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Abstract

We analyse the noise arising in collabora-
tive filtering when formalised as a proba-
bilistic matrix factorisation problem. We
show empirically that modelling row- and
column-specific variances is important, the
noise being in general non-Gaussian and het-
eroscedastic. We also advocate for the use
of a Student-t prior for the latent features as
the standard Gaussian is included as a spe-
cial case. We derive several variational in-
ference algorithms and estimate the hyper-
parameters by type-II maximum likelihood.
Experiments on real data show that the pre-
dictive performance is significantly improved.

1 INTRODUCTION

Techniques to factorise large, partially observed matri-
ces are recognised as reference methods for large-scale
collaborative filtering tasks [HP99, BL07] and data im-
putation [KMBM10]. The simplest method to perform
this task is the singular value decomposition (SVD),
which finds a low-rank bilinear approximation of the
observation matrix. Entries of the matrix are mod-
elled by an inner product between two low-dimensional
feature vectors, which are usually estimated by min-
imising a squared loss. In the fully observed case, this
problem can be solved by classical SVD. It is known to
have a unique solution, which can be obtained by a se-
ries of rank-1 approximations applied on the residuals,
i.e. the difference between the observations and the
model predictions. In collaborative filtering, however,
most of the entries are missing. The corresponding
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optimisation problem is a weighted version of SVD,
which is substantially more difficult to solve. Sim-
ple EM-like algorithms estimating the distribution of
missing entries are typically slow to converge when
the data are sparse [SJ03]. Most existing methods use
block-coordinate gradient descent algorithms based on
alternating regressions, sometimes called criss-cross re-
gression [GZ79]. Several authors considered robust al-
ternating regression to add robustness against outliers
and to stabilise the algorithm (i.e. to avoid local min-
ima) [CFPR03, MY08]. They showed that robust esti-
mators for the weighted SVD problem provide signif-
icant improvements in terms of parameter estimation
and predictive performances. While these approaches
can be applied to collaborative filtering, they are ad-
hoc in the sense that they were designed to alleviate
the inherent difficulties of the estimation problem, but
are not justified in terms of probabilistic modelling.

Recently, several probabilistic interpretations using a
Gaussian noise model, commonly denoted by the term
probabilistic matrix factorisation (PMF), were shown
to lead to significant improvements over the standard
SVD [LT07, RIK07, SM08b], essentially due to the im-
plicit smoothing included in the model [NS10]. While
assuming Gaussian noise makes sense when the obser-
vations are continuous, it is less justified when they are
on an ordinal scale. Still, it was reported that PMF
performed well on this kind of data. A potential ex-
planation is that a continuous noise model accounts
for the user’s occasional mood swings, leading to feed-
back of varying quality. However, there is no reason to
think that other continuous models would not perform
as well or better than a Gaussian model.

The full Bayesian treatment of PMF, known as
Bayesian matrix factorisation (BMF) [SM08a], fur-
ther extends the probabilistic model by imposing
Gaussian-Wishart priors over the low-rank decompo-
sition. Again, there is no reason to think a priori that
these priors should be Gaussian-Wishart in practice.
A study of the posteriors obtained by BMF on stan-
dard movie recommendation benchmarks show that
the tails are significantly stronger than the tails of the
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Gaussian distribution (see e.g. the histograms in Fig. 3
in [SM08a]).

Robustness is key to the success of practical super-
vised and unsupervised learning techniques (see e.g.
[MHN07] for an application of M-estimators to collab-
orative filtering). A reduced sensitivity to model mis-
specifications is necessary to handle outliers and atyp-
ical observations, which are very common in real data.
A natural way to obtain robust probabilistic models is
to replace the Gaussian distributions by heavy-tailed
distributions such as the Student-t. This approach
was adopted in robust principal component analy-
sis [ADV06], robust linear models for regression [TL05]
and robust clustering [AV07]. In this work robustness
is incorporated in two different ways. First, we replace
the Gaussian noise model used in BMF by a Gaussian
scale mixture-based noise model. This model is closely
related to a Student-t one, which is obtained by inte-
grating out a Gamma distributed scale variable in a
Gaussian scale mixture (see Appendix A). Instead,
we consider two rescaling factors per observation (rat-
ing, one due to the row feature (user) and one due to
the column feature (item). We show empirically that
modelling row- and column-specific variances in bilin-
ear forms significantly improves the predictive perfor-
mance. Second, we consider Student-t priors on the
latent features. We advocate that in practice the dis-
tribution of these features is non-Gaussian and show
that considering heavy-tailed priors further improves
the quality of the predictions. The paper is organ-
ised as follows. Section 2 motivates and introduces a
heteroscedastic noise model for BMF. Section 3 pro-
poses non-Gaussian prior distributions for the features
matched to the noise. Sections 4 and 5 detail the in-
ference and learning algorithms. They are followed by
implementation details, experiments and conclusion in
Sections 6, 7 and 8.

