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Supplementary Material

6 Auxiliary Lemmas: Proof of
Lemma 3

Proof. We can rewrite (6) as an optimization problem
over the £1/¢5 ball of radius C for some C(\,) < 0.

Since A\, > 0, by KKT conditions, , = C for

all optimal primal solution (:j\r.

By definition of the ¢; /¢s subdifferential, we know that

(20),], <
ull2

1. Considering the necessary optimality condition
\Y4 ((:)\T> + A,LZ\T = 0, by complementary slackness

condition, we have <@)\T,Z\T> - C = <@\7,Z\T> -
&,

V\{r} we have H (Z\T)

this would contradict the condition that <é\r, Z\T> =
5)

H o

for any column u € V\{r}, we have ’

= 0. Now if for an arbitrary column u €

< 1 and (é\r)u 2 0 then

For this restricted problem, if the Hessian sub-matrix
is positive definite, then the problem is strictly convex

and it has a unique solution.
O

7 Derivatives of the Log-Likelihood
Function

In this section, we point out the key properties of the
gradient, Hessian and derivative of the Hessian for the
log-liklihood function. These properties are used to
prove the concentration lemmas.

7.1 Gradient
By simple derivation, we have
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It is easy to show that Ee: [60* ARI(CIN )] =0
andVar(ae* @©\,; )>—Z

on drawn samples, we have Var (69* — (O, )) =
Var (L0, 52— (0(0,: D)) < .

. With i.i.d assumption

Hence, for a

fixed t € V\{r} by Jensen’s inequality,
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Considering the terms associated with 67, ,.’s in the
gradient vector of the log-likelihood function, for a
fixed t € V\{r}, only m — 1 (out of (m — 1)?) val-
ues are non-zero. By a simple calculation, we get

<V2 Vi

2

max
teV\{r} || 067, 4.

By Azuma-Hoeffding inequality, we get
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89:15;516
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for all t € V\{r}. Using the union bound, we get

2\f <2€Xp<

0 m—1
P| max ||[——¥4(O\,;D)|| >——+c¢
LGV\{T} 007,41, (O D) ) 2y/n
€2
< 2exp (—4n + log(p — 1)) .
(12)
7.2 Hessian

For the Hessian of the log-likelihood function, we have
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where,
o (59) =, [, 5]
otz =t o, omtfr =5,

Consider the zero-mean random variable
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Notice that Var <Zt(2,1 kyitals k2> < 1 and consequently,

by i.i.d assumption, Var( S Zt(zelkl,t2e2k’2) < %
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Hence, for fixed values t1,¢1, k1 and ty € Sy C V\{r},
we have
j

-

1 n
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n t1l1k1;talaks

i=1
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= E®<r n Z Ztlflkutz(zkz
i=1 9
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n
(13)
This radom variable, for fixed values tq,01,k

and a fixed tp, is bounded and in particular,
1 (i) .
i1 Z 0k stataks , < 2. By Azuma-Hoeffding in-

equality and the union bound,

P [HQES — @5, s,

Vd,
OO72> \/ﬁ—i—e

< 2exp (—in + log ((m — 1)2dr)> .
< 2exp (in +log ((m — l)z(pdrl))>.

(14)
Similar analysis as (13) combined with the ineqality
Amax(+) < ||-||OO’2, shows that

P [HQggST B Qggsq-‘

dr
P |:Amax (Qg,\s,‘ - Qgrsr) > \/7 + €:|

vn
< 2exp <—§n +log ((m — 1)2dr)).

(15)
We also need a control over the deviation of the inverse
sample Fisher information matrix from the inverse of
its mean. We have

N ((Q3,5,)™" ~ (Q5,5,) ")
= Mo ((@5.5) 7" (@55, — Qs.) (Qks) ")
< Ao ((@3,5,) ") A (@55, ~ Q)
A (@2,5)7)
< XK/EAX ((@s)™)-

By part (B1) in Lemma 1, we have

P [Amax (@8s)7)> gt 6]

2
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(1+Cmin€ dy

<2exp |— 3

+log ((m — 1)*d,)

(16)
Hence, we get,

P [ ((@85) - (@55) ) > o me]

min
2
Chiney/n 5
( T+Cmine dr)
8

<4dexp |—

+log ((m —1)d,.)
(17)

7.3 Derivative of Hessian

We want to bound the rate of the change for the ele-
ments of Hessian matrix. Let
VQEZ)Z2k2§tlelk1
9 9%"(e\;D)
o 00\, 007 0%

rtaslaks 7 rt13l1k
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Recall the definition of n(-) from section 7.2. We have
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For any ts3 € V\{r}, each entry is bounded by
1 and there are only m — 1 non-zero entries for

