
Supplemental Material
Multiscale Community Blockmodel for Network Exploration

A Nested Chinese Restaurant Process
The nested Chinese Restaurant Process (nCRP) [1] is an extension of the regular Chinese Restaurant Process (CRP), a
recursively-defined prior over positive integers. For concreteness, we shall use the first level of each actor path, ci1, to
define the CRP:

P(ci1 = x | c1:(i−1),1) =

{
|{j<i | cj1=x}|

i−1+γ x ∈ {c1:(i−1),1}
γ

i−1+γ x is the smallest positive integer not in {c1:(i−1),1}
(1)

where γ > 0 is a “concentration” parameter that controls the probability of drawing new integers, and for conciseness we
define c1:(i−1),1 ≡ (c11, . . . , c(i−1)1). The nCRP is essentially a hierarchy of CRP priors, beginning with a single CRP prior
at the top level. With each unique integer x seen at the top-level prior, we associate a child CRP prior with |{i | ci1 = x}|
observations, resulting in a two-level tree of CRP priors. We can repeat this process ad infinitum on the newly-created child
priors, resulting in an infinite-level tree of CRP priors, though we only use a K-level nCRP. All CRP priors in the nCRP share
the same concentration parameter γ.

Now we can finish describing our generative process: for each actor i ∈ N , we can sample ci ∼ nCRP(γ) using the
recursive nCRP definition:

P(cik = x | c1:(i−1), ci,1:(k−1)) =
|{j<i | cj,1:(k−1)=ci,1:(k−1)∧cjk=x}|
|{j<i | cj,1:(k−1)=ci,1:(k−1)}|+γ x ∈ {cjk | (j < i) ∧ cj,1:(k−1) = ci,1:(k−1)}

γ

|{j<i | cj,1:(k−1)=ci,1:(k−1)}|+γ x is the smallest positive integer not in the above set.
(2)

B Stick Breaking Processes
Stick breaking constructions work as follows: Consider a stick of length 1. Draw Vi1 ∼ Beta(mπ, (1−m)π). Let θi1 = Vi1
and let 1 − θi1 be the remainder of the stick after chopping off this length Vi1. To calculate the length θi2, draw Vi2 ∼
Beta(mπ, (1 − m)π) and chop off this fraction of the remainder of the stick, giving θi2 = Vi2(1 − Vi1). Thus Vik is the
fraction to chop off from the stick’s remainder, and θik is the length of the kth stick that was chopped off. In general, we draw
Vik ∼ Beta(mπ, (1−m)π) from k = 1 to k =∞ and the corresponding {θik}∞k=1 is defined below:

θik = Vik

k−1∏
u=1

(1− Viu) (3)

This process is known as the two-parameter GEM distribution [1] (although we refer to it as Stick(m,π)) and draws from
Stick(m,π) are denoted as θi ∼ Stick(m,π). m > 0 influences the mean of θi, and π > 0 influences its variance. Because
the hierarchy is only learnt up to depth K, we truncate the Stick(m,π) distribution at level K. The stick breaking prior makes
it more intuitive to bias interactions toward coarser or finer levels compared to a Dirichlet prior with either a single parameter
(which is not expressive enough), or K − 1 parameters (which may be too expressive).

C Collapsed Gibbs Sampler
Exact inference on our model is intractable, so we derive a collapsed Gibbs sampling scheme for posterior inference. The θ’s
and B’s are integrated out for faster mixing, so we only have to sample z and c.
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Sampling levels The distribution of z→ij conditioned on all other variables is

P(z→ij | c, z−(→ij),E, γ,m, π, λ1, λ2)

∝ P(Eij , z→ij | c, z−(→ij),E−(ij), γ,m, π, λ1, λ2)

= P(Eij | c, z,E−(ij), γ,m, π, λ1, λ2)P(z→ij | c, z−(←ij),E−(ij), γ,m, π, λ1, λ2)

= P(Eij | c, z,E−(ij), λ1, λ2)P(z→ij | zi,(−j),m, π) (4)

where E−(ij) is the set of all edges except Eij , and zi,(−j) = {z→i·, z←·i} \ z→ij . The first term, for a particular value of
z→ij , is

First term =

{
Γ(a+b+λ1+λ2)