2 NOISE MODELS FOR BMF

Let N be the number of users and M the number of
rated items. The aim is to compute a factorised form
of the rating matrix R ∈ R

N×M . This low-rank ap-
proximation will have the effect of pooling users and
items together, which in turn will help us predict un-
observed entries. We further let W ∈ R

N×M be the
indicator matrix of the observed elements of R, that
is wnm equals 1 if rnm has been observed and 0 other-
wise. The collaborative filtering problem can then be
written as a weighted SVD problem [SJ03]:

min
Φ,Ω
‖W ∗ (ΦΩ⊤ −R)‖2F (1)

where ‖.‖F is the Frobenius norm and ∗ the Hadamard
product. The tall matrices Φ = (φ1, · · · ,φN )⊤ ∈

R
N×K and Ω = (ω1, · · · ,ωM )⊤ ∈ R

M×K denote re-
spectively the user-specific and item-specific feature
matrices. In our notation, the rows of Φ correspond to
the latent row features and the rows of Ω to the latent
column features. Solving the weighted SVD problem
is more involved than standard SVD as the typically
used sequence of rank-1 approximations of the residu-
als is not guaranteed to converge to a solution of (1).

2.1 Gaussian Noise

A probabilistic interpretation of (1) is obtained by
assuming that given the latent features φn and ωm,
the observation rnm is isotropic Gaussian with mean
φ⊤

n ωm and constant precision τ > 0. The log-
likelihood of the observed ratings is then given by:

ln p(R|Φ,Ω, τ) =
∑

ℓ

lnN (rℓ|φ⊤
nℓ

ωmℓ
, τ), (2)

where ℓ now indexes the observed ratings.1 A so-
lution to (1) is obtained by maximising (2) with re-
spect to the features. To prevent overfitting one can
impose isotropic Gaussian priors on them, leading to
maximum a posteriori estimators. This approach was
adopted in PMF [SM08b]. The many Bayesian exten-
sions [LT07, RIK07, SM08a] consider Gaussian priors
of various flavours.

All those models make strong assumptions about the
noise: not only it is considered to be normally dis-
tributed, but it is also assumed to be homoscedas-
tic, i.e. having a constant noise level across rows and
columns of R. This can be counter-intuitive in many
situations. For example, in movie rating applications,
some users might have the tendency to give nearly con-
stant ratings, while others might have more diverse
opinions, using the full scale of ratings. A similar
observation can be made about the movies (or items
in general): conventional movies might have a signif-
icantly smaller variance in their ratings than avant-
garde films which tend to polarize the users’ appreci-
ation. To account for this variability, simple normal-
isation can be used (e.g. standardising user ratings
by subtracting the mean and dividing by the standard
deviation), but this pre-processing is subject to esti-
mation error (e.g. when there are few observations
per items). More importantly, normalisation is appli-
cable, either to the rows, or the columns of R, but not
to the rows and the columns simultaneously, which is
precisely the situation that concerns collaborative fil-
tering problems.

As an illustration, we computed the PMF solution on
one third of the ratings of the One Million MovieLens

1
nℓ (mℓ) refers to the user index (item index) of the ℓ

th

observed rating. The notation ℓn (ℓm) refers to all observed
ratings for user n (item m).
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data set, used another third to compute the per-user
and per-item unbiased variance estimates, and the last
third was used as the test set to analyse the resid-
uals, which are defined as rnm − φ⊤

n ωm. For each
user, we computed the unbiased empirical variance of
the residuals of their predicted test ratings and plot-
ted the histogram in Fig. 1 (top). We then computed
the distribution of these variances by sampling a large
number of ratings under the PMF model assumption,
i.e. Gaussian homoscedastic noise model, for the same
features and noise as before. The resulting predicted
distribution corresponds to the red curve in Fig. 1
(top). We see that there is a significant mismatch
between the model predictions and the actual ratings
assuming a constant variance. In other words, if the
homoscedastic Gaussian distribution assumption was
true, the range of the observed variances would have
been much smaller. We also computed the predicted
variance distribution under the per-user heteroscedas-
tic noise model (green thick curve), where the per-user
variances were estimated with one third of the data.
It can be observed that with this more flexible model,
the per-user heteroscedastic model predicts the dis-
tribution of variances much more accurately. Fig. 1
(bottom) corresponds to the analysis of the residuals
per movie (item). Again, there is a model mismatch
in terms of spread the homoscedastic model. By con-
trast, the per-movie heteroscedastic model leads to a
more accurate fit of the noise variance distribution.

