
Parallel Gibbs Sampling: From Colored Fields to Thin Junction Trees

A SYNCHRONOUS GIBBS SAMPLER DIVERGENCE

We illustrate how the Synchronous sampler can converge to the wrong distribution using two simple cases. The first case
uses two Gaussian variables while the second case uses two discrete binary variables. In both cases we observe that the
resulting distribution preserves the marginals.

A.1 Synchronous Gaussian Sampling
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where the covariance term is not preserved. Note, however that the marginals remain consistent.

A.2 Discrete Case

In the discrete case, consider the two binary variable discrete model P (X1, X2) where

P (X1 = x1, X2 = x2) ∝

{
ε x1 6= x2

1− ε x1 = x2

for some 0 < ε < 1.

The transition matrix of the Synchronous sampler which samples from both variables simultaneously is therefore:

(0,0) (0,1) (1,0) (1,1)
(0,0) (1− ε)2 (1− ε)ε (1− ε)ε ε2

(0,1) (1− ε)ε ε2 (1− ε)2 (1− ε)ε
(1,0) (1− ε)ε (1− ε)2 ε2 (1− ε)ε
(1,1) ε2 (1− ε)ε (1− ε)ε (1− ε)2

which has the incorrect stationary distribution:

P (X1 = x1, X2 = x2) ∝ 1

Observe however, that the marginals P (X1) and P (X2) remain consistent.

B Proof of Theorem 4.1

The proof of Theorem 4.1 follows closely the original proof of the Gibbs sampler provided by Geman and Geman [1984]
but with the modification of the Splash blocking. We prove Theorem 4.1 in three parts. First we show that π is the invariant
distribution:

π
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of the Splash sampler. Second, we show that the Splash sampler forgets its starting state:
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≤ γt/n (B.2)
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Finally, we show that the sampler draws from π in the limit:

lim
t→∞

sup
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∣∣∣∣∣∣P(X(t) = y |X(0) = x
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− π(y)
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1

= 0 (B.3)

B.1 π Invariance

Because vanishing adaptation is used we show π invariance for the Splash sampler without adaptation: where the choice
of Splash S(t) does not depend on the state of the chain. However, we do allow the choice of the Splash to depend on all
previous Splash choices

{
S(0), . . . ,S(t)

}
.

The transition kernel for the Splash sampler given the Splash S is defined as:
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Substituting Eq. (B.4) into Eq. (B.1) we obtain:
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B.2 Dependence on Starting State

We now show that the Splash sampler forgets its initial starting state. This is done by first showing that there is a pos-
itive probability of reaching any state after a bounded number of Splash operations. Then we use this strong notion of
irreducibility to setup a recurrence which bounds the dependence on the starting state.

The Splash algorithm sweeps across the roots ensuring that after ∆t ≤ n tree updates all variables are sampled at least once.
Define the time ti as the last time variable Xi was updated. Without loss of generality let’s assume that t1 < t2 < . . . < tn
(we can rearrange the variable ordering to achieve this). We then can bound the probability that after n Splashes we reach
state x given we were initially at state y,

P
(
X(n) = x |X(0) = y

)
≥

n∏
i=1

inf
x−i

π (Xi = xi |X−i = x−i) . (B.11)

Define the smallest conditional probability,

δ = inf
i,x
π (Xi = xi |X−i = x−i) . (B.12)

Then
P
(
X(n) = x |X(0) = y

)
≥ δn. (B.13)

Effectively, we are stating that π is irreducible since all the conditionals are positive. Using this we will now show that
there exists an γ such that 0 ≤ γ < 1 and
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This is trivially true for t = 0. We can rewrite the left side of the above equation as
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Now we will bound the inner sup and inf terms. For t > n we can introduce a probability measure µ such that

sup
y
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X(t) = x |X(0) = y
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≤ sup
µ≥δn

∑
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Then by defining the w∗ as
w∗ = arg sup

w
P
(
X(t) = x |X(n) = w

)
, (B.19)

we can easily construct the maximizing µ which places minimal mass δn mass on w except w∗ and places the remaining
mass on 1− (|Ω| − 1)δn on w∗. This leads to

sup
y
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(
X(t) = x |X(n) = w∗

)
+ (B.20)
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Similarly we define w∗ as the minimizing element in Ω

w∗ = arg inf
w
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)
. (B.22)