2
each k3. Hence, for any t3, one can colculde that

=T [1l)=ks] P, [X,=t X, =l

Neyty (ﬂf(i)) Neie3 (x(i))

Por, [X, = 1] X\, = g;ﬂ?

eyt (:E(i))H2 < =L for all i. Finally, for

__ 9
00rt5:05k5
all 41 and /5 we have

0 Nevey (w(i))

max _—
89”53 sk3

ts€V\{r}

s V2
8 Proof of Lemma 1

(B1) By variational representation of the smallest
eigenvalue, we have
min xTQETSTx

Amin (QZ‘TST) = Iz,=1
o=

<y"QY s y+y" (Qhs — Q%) v
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for all y € R("=17d- with llyll, = 1 and in particular
for the unit-norm minimal eigenvalue of Q% ¢ . Hence,

Amin (Qgr,sr) > Amin (QZ’TST) - Amax (QZ’TST—Qg,‘S,‘) .

By (15), we get

P [Amin (Qgrsr) < C(min - 6]
S]P[Amax(Qg Sr 7@2’ Sy ) >€]

gzexp( (e‘/ﬁ_\ﬁ) +1og ((m 1)%)).

(B2) We can write

tes (Q4s) " = Qbes. (Q5,5,) "
N—_———
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+ Qs ((Q35) 7 = (Q35) ")

T
+ (Qs, — Qs ) (@5,5) 7"
T
+ Qs — Qs ) ((Q85) ™= (@as) 7).

Ts

Considering assumption (A3), ||TO||002 < 1=20¢ 454

\/E
hence, it suffices to show that [|T3]| , < su fori=

1,2, 3. For the first term, we have

|@ses, (@5 7= (@5.5)7")||

=|@ss. (@5.5.) (@55, @) <QSTST>*1H

J|@ss, (@507, Auax (@35, ~ Q5.
Amax ((@3.5,) ")

00,2

1 —2a+/d, 1
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The last inequality follows from (14) and (16) with
high probability. Setting Clyin = min (Ciyin, 1), by ap-
plying the union bound,

P {HQE,GST ((Qgrsr)_l - (QZ’TST)_1> HOQ2 > e}

2
3 +log(m—1)%d,)|.

<4exp|—

For the second term, we have

n * * -1
H(Qs;sy‘ - ngsr) (@5,s,) HOQQ
< HQ@@ST — Qses,
e3¢} 2

o Vi 1
- \/> Cmm

The last inequality follows from (14) with high proba-
bility. Hence, we have

: U( (Qss, ~ Qs ) (@550 7", > }

2
(e\/ﬁf M)

Cmin

S +log ((m—1Pp—1—d,))|-

max ((@5.5,) ")

<2exp|—

For the third term, we have
H (Qggsr - Qgﬁsr) ((Qgrs )= (Q5s,) )H
| @85~ Qe || s (Q25,) 7 (@55)7)
o Vi Vdr d,
=V CZuV/n — Clum

The last inequality follows from (14) and (17). Hence,
we have

P [l (@3s- @3s.) (@250 @350 3
< Gexp< — (éminef B (1 ;_ Cf:‘{jl?/ﬁ) \/E)Q

+1log (m—1)%*(p—1— dr))>.

v
(B3) We can write
P [Amax (jn) > Dmax + 6]

s -]

Consequently, same analysis as part (Bl) gives the
result.

<P

This concludes the proof of the Lemma.

9 Sufficiency Lemmas for Pairwise
Dependencies

Lemma 5. The constructed candidate primal-dual
pair (é\r, ZA\T> satisfy the conditions of the Lemma 3
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with probability 1—cy exp(—can) for some positive con-
stants c1,co € R.

Proof. Using the mean-value theorem, for some @\r in
the convex combination of (:)\T and @ikr’ we have

v2 (7, 0)[6, -6,
=V (6\5D) - ve(61,:D)
+ (v (01, D) = V2 (6, D)) [y, - O3, ]
= X2y~ VL(67,5D)
NN
W\"T
+ (v (01, 0) = V2 (6, D)) [61, - €7, .