2.2 Gaussian Scale Mixture Noise

A natural noise structure to account for the hetero-
geneity in the user- and item-specific variances is the
following heteroscedastic Gaussian scale mixture noise
model:

ln p(R|Φ,Ω,α,β, τ) =
∑

ℓ

lnN (rℓ|φ⊤
nℓ

ωmℓ
, ταnℓ

βmℓ
).

The key difference with (2) is that the precision of
rating rℓ is now reweighted by the user-specific scale
αnℓ

and the item-specific scale βmℓ
. The prior on the

scale parameters are given by

p(αn) = Ga(αn|a0

2 ,
b0
2 ), (3)

p(βm) = Ga(βm| c0

2 ,
d0

2 ), (4)

for all n and m. The parameters a0 and b0 are shared
by all users, while the parameters c0 and d0 by all
items.

3 PRIORS FOR BMF

The latent features in PMF [SM08b] and BMF [LT07,
RIK07, SM08a] are assumed to be independent Gaus-
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Figure 1: Histogram of empirical variances of the resid-
uals per user (top) or per movie (bottom) under PMF.
Line plot of the predicted distributions of the residual
variances under PMF with a homoscedastic and a het-
eroscedastic noise model. Only users or movies with
at least 100 ratings in the 1 Million MovieLens data
set were considered.

sians. However, there is no reason in practice to believe
the Gaussian assumption is always justified.

A popular measure of “non-Gaussianity” is the kur-
tosis, which quantifies the peakedness of a distribu-
tion. A high kurtosis is related to the distribution
tails as more of the variance is due to infrequent,
possibly relatively extreme deviations. Student-t and
other Gaussian scale mixtures have a kurtosis typically
higher than that of the Gaussian. Recently, it was
shown in [ADV06] that probabilistic principal com-
ponent analysis (PCA) with Student-t features leads
to improved models of large dimensional data. In the
context of collaborative filtering, where PMF is known
to be the equivalent of probabilistic PCA with missing
information, a similar improvement is to be expected
when imposing Gaussian scale mixtures priors on the
features:

p(Φ) =
∏

n

∫
N (φn|0, αnΛφ) p(αn) dαn, (5)

p(Ω) =
∏

m

∫
N (ωm|0, βmΛω) p(βn) dβn, (6)

where p(αn) and p(βn) are given by (3) and (4).

Following [LT07], we restrict Λφ and Λω to be diagonal
precision matrices, say Λ−1

φ = diag
{
σ2

1 , σ
2
2 , . . . , σ

2
K

}
,
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Λ−1
ω = diag

{
ρ2
1, ρ

2
2, . . . , ρ

2
K

}
. As shown in Ap-

pendix A, the integrals in (5) and (6) are analytically
tractable leading to multivariate Student-t distribu-
tions.

4 VARIATIONAL INFERENCE

We are interested in a deterministic approximation of
the full Bayesian matrix factorisation problem and fol-
low therefore a variational EM approach [NH98, Att00,
Bea03]. In this approach, the log-marginal likelihood
is lower bounded by the negative variational free en-
ergy:

ln p(R) = −F(q,θ) +KL (q(z)||p(z|R,θ)) ≥ −F(q,θ),

where z = {Φ,Ω,α,β} are the latent variables, θ =
{τ,Λφ,Λω, a0, b0, c0, d0} are the parameters and the
variational free energy F is defined as follows:

F(q,θ) = −〈ln p(R, z|θ)〉q −H[q], (7)

In order to find a tractable solution, it is in general
assumed that the variational approximate posterior
q fully factorises, that is q(z) = q(Φ)q(Ω)q(α)q(β).
This approach is known as mean field (see e.g. [Bis06]).
In this work we also consider a structured varia-
tional approximation [Wie00] of the form q(z) =
q(Φ,α)q(Ω,β). Structured variational approxima-
tions have been shown to be beneficial in practice as
the correlations between latent variables are not un-
necessarily ignored and they reduce the bound gap (see
e.g. [AV07]).