We can then construct the lower bound,
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Taking the difference, we get
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We can bound the sum terms

δn
∑
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P (X(t) = x |X(n) = w)− δn
∑
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∑
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∑
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and then simplify Eq. (B.26) to obtain
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We can repeat this procedure t/n times to the term
∣∣∣∣P (X(t) = x |X(n) = y

)
−P

(
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)∣∣∣∣
1

on the right
side of the above equation to obtain the desired result,
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B.3 Convergence in distribution

We can use Eq. (B.28) along with π invariance to finish the proof,

lim
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t/n (B.33)

= 0. (B.34)

C CONTINUOUS ADAPTATION IS NOT π-INVARIANT

Given the flexibility in scheduling Geman and Geman [1984] ascribed to the Gibbs sampler, one may consider the possibil-
ity that the Gibbs sampler could still be π invariant if we allowed the choice (shape) of Splashes to be adapted according to
the state of the sampler. Such a conjecture would seem reasonable since any individual Splash is invariant. Indeed, Levine
and Casella [2006] make a similar claim about Algorithm 7.1. Unfortunately, we can demonstrate, by means of a simple
counter example, that tuning the Splash (blocking) in general breaks π invariance even when we include all variables with
positive probability.

Consider the case of two uniform independent binary variables X1 and X2 with constant probability mass function

π(x1, x2) ∝ 1

We define an adaptive sampling procedure which picks a variable to sample uniformly at random if both variables have
the same assignment (x1 = x2). However, if the variables have different assignments (x1 6= x2), we pick the variable with
assignment 1 with 90% probability. Let the choice of variable to sample (Splash) be represented by P (S |X1, X2) where
S ⊆ {1, 2}.

Let (X1, X2) be the current state. Let (X ′1, X
′
2) be the new state after one step of the procedure. Then we can define the

kernel transition P (X ′1, X
′
2|X1, X2,S) as

P (X ′1, X
′
2 | S = {1} , X1, X2) ∝ 1 [x′2 = x2]

P (X ′1, X
′
2 | S = {2} , X1, X2) ∝ 1 [x′1 = x1]
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We can derive the distribution of (X ′1, X
′
2) after taking one adaptive Splash step,

P (X ′1 = x′1, X
′
2 = x′2) =

∑
x1,x2

∑
S

P (S |X1, X2)P (X ′1, X
′
2 | S, X1, X2)P (X1, X2)

∝
∑
x1,x2

∑
S

P (S |X1, X2)P (X ′1, X
′
2 | S, X1, X2)

∝
∑
x1,x2

P (S = {1} |X1, X2)1 [x′2 = x2] + P (S = {2} |X1, X2)1 [x′1 = x1]

∝

(∑
x1,x2

P (S = {1} |X1, X2)1 [x′2 = x2]

)
+

(∑
x1,x2

P (S = {2} |X1, X2)1 [x′1 = x1]

)

∝

(∑
x1

P (S = {1} |X1, X2 = x′2)

)
+

(∑
x2

P (S = {2} |X1 = x′1, X2)

)
= 1 [x′2 = 1] (0.5 + 0.1) + 1 [x′2 = 0] (0.9 + 0.1)

+ 1 [x′1 = 1] (0.5 + 0.1) + 1 [x′1 = 0] (0.9 + 0.1),

where the last step of the process is computing by substituting in the values of P (S |X1, X2) as defined by the adaptation
process.

The resulting distribution of P (X ′1, X
′
2) is

x′1 x′2 P (X ′1 = x′1, X
′
2 = x′2)

0 0 0.35
0 1 0.25
1 0 0.25
1 1 0.15

which clearly is not π. The procedure is therefore not π ergodic.

This counter example refutes the proof of Algorithm 7.1 in Levine and Casella [2006], and places conditions upon π-
invariance of the Gibbs sampler described in [Geman and Geman, 1984]. Specifically, simply sampling from every variable
infinitely frequently is insufficient for π-invariance. It is also necessary that the choice of variable to sample from not
depend on the state of the sampler.