R,

We can rewrite these set of equations as two sets of
equations over S, and S¢. By Lemma 1, the Hessian
sub-matrix on S, is invertible with high probability
and thus we get

Qs (@357 (e 21) - (70)  + (m2), )

=\ (Z\r> se - (W\nr)sg ™ (RQ’”) s’

Equivalently, we get

(o) =5, [090) 7 (50,

- %ng s, @35, )1((W\n’"> s, ( QT) Sr)
+ Q%es, (Qgrsr)il (2\r> S,

Notice that (Z\T) S = 1. Thus, we can establish
" lloo,2
the following bound
H( \ S5 00,2
n n -1
< <1 + HQSﬁST (Q%.s,) HOO LV dr)
w R?
H \r 00,2 H \r 00,2
) ) 1 _ 1
M o
o @
<(2- 1]—-1
=(2-a) (4(2a) Tie—a " )
«a
=1-— 1.
5 <

The second inequality holds with high probability aco-
ording to Lemma 1 and Lemma 6.
O

Lemma 6. For quantities defined in the proof of
Lemma 5, the following inequalities hold:

P HW\n;n 00,2 > «
An T4(2-a)

<2exp | — I +log(p — 1)
P HR\T 00,2 «
An 4(2 — )
(4(261:}) Anv/n — mTil>
<2exp | — +log(p — 1)

Proof. The first inequality follows directly from

(12), for e = ﬁ)‘n — ’2”—\;%, provided that
An > 2@=a)m—l g probability goes to zero, if

= o NG

)\n > 8(2—a) ( /log(p—1) + Tf)

Before we proceed, we want to point out a tech-
nical fact that we will use it through the rest
of the proof. For A, achieves the lower bound
mentioned above, any positive value K and

2
R I

ll2
have \,d, < K. Hence, we can assume \,d, is less
than any fized constant K for sufficiently large n.

In order to bound R, we need to bound

[CORSCSN

Rothman et al. [28]. Let G : R(m=1%d 5 R be a
function defined as

G((0)s,) = (01 +W)s, D) £ ((8%,),, D)
A (H(etr)srﬂrf)sr —|(©%)s, )

1,2
By optimality of (:)\T7 it is clear that (U)S =
(C;)\T.)S — (©,) 4 minimizes G. Since G(0) = 0 by

, using the technique used in
00,2

T

construction, we have G( (ﬁ)s ) < 0. Suppose there

exist an £/l ball with radius B, such that for any

|@)s. ||, = B, we have that G( (U)g ) > 0. Then,
oo 2 "

@)

contrary, we assume that (U)S is outside the ball,

0,

we can claim that < B,; because if, in

T
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then for an appropriate choice of ¢ € (0, 1), the point
t ([j) S+ (1—1t)0 lies on the boundary of the ball. By

convexity of G, we have

This is a contradiction to the assumption of the
positivity of G on the boundary of the ball.

Let ( U)

to the 1og liklihood function, for some 8 € [0,1], w
get

€ Rm=D%d pe an arbitrary vector with

=5—\,. Applying mean value theorem

Crmin

G(W)s,) = (M) - (), )
+ <(U)ST v ((@;)S L BU)g,
L), )

i (H (61,), +
(19)

We bound each of these three terms individually. By
Cauchy-Schwartz inequality, we have

D)a0&>

(70, s < [00)g ||, 100

Q@ )
< Andy An
- 4(2 - ) CVmim
5
< d. 2.
- 4fcvmin "

Moreover, by triangle inequality,

e, ].)

=X ||(U)

A”OM@VXL+“”& T

1,2

Y

Sy |1,2

v

A2,

CYmin

To bound the other term, notice that by Tailor expan-

sion, we get

Ammin (v% ((@’\;) , TBO)s, ;D>>

2 * .
e, 00,
> Amin (Qg,,sr)

2 .
— max Apax —8V £(0s,; D) ) (U)S
pelol 9Os, (e* ) +8(U) '
) gt Sp
o .
> Cpin — max || =—=———"¢, ¢, 20 \/dT)
- (tgeV\{r} Dbrigtgs ! ( ) )

0,2’

A (37) V- || (U
(20)

where, n(-) is defined in Section 7.2. We know that
Amax(S*) = Amax(T*) as a property of Kronecher
product. By (18) and assumption on the maximum
eigenvalue of J*, we have

Ammin (v%(( ) +B(U)ST;D>)

m—1

> C(min - ermax U
> Coin = " 0 Do 05
m—1 5
> Cmin - T = ermaxi)\n
- \/é CYmin
Cmin ( 02 )
Z by d’r < min .
2 Vo ( ) max

Hence, from (19), we get

5 1 5

We can colclude that

s, <®§T) S

with high probability. With similar analysis on the
maximum eigenvalue of the derivative of Hessian as in
(20), it is easy to show that

