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APPENDIX—SUPPLEMENTARY
MATERIAL

Kernelization.

In this appendix, we explicitly derive the kerneliza-
tion of the approach proposed in Section 2.3 to learn a
function f which is a non-linear function of the inputs.

Assuming that each object is described by a vector
φx(o) lying in the feature space Φ corresponding to
some kernel k, then the transformed vectors x′(S′)
defined in Eqn. (10) become vectors φ′x(S′) from Φ
computed by:

φ′x(S′) =
1
N+

∑
o∈S′

φx(o)− 1
N+

∑
o∈S+

φx(o),

and the dot-products k′(S′i, S
′
j) = φ′x(S′i)

Tφ′x(S′j) be-
tween two such vectors is given by:

1
N2

+

(
∑

o1∈S′1,o2∈S′2
k(o1, o2)−

∑
o1∈S′1,o+∈S′2

k(o1, o+)

−
∑

o2∈S′2,o+∈S′2
k(o2, o+) +

∑
o+,1∈S+,o+,2∈S+

k(o+,1, o+,2)),

which can be computed from the sole knowledge of
the kernel k. We can thus directly use the kernel for-
mulation of one-class SVM to learn a vector w of the
following form:

w =
T∑
i=1

αiφ
′
x(S′i).

To make predictions, objects in S can then be ranked
according to:

f(φx(o)) =
T∑
i=1

αiφ
′
x(S′i)

Tφx(o),

which may be written in terms of the kernel k as fol-
lows:

f(φx(o)) =
T∑
i=1

αi
1
N+

∑
o′∈S′i

k(o′, o)− 1
N+

∑
o′∈S+

k(o′, o),

making use of the fact that
∑
i αi = 1.