4.1 Gaussian Scale Mixture Noise with

Gaussian Priors on the Features

The mean field approximation leads to the following
Gaussian variational posteriors for the latent features:

q(Φ) =
∏

n
N (φn|φ̄n, S̄n),

q(Ω) =
∏

m
N (ωm|ω̄m, R̄m),

where

φ̄n = τᾱnS̄−1
n

∑
ℓn

β̄mℓ
ω̄mℓ

rℓ,

S̄n = τᾱn

∑
ℓn

〈βmℓ
ωmℓ

ω⊤
mℓ
〉+ Λφ,

ω̄m = τ β̄mR̄−1
m

∑
ℓm

ᾱnℓ
φ̄nℓ

rℓ,

R̄m = τ β̄m

∑
ℓm

〈αnℓ
φnℓ

φ⊤
nℓ
〉+ Λω.

The variational posteriors for the scale parame-
ters are q(α) =

∏
n Ga(αn|an

2 ,
bn

2 ) and q(β) =∏
m Ga(βm| cm

2 ,
dm

2 ).

Their parameters are given by

an = a0 + 1,

bn = b0 + τ
∑

ln
〈βmℓ

(rℓ − φ⊤
n ωmℓ

)2〉,

cm = c0 + 1,

dm = d0 + τ
∑

ℓm

〈αnℓ
(rℓ − φ⊤

nℓ
ωm)2〉.

4.2 Gaussian Noise with Student Priors on

the Features

We consider a structured variational approximation by
restricting the variational posteriors for Φ and Ω to be
of the same form as the priors, that is Gaussians with
scaled covariances:

q(Φ|α) =
∏

n
N (φn|φ̄n, αnS̄n), (8)

q(Ω|β) =
∏

m
N (ωm|ω̄m, βmR̄m), (9)

Direct maximisation of the bound −F wrt φ̄n and S̄n,
as well as ω̄m and R̄m leads to

φ̄n = τ S̃−1
n

∑
ℓn

ω̄mℓ
rℓ,

S̄n = τ〈α−1
n 〉

∑
ℓn

〈ωmℓ
ω⊤

mℓ
〉+ Λφ,

ω̄m = τR̃−1
m

∑
ℓm

φ̄nℓ
rℓ,

R̄m = τ〈β−1
m 〉

∑
ℓm

〈φnℓ
φ⊤

nℓ
〉+ Λω,

where S̃n = τ
∑

ℓn
〈ωmℓ

ω⊤
mℓ
〉 + ᾱnΛφ and R̃m =

τ
∑

ℓm
〈φnℓ

φ⊤
nℓ
〉+ β̄mΛω.

The posterior for the scale parameters are obtained by
using the result discussed in Appendix B, which holds
for the structured variational approximation that we
consider here, namely q(Φ,α) =

∏
n q(φn, αn) and

q(Ω,β) =
∏

m q(ωm, βm).

While the variational posteriors of the scale variables
are not Gamma distributions in this case, they can
be recognised as products of generalised inverse Gaus-
sians: q(α) =

∏
nN−1(αn|νn

2 , χn, φn) and q(β) =∏
mN−1(βm|νm

2 , χm, φm), where the parameters are
defined as follows:

νn = a0, νm = c0,

χn = τ
∑

ℓn

〈ω⊤
mℓ

S̄−1
n ωmℓ

〉, χm = τ
∑

ℓm

〈φ⊤
nℓ

R̄−1
m φnℓ

〉,

ϕn = b0 + φ̄
⊤
n Λφφ̄n, ϕm = d0 + ω̄⊤

mΛωω̄m.

The generalised inverse Gaussian distribution is de-
fined in Appendix C.

4.3 Gaussian Scale Mixture Noise with

Student Priors on the Features

We consider a structured variational approximation for
the case where both the noise and the priors are Gaus-
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sian scale mixtures. It is easy to show that the form
of the variational posterior that arises is given by (8)
and (9) with parameters now defined by

φ̄n = τ S̄−1
n

∑
ℓn

β̄mℓ
ω̄mℓ

rℓ,

S̄n = τ
∑

ℓn

〈βmℓ
ωmℓ

ω⊤
mℓ
〉+ Λφ,

ω̄m = τR̄−1
m

∑
ℓm

ᾱnℓ
φ̄nℓ

rℓ,

R̄m = τ
∑

ℓm

〈αnℓ
φnℓ

φ⊤
nℓ
〉+ Λω.

