Block-sparse Solutions using Kernel Block RIP and its Application to Group Lasso (Supplementary material)

Rahul Garg
IBM T.J. Watson research center
grahul@us.ibm.com

Rohit Khandekar
IBM T.J. Watson research center
rohitk@us.ibm.com

1 Supplementary Material

1.1 Proof of Theorem 3.1

Here we outline a proof based on a reduction to the block RIP and a theorem of Eldar and Mishali [1]. We construct a matrix $\Psi \in \Re^{m \times n}$ as follows. For every block i, we orthogonalize the columns of Φ_{i} to obtain Ψ_{i}. We further normalize the columns in Ψ_{i} to have unit ℓ_{2}-norm. Thus the columns of Ψ_{i} form an orthonormal basis of the column space of Φ_{i}. Thus for any x_{i}, there exists x_{i}^{\prime} such that $\Phi_{i} x_{i}=\Psi_{i} x_{i}^{\prime}$ and vice versa. Now from the definition of kernel block RIP, it is clear that the kernel block isometry constants of Φ are identical to those of Ψ. Furthermore, since $\left\|\Psi_{i} x_{i}^{\prime}\right\|_{2}=\left\|x_{i}^{\prime}\right\|_{2}$, the kernel block isometry constants of Ψ are identical to its block isometry constants. Thus the block isometry constant of Ψ satisfies $\delta_{2 s}<\sqrt{2}-1$. We now consider the program

$$
\min \sum_{i=1}^{k}\left\|x_{i}^{\prime}\right\|_{2} \quad \text { subject to } \quad y=\Psi x^{\prime}
$$

From the theorem of Eldar and Mishali [1], this program has a unique optimum solution \hat{x}^{\prime} that forms a unique s-block-sparse solution to the program $y=$ Ψx^{\prime}.

Now note that any s-block-sparse solution \hat{x} to $y=\Phi x$ satisfies $\Phi_{i} \hat{x}_{i}=\Psi_{i} \hat{x}_{i}^{\prime}$ for all i and vice versa. Furthermore, any optimum solution \hat{x} to (4) also satisfies $\Phi_{i} \hat{x}_{i}=\Psi_{i} \hat{x}_{i}^{\prime}$ for all i and vice versa. Thus the proof of Theorem 2.1 follows.

1.2 Proof of Theorem 3.2

We begin with some notation. For a positive integer n, let $[n]=\{1,2, \ldots, n\}$. For a vector $x \in \Re^{n}$, we use $\|x\|$ to denote $\|x\|_{2}$. For a matrix $\Phi \in \Re^{m \times n}$ and a subset $T \in[k]$ of blocks \mathcal{B} of Φ, let $\Phi_{T} \in \Re^{m \times \sum_{i \in T}{ }^{n_{i}}}$ be the matrix Φ restricted to blocks T. Similarly, let $x_{T} \in$ $\Re^{\sum_{i \in T}{ }^{n_{i}}}$ denote the vector x restricted to blocks T
and let I_{T} denote the identity matrix of size $\sum_{i \in T} n_{i} \times$ $\sum_{i \in T} n_{i}$.
In order to simplify the presentation, we first assume that $\Phi_{i}^{\top} \Phi_{i}=I \in \Re^{n_{i} \times n_{i}}$, i.e., the columns in Φ_{i} form an orthonormal basis of their span. We can transform Φ_{i} to satisfy this property as follows. If a column in block i lies in the span of the other columns in block i, we can discard it. Therefore we assume that $\Phi_{i}^{\top} \Phi_{i}$ is a full rank symmetric matrix. Let $A_{i} \in \Re^{n_{i} \times n_{i}}$ be a symmetric matrix such that $A_{i}^{-2}=\Phi_{i}^{\top} \Phi_{i}$. We now apply change of basis by replacing Φ_{i} with $\Phi_{i} A_{i}$. This change of basis does not affect the original problem, since the system $\Phi_{i} x_{i}=y_{i}$ has a non-zero solution $x_{i} \in \Re^{n_{i} \times n_{i}}$ if and only if $\Phi_{i} A_{i} x_{i}^{\prime}=y_{i}$ has a nonzero solution $x_{i}^{\prime}=A_{i}^{-1} x_{i} \in \Re^{n_{i} \times n_{i}}$. Thus we have $\left\|\Phi_{i} x_{i}\right\|=\left\|x_{i}\right\|$ for all $x_{i} \in \Re^{n_{i}}$.

