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7 APPENDIX: derivations

7.1 Finite parametrization of GP

We describe here in more details how to get the
equivalent finite dimensional parametrization of GP
for regression (used in Sec. 4.1). We recall that
fD = (f(x1), . . . , f(xN ))>, and let frest be the values of
f on the complement of D. Because of our conditional
independence assumptions, we have that the posterior
factorizes: p(f |D) = p(frest|fD)p(fD|D). By using the
linearity of expectations and interchanging the order
of integration, the posterior risk thus becomes:

RpD (h) = (30)∫
RN

p(fD|D)

(∫
X ,Y

p(x)p̃(y|x, fD)`(y, h(x))dydx

)
dfD,

where we have defined:

p̃(y|x, fD)
.
=

∫
p(y|x, f)p(frest|fD)dfrest

= N
(
y|KxDK

−1
DDfD, σ

2
x

)
.

(31)

The Gaussian expression in (31) is from standard prop-
erties of GP (basically coming from conditional inde-
pendence and the conditioning formula for multivariate
normals); by doing the change of variable θ = K−1

DDfD,
we get the expressions that we gave in (18). We can
then use the loss L(θ, h) defined in terms of p(y|x, θ)
instead of L(f, h) defined in term of p(y|x, f) and do
an equivalent analysis.

7.2 GP regression equations

The posterior pD is a Gaussian with mean µpD =
(KDD+σ2I)−1y and covariance ΣpD = K−1

DD− (KDD+
σ2I)−1 (recall that we did the change of variable θ =
K−1
DDfD) where y is the vector of outputs (y1, . . . , yN )>.

By using the block matrix inversion lemma, we can get
that Σ−1

pD = KDD + σ−2K2
DD and so is different from

Λ from (21). Even if we use the empirical distribution
on D as the test distribution p(x), then we get Λ =
K2
DD/N , which is still missing an additive KDD to

become proportional to Σ−1
pD .

We now derive the µq which minimizes the KL expres-
sion given in (22) subject to the sparsity constraint.
We partition the set of indices of the dataset into a
fixed set S of size k for the non-zero coefficient of µq
and T for the set of coefficients that we constraint to
zero. Writing Λ̃

.
= Σ−1

pD and setting the derivative to
zero, we get that the non-zero components of µq (on
the set S) are given by:

µqKL
sp

= Λ̃−1
SSΛ̃SDµpD . (32)

Substituting Σ−1
pD = KDD + σ−2K2

DD and µpD =

(KDD + σ2I)−1y, we have that:

Λ̃SDµpD = KSD(I + σ−2KDD)(KDD + σ2I)−1y

= σ−2KSDy, (33)

which is the convenient cancellation that enables us to
avoid the inversion of the N×N matrix KDD which was
previously needed to compute µpD . Substituting (33)

into (32) and expanding Λ̃SS , we get

µqKL
sp

=
(
σ2KSS +KSDKDS

)−1
KSD y, (34)

which only requires the inversion of a k× k matrix and
so is computable in O(k3 +Nk2) time.

On the other hand, the minimizer of dL in (20) with
sparse constraints is µqoptsp

= Λ−1
SSΛSDµpD which does

not yield similar cancellations and so does not seem
efficiently computable. It is clear in this case though
that µqoptsp

6= µqKL
sp

(unless S = D) and so it leaves

open how to obtain efficiently an approximate sparse
solution with lower Bayesian risk.

7.3 Derivation of hq for GPC

We provide a derivation here for (26). The q-
conditional-risk, which we want to minimize pointwise,
takes in this case the form:

Rq(y′|x) = I{y′=+1}c+Φ

(
−KxDµq
σq(x)

)
(35)

+ I{y′=−1}c−Φ

(
KxDµq
σq(x)

)
.

So to minimize it pointwise, we want to choose y′ = +1
when:

c+Φ

(
−KxDµq
σq(x)

)
< c−Φ

(
KxDµq
σq(x)

)
.

Using the fact that Φ(−a) = 1− Φ(a) and rearranging
the terms give the choice function (26).
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