Γ(a+λ1)Γ(b+λ2) ·
Γ(a+Eij+λ1)Γ(b+(1−Eij)+λ2)

Γ(a+b+1+λ1+λ2) SijB 6= 0

0 otherwise

a =
∣∣∣{(x, y) | (x, y) 6= (i, j),SxyB = SijB , Exy = 1

}∣∣∣
b =

∣∣∣{(x, y) | (x, y) 6= (i, j),SxyB = SijB , Exy = 0
}∣∣∣ (5)

The second term can be computed by conditioning on the stick-breaking lengths V1, ..., VK associated with z→ij :

P(z→ij = k | zi,(−j),m, π) = E
[
I(z→ij = k) | zi,(−j),m, π

]
= E

[
E
[
I(z→ij = k) | Vi1, ..., Vik, zi,(−j),m, π

]]
= E

[
Vik

k−1∏
u=1

(1− Viu) | zi,(−j),m, π

]

= E[Vik | zi,(−j),m, π]
k−1∏
u=1

E[(1− Viu) | zi,(−j),m, π]

=
mπ +#[zi,(−j) = k]

π +#[zi,(−j) ≥ k]

k−1∏
u=1

(1−m)π +#[zi,(−j) > u]

π +#[zi,(−j) ≥ u]
(6)

Since we have limited the maximum depth to K, we simply ignore the event z→ij > K, and renormalize the distribution of
z→ij over the domain {1, . . . ,K}. The distribution of z←ij is derived in similar fashion.

Sampling paths The distribution of ci conditioned on all other variables is

P(ci | c−i, z,E, γ,m, π, λ1, λ2)

∝ P(ci,E(i·),(·i) | c−i, z,E−(i·),−(·i), γ,m, π, λ1, λ2)

= P(E(i,·),(·,i) | c, z,E−(i·),−(·i), γ,m, π, λ1, λ2)P(ci | c−i, z,E−(i·),−(·i), γ,m, π, λ1, λ2)

= P(E(i·),(·i) | c, z,E−(i·),−(·i), λ1, λ2)P(ci | c−i, γ) (7)

where E(i·),(·i) = {Exy | x = i or y = i} is the set of all edges Eij whose distributions depend on ci, and E−(i·),−(·i) is its
complement. The second term can be computed using the recursive nCRP definition

P(cik = x | c1:(i−1), ci,1:(k−1), γ) =
|{j<i | cj,1:(k−1)=ci,1:(k−1)∧cjk=x}|
|{j<i | cj,1:(k−1)=ci,1:(k−1)}|+γ x ∈ {cjk | (j < i) ∧ cj,1:(k−1) = ci,1:(k−1)}

γ

|{j<i | cj,1:(k−1)=ci,1:(k−1)}|+γ x is the smallest positive integer not in the above set.
(8)
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while the first term, for a particular value of ci, is

First term =

{∏
B∈B(i,·),(·,i)

Γ(gB+hB+λ1+λ2)
Γ(gB+λ1)Γ(hB+λ2) ·

Γ(gB+rB+λ1)Γ(hB+sB+λ2)
Γ(gB+hB+rB+sB+λ1+λ2) ∀Exy ∈ E(i·),(·i), S

xy
B 6= 0

0 otherwise

gB =
∣∣{(x, y) | Exy ∈ E−(i·),−(·i), S

xy
B = B,Exy = 1

}∣∣
hB =

∣∣{(x, y) | Exy ∈ E−(i·),−(·i), S
xy
B = B,Exy = 0

}∣∣
rB =

∣∣{(x, y) | Exy ∈ E(i·),(·i), S
xy
B = B,Exy = 1

}∣∣
sB =

∣∣{(x, y) | Exy ∈ E(i·),(·i), S
xy
B = B,Exy = 0

}∣∣ (9)

where B(i·),(·i) = {B ∈ B | ∃(i, j), (Eij ∈ E(i·),(·i),S
ij
B = B)} is the set of allB ∈ B associated with some edge in E(i·),(·i)

through SB .