The variational posteriors for the scale parameters are
Gamma distributions with parameters given by

an = a0 + 1,

bn = b0 + τ
∑

ℓn

〈βmℓ
(rℓ − φ̄

⊤
n ωmℓ

)2〉+ φ̄
⊤
n Λφφ̄n,

cm = c0 + 1,

dm = d0 + τ
∑

ℓm

〈αnℓ
(rℓ − φ⊤

nℓ
ω̄m)2〉+ ω̄⊤

mΛωω̄m.

5 TYPE II ML ESTIMATION

The parameters are estimated by type II maximum
likelihood (or empirical Bayes). The updates are ob-
tained by direct maximisation of −F .

When the noise is a Gaussian scale mixture and the
priors on the latent features are Student-t distribu-
tions, the updates for the parameters are given by

τ−1 ←
∑

ℓ〈αnℓ
βmℓ

(rℓ − φ⊤
nℓ

ωmℓ
)2〉

L
,

σ2
k ←

∑
n〈αnφnφ⊤

n 〉kk

N
, b0 ←

a0N∑
n ᾱn

,

ρ2
k ←

∑
m〈βmωmω⊤

m〉kk

M
, d0 ←

c0M∑
m β̄m

.

Parameter a0 is found by solving the nonlinear equa-
tion

∑
n

{
ln b0

2 + 〈lnαn〉 − ψ(a0

2 )
}

= 0 by line search.
Parameter c0 is updated in the same manner.

When the noise is Gaussian, the update for the preci-
sion is replaced by

τ−1 ←
∑

ℓ〈(rℓ − φ⊤
nℓ

ωmℓ
)2〉

L
.

When the priors on the latent features are Gaussians,
the updates for the diagonal elements of Λφ and Λω

are replaced by

σ2
k ←

∑
n〈φnφ⊤

n 〉kk

N
, ρ2

k ←
∑

m〈ωmω⊤
m〉kk

M
.

6 IMPLEMENTATION DETAILS

In practice, it is important to model the user (or item)
specific offsets. These can easily be incorporated into
the model by appending a ‘1’ to the latent item fea-
ture ωm (or the latent user feature φn). Also, the
model is only identifiable up to a rescaling of Φ and
Ω. Thus, we can fix Λω to the identity matrix IK and
only optimise with respect to Λφ.

In our experiments, we used full covariance matrices
for S̄n and R̄m. However, to scale up the model to a
large K, one might restrict S̄n and R̄m to be diagonal
matrices. In this case, it is only required to store K
variance parameters per user and per item, and the
computational cost of inverting these matrices is re-
duced from O(K3) to O(K).

7 EXPERIMENTS

In this section, we first describe the data sets and the
performance measures we used to validate the models.
Next, we discuss the results.

7.1 Data Sets

MovieLens2: The data set contains movie ratings by
MovieLens users. The ratings are ordinal values on
the scale 1 to 5. Users have rated at least 20 movies.
We considered the MovieLens 100K (approximately
100, 000 ratings by 943 users on 1682 movies), the
MovieLens 1 Million (1, 000, 209 ratings by 6, 040 users
on approximately 3, 900 movies), and the MovieLens
10 Million (10000054 ratings by 71567 users on 10681
movies) rating data sets.

Jester Joke [GRGP01]: The Jester-1 data set contains
4.1 million ratings of 100 jokes from 73, 421 users. We
will use Jester-1-3, which is a subset of Jester-1, con-
taining ratings of 24, 938 users who have rated between
15 and 35 jokes. These ratings are on a continuous
scale from −10.0 to 10.0.

7.2 Experimental Setup

We randomly choose 70% of the ratings for training
and use the remaining ratings as test data. Every
movie and every user appears at least once in the train-
ing set. In the MovieLens data sets, we include only
movies that have been rated at least thrice.

We are interested in evaluating the effect of the noise
model and of the priors imposed on the latent factors.
To this effect, we compare the following models on the

2www.grouplens.org/node/73
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N ML

a0 τ c0

b0 αn βm d0

Λφ φn rl ωm Λω

Figure 2: Graphical models for the different matrix
factorisations. GG is obtained when only considering
the solid arrows. GR is obtained when considering
the solid and the dotted arrows. RG is obtained when
considering the solid and the dashed arrows. Finally,
RR is obtained when considering all the arrows.

rating prediction task: (see Fig. 2 for the graphical
representation of the models):

• GG: Homoscedastic Gaussian noise, Gaussian pri-
ors [LT07]

• RG: Heteroscedastic Gaussian noise, Gaussian
priors (Section 4.1)

• GR: Homoscedastic Gaussian noise, Student-t pri-
ors (Section 4.2)

• RR: Heteroscedastic Gaussian noise, Student-t
priors (Section 4.3)

where ‘G’ indicates Gaussian and ‘R’ indicates a robust
heavy-tailed distribution. Additionally, we present the
results for the mean field approximation of the GR
model described in Section 4.2, referred to as GR-mf
in the following. Comparing the performance of GR
and GR-mf will help us understand the gains that can
be obtained through the use of a structured variational
inference algorithm in place of a standard mean field
algorithm.

