On Time Varying Undirected Graphs

Supplementary material

We will use C1,C5, ... as generic positive constants
whose values may change from line to line.

Technical results of Section 2.1

In this section of the appendix we collect proofs of
Section 2.1 and some additional technical results.

Some deviation results

Let 7 = (67,) and 7 = (07,). To bound the
element-wise deviation of the weighted sample covari-
ance matrix 37 from the population covariance matrix
37, we use the following decomposition
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Standard treatment of the expectation integrals gives
us that |[E67, —o7,| = O(h), see for example Tsybakov
(2009). The following Lemma characterizes the first
term in Equation (22).
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Lemma 10. Let T € [0,1] be a fived time point. As-
sume that X7 satisfies the assumptions S and C and
the kernel function satisfies the assumption K. Let
{x%} be an independent sample according to the model
(1). Then
P[|67, —E6T,| > €) < Cexp(—Canhe?), e <6,
(23)
where Cy,Cs and § depend only on Aynax and Mg .

Proof. The argument is quite standard. We use some
ideas presented in Bickel and Levina (2004). Let us
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A simple calculation gives that
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which combined with the equation above and union
bound gives
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where Z' are independent A (0, 1). The lemma follows
from the standard results on the large deviation of x?
random variables. O

The bandwidth parameter needs to be chosen to bal-
ance the bias and variance in (22). If the bandwidth is
chosen as h = O(n~1/3), the following result is straight
forward.

Lemma 11. Under the assumptions K, S and C, if
the bandwidth parameter satisfies h = O(n='/3) | then

P[mabx 60, — o] > €) < Cyexp(—Con®/?e® + logp),

where C1 and Co are constants depending only on My,
My, and Apax-

Proof. The lemma follows from (22) by applying the
union bound. O

Next, we directly apply Lemma 5 and Lemma 6 from
Ravikumar et al. (2008) to obtain bounds on the de-
viation term A = Q7 — Q7 and the remainder term
R(A).

Lemma 12. Assume that the conditions of Theorem 1
are satisfied. There exist constants C1,Cy > 0 depend-
ing only on Anax, Moo, Ms, My, Mz and o such that
with probability at least 1 — C1 exp(—Csqlogp), the fol-
lowing two statements hold:

1. There exists some Ma > 0 depending on Amax,
My, Ms, Mg, Mz and « such that ||Alle <

Man=13\/logp.

2. Furthermore, element-wise maximum of the re-
mainder term R(A) can be bounded ||R(A)]]|s <
aX
?-

Proof. We perform the analysis on the event A defined
n (27). Under the assumption of the lemma, we have
that n > Cd*(logp)®/? and on the event A,
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This implies that under the conditions of Lemma 6
and Lemma 5 in Ravikumar et al. (2008) are satisfied
and we apply them to conclude the statement of the
lemma. O
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The following lemma gives us deviation of the mini-
mum eigenvalue of the weighted empirical covariance
matrix from the population quantity.

Lemma 13. Let 7 € [0,1] be a fized time point. As-
sume that X7 satisfies the assumptions S and C and
the kernel function satisfies the assumption K. Let

{x'} be an independent sample according to the model
(1). Then
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where C1,Co and Cs are constants that depend only
on Amax, Ms, and Mg .

Proof. Using perturbation theory results (see for ex-
ample Stewart and Sun (1990)), we have that
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But then using (22), Lemma 10 and the union bound,
the result follows. O

Proof of Proposition 3

We will perform analysis on the event

A={IE -9 e

Under the assumptions of the proposition, it follows
from Lemma 11 that P[A] > 1 — C;exp(—Cslogp).
Also, under the assumptions of the proposition,
Lemma 12 can be applied to conclude that R(A) <

%)‘. Let e; € RISl be a unit vector with 1 at position

j and zeros elsewhere. On the event A, it holds that
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for a sufficiently large constant M,,,.

Proof of Proposition 4

We will work on the event A defined in (27). Under
the assumptions of the proposition, Lemma 12 gives

R(A) < 2. Lete; € RP’~IS| be a unit vector with 1
at position j and zeros elsewhere. On the event A, it
holds that
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which concludes the proof.

Technical results of Section 3

In this subsection, we provide a proof of Lemma 9.

Proof of Lemma 9

Only a proof sketch is provided here. We analyze the
event defined in (18) by splitting it into several terms.
Observe that for b € N, we can write

in(Ehn) Xy

+ By (B T = Zin (SR T Xy
+ v;;

xp =

where vj ~ N(0,(0})?) with of < 1. Let us denote
V, € R™ the vector with components ﬁg = \/uT: Ug.
With this, we have the following decomposition of the
components of the event £4. For all b € N¢,

wy1 = By (Bin)  Asign(05),
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w3 = Villy (E?)

wpa = F, [(XN(ﬁJNN)_l)‘ sign(0}) + g (E! +E2)} ;

where H)%(N is the projection operator defined as I, —

Xy (X'yXn) "1 X", E! and E? are defined in the proof
of Lemma 8 and we have introduced Fb € R™ as the
vector with components fi = \/wl[Syy (S y) " —
T v(E%N) " H'x%. The lemma will follow using the
triangle inequality if we show that

max |wp 1] + [wp 2| + [wp3] + [wp 4] <A
beNC

Under the assumptions of the lemma, it holds that
maxpene |[wp 1] < (1 —9)A.
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Next, we deal with the term w;, 2. We observe that
conditioning on Xg, we have that wp is normally
distributed with variance that can be bounded com-
bining results of Lemma 13 from the supplementary
material with the proof of Lemma 4 in Wainwright
(2009). Next, we use the Gaussian tail bound to con-
clude that maxye yc |wp.2| < ¥A/2 with probability at
least 1 — exp(—Canh(dlogp)~1).

An upper bound on the term wy 3 is obtained as fol-
lows wp 3 < ||\~7b||2\|H§:(N (E?)||2 and then observing
that the term is asymptotically dominated by the term
wp,2. Using similar reasoning, we also have that w4
is asymptotically smaller than wy s.

Combining all the upper bounds, we obtain the desired
result.