D Simulation Framework Details and Additional Experiments

D.1 K=2 experiment details
For K = 2, the 4 types of B’s explored are:

1. on-diagonal, low noise - Bon−diagonal = (.4, .7), Boff−diagonal = (.02, .02);

2. on-diagonal, high noise - Bon−diagonal = (.3, .6), Boff−diagonal = (.1, .1);

3. off-diagonal, low noise - Bon−diagonal = (.02, .02), Boff−diagonal = (.4, .7);

4. off-diagonal, high noise - Bon−diagonal = (.1, .1), Boff−diagonal = (.3, .6).

Bon−diagonal = (a, b) means that actors interacting in the same level-1 community do so with probability a, while actors
interacting in the same level 2 community do so with probability b. Boff−diagonal gives analogous interaction probabilities
for different communities on the same level.

The experiment had N = 150 actors and θ = (.25, .75) for all actors.
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Figure 1: K = 2 experiments

The Gibbs sampler was run for 1,500 burn-in iterations on each experiment. The “number of branches at level 1” refers to
number of branches of size ≥ 5 (since there are often branches of size 1 or 2). For fairness, the ”correct” number of level 1
branches given to spectral clustering is also the number of branches of size ≥ 5. Note that spectral clustering was given the
the number of first level clusters as an advantage (with binary splits in the deeper levels).

D.2 K=3 experiment results
For K = 3, the 4 types of B’s explored are

1. on-diagonal, low noise - Bon−diagonal = (.5, .7, .9), Boff−diagonal = (.02, .02, .02);

2. on-diagonal, high noise - Bon−diagonal = (.5, .7, .9), Boff−diagonal = (.2, .2, .2);
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3. off-diagonal, low noise - Bon−diagonal = (.02, .02, .02), Boff−diagonal = (.5, .7, .9);

4. off-diagonal, high noise - Bon−diagonal = (.2, .2, .2), Boff−diagonal = (.5, .7, .9).

Similar to the K = 2 experiments, Bon−diagonal = (a, b, c) means that actors interacting in the same level-1, 2 and 3
communities do so with probabilities a, b and c respectively. Boff−diagonal gives analogous interaction probabilities for
different communities on the same level.

The experiment had N = 300 actors and θ = (.15, .3, .55) for all actors.
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Figure 2: K = 3 experiments

The Gibbs sampler was run for 3,000 burn-in iterations on each experiment. As in the previous case, spectral clustering
was given the the number of first level clusters as an advantage (with binary splits in the deeper levels). Note that spectral
clustering actually performs better in the “high-noise off-diagonal” case than the ”low noise off-diagonal” case, since the
higher noise means more assortativity for the off-diagonal case.

E Qualitative analysis details

E.1 Grass Food Web Dataset
We ran our Gibbs sampler on the full network to infer the community hierarchy and actor Multiscale Memberships. The
model parameters were chosen via gridsearch over (λ1, λ2) ∈ {.1, .3, .5, .7, .9}2, according to the marginal log likelihood
(estimated using 10,000 importance samples). In line with the held-out experiments, we fixed the remaining parameters to
γ = 1,m = 0.5, π = 0.5. Finally, the hierarchy depth was set to K = 2. We ran our Gibbs sampler using the optimal
parameters λ1 = 0.1, λ2 = 0.5 for 10,000 iterations of burn-in, and took 100 samples with a lag time of 5 iterations. A
plateauing log complete likelihood plot revealed that our sampler coverged well before the last iteration.

The Gibbs samples represent a posterior distribution over paths ci. In order to represent the “average” of this posterior,
we generated a consensus sample by counting the number of times each pair of actors shared the same community hierarchy
position, over all samples. Actors that shared positions in > 50% of all samples were assigned to the same path in the
consensus. For levels z→ij and z←ij , we simply took the mode over all samples. In a final post-processing step to reduce
visual clutter, we merged bottom-level (i.e. level-2) communities with ≤ 5 actors into one community under the same parent.

E.2 High Energy Physics dataset
We applied the same parameter selection and post-processing as the previous dataset; the optimal gridsearch parameters were
(λ1 = 0.7, λ2 = 0.5). Each of the 25 parameter combinations required less than 6 hours to test on a single processor core.
We ran our Gibbs sampler for 10,000 iterations of burn-in, and took 10 samples with a lag time of 50 iterations. The entire
Gibbs sampling procedure completed in just under 23 hours on a single processor core.
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