The above change of basis transformation, however, will affect the bound on $\left\|x^{*}-x\right\|_{2}^{2}$ as we describe later.

Our proof is similar to and motivated by [2]. Before we begin, we prove two important lemmas.

Lemma 1.1 For any $x \in \Re^{n}$ and a subset $T \subseteq[k]$ of blocks, we have $\left\|\left(I_{T}-\Phi_{T}^{\top} \Phi_{T}\right) x_{T}\right\| \leq \delta_{|T|}^{\mathcal{B}}\left\|x_{T}\right\|$.

Proof. Observe that the largest and the smallest eigenvalues, $\sigma_{\max }$ and $\sigma_{\min }$, of the symmetric matrix $I_{T}-\Phi_{T}^{\top} \Phi_{T}$ can be bounded as

$$
\begin{aligned}
& \sigma_{\max }=\max _{v:\|v\|=1} v^{\top}\left(I_{T}-\Phi_{T}^{\top} \Phi_{T}\right) v \\
& \leq 1-\min _{v:\|v\|=1} v^{\top} \Phi_{T}^{\top} \Phi_{T} v \leq 1-\left(1-\delta_{|T|}^{\mathcal{B}}\right)=\delta_{|T|}^{\mathcal{B}} \\
& \sigma_{\min }=\min _{v:\|v\|=1} v^{\top}\left(I_{T}-\Phi_{T}^{\top} \Phi_{T}\right) v \\
& \leq 1-\max _{v:\|v\|=1} v^{\top} \Phi_{T}^{\top} \Phi_{T} v \leq 1-\left(1+\delta_{|T|}^{\mathcal{B}}\right)=-\delta_{|T|}^{\mathcal{B}} .
\end{aligned}
$$

Thus all the eigenvalues lie in the range $\left[-\delta_{|T|}^{\mathcal{B}}, \delta_{|T|}^{\mathcal{B}}\right]$ and the lemma follows.

Lemma 1.2 For any $x \in \Re^{n}$ and two disjoint subsets $T, U \subseteq[k]$ of blocks, we have $\left\|\Phi_{U}^{\top} \Phi_{T} x_{T}\right\| \leq$ $\delta_{|T \cup U|}^{\mathcal{B}}\left\|x_{T}\right\|$.

Proof. Let $S=T \cup U$. Note that $\Phi_{U}^{\top} \Phi_{T}$ is a submatrix of $\Phi_{S}^{\top} \Phi_{S}-I_{S}$. Since the spectral norm of a submatrix does not exceed the spectral norm of the entire matrix, we have $\left\|\Phi_{U}^{\top} \Phi_{T}\right\| \leq\left\|\Phi_{S}^{\top} \Phi_{S}-I_{S}\right\| \leq \delta_{|S|}^{\mathcal{B}}$, where the last inequality follows form Lemma 1.1.

Let $x^{[t]}$ denote the value of vector x after t iterations. Let x^{*} be the optimum solution. Let $r^{[t]}=x^{*}-x^{[t]}$. We now state our key lemma which directly implies Theorem 2.2.

Lemma 1.3 The error vector $r^{[t]}$ shrinks in each iteration. This shrinkage can be quantified in terms of $\delta_{2 s}^{\mathcal{B}}$ and $\delta_{3 s}^{\mathcal{B}}$ as follows.

$$
\left\|r^{[t+1]}\right\| \leq \min \left\{\sqrt{3} \cdot \delta_{2 s}^{\mathcal{B}}, \delta_{3 s}^{\mathcal{B}}\right\} \cdot \phi \cdot\left\|r^{[t]}\right\|
$$

Proof. Let $B_{t}=\operatorname{supp}^{\mathcal{B}}\left(x^{*}\right) \cup \operatorname{supp}^{\mathcal{B}}\left(x^{[t]}\right)$. Let $\hat{r}^{[t+1]}=$ $x^{*}-\left(x^{[t]}+\Phi^{\top} \Phi r^{[t]}\right)=\left(I-\Phi^{\top} \Phi\right) r^{[t]}$. The proof is based on the following two claims.