H (é\,.) s Cim An. (21)

r

HR\T 00,2

An
1 m-— A 2

<— 4 Do || (011) . = (©1,)
An \/i s, RCH
m—1 25

< d'I‘Dmax )\n

- V2 Chin

>

42 -a)’

2
min o

provided that A\,d, < 50v2(m—1)Dinax 2—
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10 Proof of Lemma 4

(D1) By variational representation of the smallest
eigenvalue, we have

Amin<[v2£(@?5 ﬂs,s)
ZAmin<[ o(e0)], )
Amax({ (G )}

- [ve(enn)] )
> Cmin(1+7)

e{[e(er0)] ; [Fe(eno)], )

In the second inequality, we used the result of
Lemma 1, i.e., the inequality holds with probability
stated in Lemma 4. By Tailor expansion, for some
B €10,1], and by (23), we get

o ([(050)] - [F(037),.,)

< A <6 [V%(é; b Hsrsr

00

< HV’I]&[Q (l'(i))HooDmax ||é*P(, 1
:’chin-

Note that Hlegz (Jc(i))HOO < 1 for n(-) defined in
section 7.3. The last inequality holds as a result of
Lemma 1 with the probability stated in Lemma 4.
Hence, the result follows.

(D2) We can write

V2 (675 D) g, (V20 (O3 D) g o )_1 =T

where,

-1

To =V (6%.; D) sgs,.(vgé (e%,:D) s,,s,.)

T1 = V2€ (é<r7 D) ses,

((vzz (é};;D)STST)*l_ (V2£ (675D Srsr)fl)

= (V*£(03; D) gy 5.~ V7

By Lemma 1, we have that ||To||, ; < % with the
probability stated in Lemma 4. For the second term,

we have

171 2
2 Ok . 2 Q* .
< ||T0Hoo 2Amax VL (Q\T’D)S,,E,.v (( PvD)sTsr
T2
) -1
Auax | (V20 (85 D) 5 )
T3
1 -7 1 1—7
> ’chln = Y-
\/7 I'IllIl \/a
We used the result of (D1) for Apax (T13) < C
For the third term, we have
2 . 2 % .
Tell < [V (65, ) = V2 (O3 D) g
Ta1 00,2
-1
Amax | (V22 (é* D
( \r )s,.s,)
Taz
< ACm; L
= YCmin Cmm(l i 'Y)
-0
I+~

For the fourth term, we have

T3]l 0.2 < 1721l 00 2 Amax (T22) Amax (T12) Amax (T13)
1 1
< Cmini len
=7 C(min(l + ),y Omln
2
<
I+~

Putting all piences together, we get the result.
(D3) The result follows directly from Lemma 1.

This concludes the proof of Lemma.

11 Sufficiency Lemmas for Higher
Order Dependencies

Lemma 7. The constructed candidate primal-dual
pair (é\r, ZA\T> satisfy the conditions of the Lemma 3
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with probability 1—cy exp(—can) for some positive con-
stants c1,co € R.

Proof. Using the mean-value theorem, for some C:)\T in
the convex combination of C:)\T and (:)*P, we have

V2 (63 D) [0\, — O3]
=V (6y5D) = VE(p: D)
+ (V2 (875 D) - V(8,3 D)) [0\, — 03]
= -2\, — V{(0}; D)
we,
+ (V2 (6} D) = V2 (8,3 D)) |6y, - 65

R(Lr
We can rewrite these set of equations as two sets of
equations over S, and S¢. By Lemma 4, the Hessian

sub-matrix on S, is invertible with high probability
and thus we get

V2 (Op: D)S:ST(VQE (©%; D)Srsr)il
(e ()5 0250, )
= —An (Z\r) (Wv) - ( 7?7‘) se

Notice that ‘(Z\T)S =1 and hence, we get

T

00,2

c
rlloo,2

§<1+Hv2£(@};; Dyes (V2 (€ 'D)ss)_l

wy R?
H \r 00,2 H \r 00,2
2 41] -1
A N
(0% [0
<(2- 1) -1
( a)(4(2—a)+4(2—oz)+>

«
—1-2 <1

9 <

The second inequality holds with high probability ac-
cording to Lemma 4 and Lemma 8.
O

Lemma 8. For quantities defined in the proof of

Lemma 7, the following inequalities hold:

; HW\";H o

szeXp<_<<4<za—oMn %IIG;C ) vi-mgt)’
+10g<p_1))

; HR?LM o

gexp(_((m pu Lo .
+10g<p_1)>_

Proof. By simple derivation, we have

9 L .
= () (@p;D) =T |2 =k
ae;t;ek ( P ) |:xt ]

(o

It is easy to show that

=] =P, [X, = | X\, =al)]).

