = & ®;. We now
apply change of basis by replacing ®; with ®;A;. This
change of basis does not affect the original problem,
since the system ®;z; = y; has a non-zero solution
x; € R"*™ if and only if ®;A;2; = y; has a non-
zero solution z/ = A;'z; € R"*™. Thus we have
|iz; || = ||| for all z; € R™.

The above change of basis transformation, however,
will affect the bound on ||z* — z||3 as we describe later.

Our proof is similar to and motivated by [2]. Before

we begin, we prove two important lemmas.

Lemma 1.1 For any x € R" and a subset T C [k] of
blocks, we have (It — ®1.®7)xr| < 5%‘|\xT|\.

Proof.  Observe that the largest and the smallest
eigenvalues, opax and oyin, of the symmetric matrix
It — fI)FFI)T can be bounded as

Omax = mmax vT(IT - @;@T)v
villeli=1
: THsT B B
<1- U:IHI}}”n:lv Qr@rv <1—(1—67)) =07
Omin = min vT(IT - @;@T)v
viliell=1

<1— max val)r}fl)Tv <1-(1 +5|l§f|) = —5%‘.

vilvl|=1

Thus all the eigenvalues lie in the range [—6|BT|,5‘BT‘]
and the lemma follows. n

Lemma 1.2 For any z € R" and two disjoint sub-
sets T,U C [k] of blocks, we have ||®f®rzr| <
68 o Izl



Running heading title breaks the line

Proof. Let S =TUU. Note that @E@T is a submatrix
of <I>—S'—<I>s — Is. Since the spectral norm of a submatrix
does not exceed the spectral norm of the entire matrix,
we have ||[®/®r| < [|[@LPs — I < 5|BS|, where the
last inequality follows form Lemma 1.1. |

Let 2! denote the value of vector x after ¢ iterations.
Let z* be the optimum solution. Let 7Yl = z* — 2
We now state our key lemma which directly implies
Theorem 2.2.

Lemma 1.3 The error vector r¥ shrinks in each it-
eration. This shrinkage can be quantified in terms of
68 and 68, as follows.

) < min{v/3 - 65,65} - 6 - || 1]].
Proof. Let B; = supp®(z*)Usupp®(z[). Let #lt+1 =

¥ — (T ®rll) = (T-® T ®)rl). The proof is based
on the following two claims.

Claim 1.1 |7 )| < min{v/3- 65,65} - |1].

1]
Claim 1.2 ||rfH|| < - |7 éj+1||

Proof of Claim 1.1.
have

Since supp®(rll) C By, we

[t41]
B{UB¢11

t
IBtUBt+1T[B]tUBt+1 - (I)gtuBt+1 ((I)T[t]>

_ [t]
= Ip,uB.y, "ByUB¢41

T (]
¢BtU3t+1 ¢Bt UBt+l TBtUBt+1

_ T [t]
- (IBtUBt+1 - (bBtUBt+1¢BtUBt+1)TBtUBt+1'

Thus [t+1] I

we have ||rB+1 <

Alt+1 t
175, < 8 1P s, I = 85, 7). Thus we

have established the bound in terms of §5..

from Lemma 1.1,

We now prove the bound in terms of 65. Since
supp®(ri¥) C By, we have
i = It - @p,(@rl)
= Ipry —of oprl
= (IBt - (I) (I)Br) [t]
Thus from Lemma 1.1, we have
175 < 05 - g, V= 88, - PP (1)

Similarly, we have

A[t1]

-
Biy1\B: o (I)Bt+1\Bt ((I)T[t])

t
= _(P—B[t+1\Bt(bBtT[B]t

_ [t]
- IBt+1\BtTBt+1\Bt

T [t]
= _(I)BHI\Bt(I)BHthTBHth

T (]
_(I)Bt+1\Bt(I)Bt\Bt+1 TBt\Bt+1 ’

Therefore

[t+1] 2 T [t]
K& Bt+1\BtH < 2H(I)Bt+1\Bt(I)BtﬂﬁBtTBHlth

I?
295,105,285 5B | (2
< 2082 (I nm IP+ 175 5, 7))
= 2-(35)%- |IF>. (4)
The inequality (2) follows from the identity ||u+v||? <
2(|lul|?+||v]|?). The inequality (3) follows from two ap-

plications of Lemma 1.2. Now combining (1) and (4),
we get

W

t+1 t+1 t+1
IS = e+ e 1P
< (OB ) 2 (05)2 - |12

3-(65,)% - P12,
Thus the proof of Claim 1.1 is complete.

Proof of Claim 1.2. Since ¢?> = 1+ ¢, it is enough

to prove
1)

P2 < (14 ) - g2 (5)
Without loss of generality, we assume that
|supp® ()| = Jsupp®(a)| = 5. Let
v = 2zl + ®Tdrll and let A = supp®(2lttH) \
supp®(z*), B = supp®(zl"!)) N supp®(2*),C =
supp®(z*) \ supp?(zl**1). Note that [4] = |C|.
Since "1 = H,(v), from the definition of hard-
thresholding H,, we get that ||v;||? = [|®v]|? <

|®;v]|? = ||vj||* for all i € C and j € A. Note that
Pl = g — Hi(v) = 2* —vaup and ple+1]

and hence TE;+1] = (2* — v)auBuc. Therefore the
rlght—hand—81de of (5) minus the left-hand-side of (5)

is

(1+¢) (Zlvz|2+2|lw S _Uz|>

=z —w

i€A i€B ieC
SOSTES WERES = 10]
icA i€B ieC
The above expression is at least

¢ lvil* + > (1 +@)ll=f —will® = [|2711%)

icA ieC
> > (@llvill® + A+ @)ll=f —vill* — [l]1%) -
ieC

The inequality follows from the fact that >°, . [|vi]|* <
> jeallvi | as observed above. Each term on the
right-hand-side of the above inequality can be simpli-
fied to

(14 26) o] — 21 + §)a
- (1+2¢— A+ o7 )| e

“U+ (ZSH,’E ”2

1
v
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Thus a sufficient condition for this term to be non-
negative for any value of v; and zf is (1 + 2¢)¢ >
(1 + ¢)2. This is equivalent to 1 + ¢ — ¢ < 0. This
condition holds since in fact 1 4+ ¢ = ¢? for golden
ratio ¢ = (1 +v/5)/2. Thus the proof of Claim 1.2 is
complete.

Combining Claims 1.1 and 1.2, we get Lemma 1.3. &

Now recall that we transformed ®; in the beginning
so that it satisfied ®] ®; = I € R"*" and therefore
lly — ®z||3 = ||z* — z||3. Thus the bound on the norm
of the error vector ¥l proved in Lemma 1.1 in fact
implies that

t
ly — @[3 < 2[lyl3 - |¢ - min{V3- 63, d5,}

holds after t iterations as claimed in Theorem 3.2. For
general @;, from the definition of A\,;, given just before
Theorem 3.2, we have [[z* — 2|3 < = - [ly — ®zf3.
Thus

2]lyll3

)\min

lo* = ll3 <

[0 min{v3- o8, 58]

holds as well after t iterations as claimed in Theo-
rem 3.2.
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