Claim 1.1 $\left\|\hat{r}_{B_{t+1}}^{[t+1]}\right\| \leq \min \left\{\sqrt{3} \cdot \delta_{2 s}^{\mathcal{B}}, \delta_{3 s}^{\mathcal{B}}\right\} \cdot\left\|r^{[t]}\right\|$.
Claim 1.2 $\left\|r^{[t+1]}\right\| \leq \phi \cdot\left\|\hat{r}_{B_{t+1}}^{[t+1]}\right\|$.
Proof of Claim 1.1. Since $\operatorname{supp}^{\mathcal{B}}\left(r^{[t]}\right) \subseteq B_{t}$, we have

$$
\begin{aligned}
\hat{r}_{B_{t} \cup B_{t+1}}^{[t+1]} & =I_{B_{t} \cup B_{t+1}} r_{B_{t} \cup B_{t+1}}^{[t]}-\Phi_{B_{t} \cup B_{t+1}}^{\top}\left(\Phi r^{[t]}\right) \\
= & I_{B_{t} \cup B_{t+1}} r_{B_{t} \cup B_{t+1}}^{[t]}- \\
& \Phi_{B_{t} \cup B_{t+1}}^{\top} \Phi_{B_{t} \cup B_{t+1}} r_{B_{t} \cup B_{t+1}}^{[t]} \\
= & \left(I_{B_{t} \cup B_{t+1}}-\Phi_{B_{t} \cup B_{t+1}}^{\top} \Phi_{B_{t} \cup B_{t+1}}\right) r_{B_{t} \cup B_{t+1}}^{[t]}
\end{aligned}
$$

Thus from Lemma 1.1, we have $\left\|\hat{r}_{B_{t+1}}^{[t+1]}\right\| \leq$ $\left\|\hat{r}_{B_{t} \cup B_{t+1}}^{[t+1]}\right\| \leq \delta_{3 s}^{\mathcal{B}} \cdot\left\|r_{B_{t} \cup B_{t+1}}^{[t]}\right\|=\delta_{3 s}^{\mathcal{B}} \cdot\left\|r^{[t]}\right\|$. Thus we have established the bound in terms of $\delta_{3 s}^{\mathcal{B}}$.
We now prove the bound in terms of $\delta_{2 s}^{\mathcal{B}}$. Since $\operatorname{supp}^{\mathcal{B}}\left(r^{[t]}\right) \subseteq B_{t}$, we have

$$
\begin{aligned}
\hat{r}_{B_{t}}^{[t+1]} & =I_{B_{t}} r_{B_{t}}^{[t]}-\Phi_{B_{t}}^{\top}\left(\Phi r^{[t]}\right) \\
& =I_{B_{t}} r_{B_{t}}^{[t]}-\Phi_{B_{t}}^{\top} \Phi_{B_{t}} r_{B_{t}}^{[t]} \\
& =\left(I_{B_{t}}-\Phi_{B_{t}}^{\top} \Phi_{B_{t}}\right) r_{B_{t}}^{[t]}
\end{aligned}
$$

Thus from Lemma 1.1, we have

$$
\begin{equation*}
\left\|\hat{r}_{B_{t}}^{[t+1]}\right\| \leq \delta_{2 s}^{\mathcal{B}} \cdot\left\|r_{B_{t}}^{[t]}\right\|=\delta_{2 s}^{\mathcal{B}} \cdot\left\|r^{[t]}\right\| . \tag{1}
\end{equation*}
$$

Similarly, we have

$$
\begin{aligned}
\hat{r}_{B_{t+1} \backslash B_{t}}^{[t+1]}= & I_{B_{t+1} \backslash B_{t}} r_{B_{t+1} \backslash B_{t}}^{[t]}-\Phi_{B_{t+1} \backslash B_{t}}^{\top}\left(\Phi r^{[t]}\right) \\
= & -\Phi_{B_{t+1} \backslash B_{t}}^{\top} \Phi_{B_{t}} r_{B_{t}}^{[t]} \\
= & -\Phi_{B_{t+1} \backslash B_{t}}^{\top} \Phi_{B_{t+1} \cap B_{t}} r_{B_{t+1} \cap B_{t}}^{[t]} \\
& -\Phi_{B_{t+1} \backslash B_{t}}^{\top} \Phi_{B_{t} \backslash B_{t+1}} r_{B_{t} \backslash B_{t+1}}^{[t]} .
\end{aligned}
$$