9 .
—(")(©p; D)
89:15;616

= IFD(:)<T [XT =/ | Xt = kaX\r,t = x\r,t]

Eg-

r

- Pé; [Xr =l Xy = k%X\nt = Jf\r,t]
<|[©%-|,
s [VPo: ey, D6 =01X = kX = |
1 O *
< 7195,

where, with abuse of notation @ir — B©%. repre-
sents the matrix @ir purturbed only on the en-
tries corresponding to ©%.. Also, one can show
that Var(ae* 90, )) < L
with iid assumptlon on drawn samples, we have
Var( f(@\r, )) < 1. For a fixed ¢t € V\{r}

Consequently,

89*
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by Jensen’s inequality,

0
Ee:, [ ma@\r;D) j

2

< | Eex, |5§¢t;ek6(6\T;D) .

S WICEDSTT

—1 1,-
< 7;7 165, -
We have max;cy ) 80* E() (©\r; D H < /2 for

all ¢ and hence, by Azuma Hoeffdmg mequahty and
the union bound, we get

o} m—1 1,
P||l—2—r©,:D) >2—Li2|6%
‘a‘git;ek (©\i D) 2v/n +2H pella e
2
< 2exp (—411 + log(p — 1))
For ), > 8(2;0‘) (T—\} i‘@*L ), the result
follows.

we need to control the estima-

. Let H : Rm—1)%d

In order to bound RY,,
tion error (@\T) (%) 4

be a function defined as
H(Us,) = ¢ (((:);)ST +Us,; D) y ((@P) : )
12 H((:D*P)S 1,2) '

By optimality of (:)\T, it is clear that U* = (é\r)s —

(63 ) g, Minimizes H. Since H(0) = 0 by construction,
we have H(U*) < 0. Suppose there exist an £ /lo
ball with radius B, such that for any [[U|, , = B,
we have that H(U) > 0. Then, we can claim that
lU*|| .2 < Br. See proof of Lemma 6 for more dis-

cussion on this proof technique. Let Uy € R(m—1)d-
be an arbitrary vector with ||Upll 5, = We
have

> R

+ A (H (03)g +Us,

5
Cmin An-

—f ((é}")sr ;D)
) )-

(22)
We bound each of these three terms individually. Ap-
plying mean value theorem to the log liklihood func-

H(Uy) == ¢ ((é};)sr + Up; D)

+3 (]| @), + ], - 0

tion, for some S € [0, 1], we get
¢((0p)g +UoiD) —£((6p)5,: D)
:<(W”7.)S,T U0>+<U0,V2€ ((8%)s,+ BUs D)Uo) .

Note that 4(2 ) /\ < )\ and hence, by our bound
on W\”T and Cauchy- Shwartz inequality, we have

(0%, )] <

An
< 7dr ||U0H

||UO||1,2

00,2

H(W@)S

r

\d,.

4Cm1n

To bound the other term, by Tailor expansion, we get

Auin (V22 ((87)

+ BU(M ) )
> min Apin (
1]

Belo, <( )Sv BU; ))

= (22(105)57)
v (00, )

— max Apax <

B€[0,1] ( P)Sr

Z C(min
87]@152 ((E(Z))
— max —_— d’r' Am < (\}* U .
ts€V\{r} 897“753;@31433 ) a ( )H 0“ 2
m—1
> Cmin e dTDmax U, -
- \/§ H OH 2
i 2

2 len ()\ dr < len ) .

’ VB0(m ~ 1) Dy

(23)
Here, we used the fact that Apmax(S*) = Amax(T*) as
a property of Kronecher product and also our assump-
tion on the maximum eigenvalue of J*. By triangle
inequality,

Mo (165 + ol , — 105

12) = = Uolly 5
—Andy ”UOHoo 2
_5A2d,

C'min .

%

522 d,.
Hence, from (22), we get H(Ug) > 1o

hence,

> 0 and

<
"loo,2 Chin

H (é\r)& - Ay (24)

(%) s

with high probability. With similar analysis as in 23,
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we have
..,
An
<LL_1dD (@)_(@*) 2
= An \/§ r4/max \r s, \r s, s
m—1 25

< ———drDnax =5 Mn
B \/i C'1'2nin
<@
T 42-a)’

provided that A,d, < ——z Ciin__a

50v/2(m—1)Dppay 2—°