Therefore

$$
\begin{array}{r}
\left\|\hat{r}_{B_{t+1} \backslash B_{t}}^{[t+1]}\right\|^{2} \leq 2\left\|\Phi_{B_{t+1} \backslash B_{t}}^{\top} \Phi_{B_{t+1} \cap B_{t}} r_{B_{t+1} \cap B_{t}}^{[t]}\right\|^{2}+ \\
2\left\|\Phi_{B_{t+1} \backslash B_{t}}^{\top} \Phi_{B_{t} \backslash B_{t+1}} r_{B_{t} \backslash B_{t+1}}^{[t]}\right\|^{2} \\
\leq 2 \cdot(2 \\
\quad \leq 2 \cdot\left(\delta_{2 s}^{\mathcal{B}}\right)^{2} \cdot\left(\left\|r_{B_{t+1} \cap B_{t}}^{[t]}\right\|^{2}+\left\|r_{B_{t} \backslash B_{t+1}}^{[t]}\right\|^{2}\right) \tag{4}\\
=2
\end{array}
$$

The inequality (2) follows from the identity $\|u+v\|^{2} \leq$ $2\left(\|u\|^{2}+\|v\|^{2}\right)$. The inequality (3) follows from two applications of Lemma 1.2. Now combining (1) and (4), we get

$$
\begin{aligned}
\left\|r_{B_{t+1}}^{[t+1]}\right\|^{2} & =\left\|r_{B_{t}}^{[t+1]}\right\|^{2}+\left\|r_{B_{t+1} \backslash B_{t}}^{[t+1]}\right\|^{2} \\
& \leq\left(\delta_{2 s}^{\mathcal{B}}\right)^{2} \cdot\left\|r^{[t]}\right\|^{2}+2 \cdot\left(\delta_{2 s}^{\mathcal{B}}\right)^{2} \cdot\left\|r^{[t]}\right\|^{2} \\
& =3 \cdot\left(\delta_{2 s}^{\mathcal{B}}\right)^{2} \cdot\left\|r^{[t]}\right\|^{2} .
\end{aligned}
$$

Thus the proof of Claim 1.1 is complete.
Proof of Claim 1.2. Since $\phi^{2}=1+\phi$, it is enough to prove

$$
\begin{equation*}
\left\|r^{[t+1]}\right\|^{2} \leq(1+\phi) \cdot\left\|\hat{r}_{B_{t+1}}^{[t+1]}\right\|^{2} \tag{5}
\end{equation*}
$$

Without loss of generality, we assume that $\left|\operatorname{supp}^{\mathcal{B}}\left(x^{[t+1]}\right)\right|=\left|\operatorname{supp}^{\mathcal{B}}\left(x^{*}\right)\right|=s . \quad$ Let $v=x^{[t]}+\Phi^{\top} \Phi r^{[t]}$ and let $A=\operatorname{supp}^{\mathcal{B}}\left(x^{[t+1]}\right) \backslash$ $\operatorname{supp}^{\mathcal{B}}\left(x^{*}\right), B=\operatorname{supp}^{\mathcal{B}}\left(x^{[t+1]}\right) \cap \operatorname{supp}^{\mathcal{B}}\left(x^{*}\right), C=$ $\operatorname{supp}^{\mathcal{B}}\left(x^{*}\right) \backslash \operatorname{supp}^{\mathcal{B}}\left(x^{[t+1]}\right)$. Note that $|A|=|C|$. Since $x^{[t+1]}=H_{s}(v)$, from the definition of hardthresholding H_{s}, we get that $\left\|v_{i}\right\|^{2}=\left\|\Phi_{i} v_{i}\right\|^{2} \leq$ $\left\|\Phi_{j} v_{j}\right\|^{2}=\left\|v_{j}\right\|^{2}$ for all $i \in C$ and $j \in A$. Note that $r^{[t+1]}=x^{*}-H_{s}(v)=x^{*}-v_{A \cup B}$ and $\hat{r}^{[t+1]}=x^{*}-v$ and hence $\hat{r}_{B_{t+1}}^{[t+1]}=\left(x^{*}-v\right)_{A \cup B \cup C}$. Therefore the right-hand-side of (5) minus the left-hand-side of (5) is

$$
\begin{array}{r}
(1+\phi)\left(\sum_{i \in A}\left\|v_{i}\right\|^{2}+\sum_{i \in B}\left\|x_{i}^{*}-v_{i}\right\|^{2}+\sum_{i \in C}\left\|x_{i}^{*}-v_{i}\right\|^{2}\right) \\
-\left(\sum_{i \in A}\left\|v_{i}\right\|^{2}+\sum_{i \in B}\left\|x_{i}^{*}-v_{i}\right\|^{2}+\sum_{i \in C}\left\|x_{i}^{*}\right\|^{2}\right) .
\end{array}
$$

The above expression is at least

$$
\begin{aligned}
& \phi \sum_{i \in A}\left\|v_{i}\right\|^{2}+\sum_{i \in C}\left((1+\phi)\left\|x_{i}^{*}-v_{i}\right\|^{2}-\left\|x_{i}^{*}\right\|^{2}\right) \\
\geq & \sum_{i \in C}\left(\phi\left\|v_{i}\right\|^{2}+(1+\phi)\left\|x_{i}^{*}-v_{i}\right\|^{2}-\left\|x_{i}^{*}\right\|^{2}\right) .
\end{aligned}
$$

The inequality follows from the fact that $\sum_{i \in C}\left\|v_{i}\right\|^{2} \leq$ $\sum_{j \in A}\left\|v_{j}\right\|^{2}$ as observed above. Each term on the right-hand-side of the above inequality can be simplified to

$$
\begin{aligned}
& (1+2 \phi)\left\|v_{i}\right\|^{2}-2(1+\phi) x_{i}^{*} \cdot v_{i}+\phi\left\|x_{i}^{*}\right\|^{2} \\
= & \left(1+2 \phi-\frac{(1+\phi)^{2}}{\phi}\right)\left\|v_{i}\right\|^{2}+\left\|\frac{1+\phi}{\sqrt{\phi}} v_{i}-\sqrt{\phi} x_{i}^{*}\right\|^{2} .
\end{aligned}
$$

Thus a sufficient condition for this term to be nonnegative for any value of v_{i} and x_{i}^{*} is $(1+2 \phi) \phi \geq$ $(1+\phi)^{2}$. This is equivalent to $1+\phi-\phi^{2} \leq 0$. This condition holds since in fact $1+\phi=\phi^{2}$ for golden ratio $\phi=(1+\sqrt{5}) / 2$. Thus the proof of Claim 1.2 is complete.
Combining Claims 1.1 and 1.2, we get Lemma 1.3.
Now recall that we transformed Φ_{i} in the beginning so that it satisfied $\Phi_{i}^{\top} \Phi_{i}=I \in \Re^{n_{i} \times n_{i}}$ and therefore $\|y-\Phi x\|_{2}^{2}=\left\|x^{*}-x\right\|_{2}^{2}$. Thus the bound on the norm of the error vector $r^{[t]}$ proved in Lemma 1.1 in fact implies that

$$
\|y-\Phi x\|_{2}^{2} \leq 2\|y\|_{2}^{2} \cdot\left[\phi \cdot \min \left\{\sqrt{3} \cdot \delta_{2 s}^{\mathcal{B}}, \delta_{3 s}^{\mathcal{B}}\right\}\right]^{t}
$$

holds after t iterations as claimed in Theorem 3.2. For general Φ_{i}, from the definition of $\lambda_{\min }$ given just before Theorem 3.2, we have $\left\|x^{*}-x\right\|_{2}^{2} \leq \frac{1}{\lambda_{\text {min }}} \cdot\|y-\Phi x\|_{2}^{2}$. Thus

$$
\left\|x^{*}-x\right\|_{2}^{2} \leq \frac{2\|y\|_{2}^{2}}{\lambda_{\min }} \cdot\left[\phi \cdot \min \left\{\sqrt{3} \cdot \delta_{2 s}^{\mathcal{B}}, \delta_{3 s}^{\mathcal{B}}\right\}\right]^{t}
$$

holds as well after t iterations as claimed in Theorem 3.2.

References

[1] Y. C. Eldar and M. Mishali. Robust recovery of signals from a structured union of subspaces. IEEE Trans. Inf. Theor., 55(11):5302-5316, 2009.
[2] D. Needell and J. A. Tropp. CoSaMP: Iterative signal recovery from incomplete and inaccurate samples. Applied and Computational Harmonic Analysis, 26(3):301-321, 2008.