Prediction is done by using point estimates of both Φ

and Ω. We compare the models in terms of predictive
performance based on the following metrics:

• Root mean squared error (RMSE):

RMSE =

√
1

T

∑
t
(rt − φ̄

⊤
nt

ω̄mt
)2,

where t indexes the test ratings. This metric is
closely related to the Gaussian noise model.

• Mean absolute error (MAE):

MAE =
1

T

∑
t
|rt − φ̄

⊤
nt

ω̄mt
|.

This metric is related to the heteroscedastic Gaus-
sian noise model.

• Ordinal log-likelihood (OLL):

OLL =
∑

t
logP (rt),

where P (rt) is given by (10) in the case of the
homoscedastic Gaussian noise and by (11) in the
case of the heteroscedastic Gaussian noise.

The OLL metric is only used in the experiments with
the MovieLens data. Since the true ratings are ordinal,
the predicted ratings need to be rounded off to predict
a value in the support of the original ratings. It is pos-
sible to compute the likelihood of the predicted value
lying within the boundaries corresponding to the true
rating. We compute this log-likelihood in the same
fashion as described in [CG05].

Let us denote the boundaries defining the ordinal
scale by {b0, b1, · · · , b5}. In our experiments we do
not attempt to optimise these values, but used b0 =
−∞, bi = i+ 0.5, b5 = +∞. The ordinal likelihood for
the Gaussian noise model is given by

P (rt = i) ≈
∫ bi−φ̄

⊤
nt

ω̄mt

bi−1−φ̄
⊤
nt

ω̄mt

N (ǫt|0, 〈τ〉) dǫt, (10)

where ǫt is the prediction error (or residual) and
i ∈ {1, . . . , 5}. For the Gaussian scale mixture noise
model, we use again point estimates, leading to the
following approximation:

P (rt = i) ≈
∫ bi−φ̄

⊤
nt

ω̄mt

bi−1−φ̄
⊤
nt

ω̄mt

N (ǫt|0, ᾱnt
β̄mt
〈τ〉) dǫt.

(11)

7.3 Results

The RMSE, MAE and OLL values obtained for Movie-
Lens 100k data are shown in Table 1. The dimen-
sion of the low-rank approximation is set to K = 30.
Considering GG as the reference method, we see that
the performance improves on all metrics when a het-
eroscedastic noise model is considered (RG and RR).
Interestingly, assuming Student-t priors does not im-
prove the results: RG and GG perform similarly as
respectively RR and GR. This suggests that the use of
Student-t prior is not supported by the data. Checking
the shape parameters a0 and c0 confirms this finding
as they are relatively large (> 40), meaning that the
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Table 1: Test results on the MovieLens 100k data using
K = 30.

Model RMSE MAE OLL

RR 0.900 0.705 -37638
RG 0.901 0.708 -37054
GR 0.906 0.710 -38193
GR-mf 0.907 0.710 -38312
GG 0.906 0.710 -38234

Table 2: Test results on the MovieLens Million rating
data using K = 20.

Model RMSE MAE OLL

RR 0.845 0.661 -354585
RG 0.846 0.663 -351667
GR 0.853 0.666 -365136
GR-mf 0.853 0.666 -365232
GG 0.851 0.665 -364319

priors are close to Gaussians. It should be noted that
mean field performs similarly to the structured vari-
ational approximation for these data sets, except in
terms of OLL.

To analyse the significance of the performance im-
provement of RR and RG over GG, we evaluated the
methods on 10 different train/test splits and recorded
the values of RMSE, MAE and OLL. Next, we per-
formed a one-tailed paired-t test checking whether the
models RR and RG significantly performed better than
GG. We found that the improvement was significant
for the three metrics at level < 0.001.

The results for the MovieLens 1 Million data exhibit a
similar trend (see Table 2). We obtain better perfor-
mances in terms of RMSE and similar ones in terms
of MAE as the ones reported in [DV08], who consider
generalised bilinear forms. The number of latent fac-
tors was not optimised for performance, but all the
models are nearly optimum for K = 20. The best re-
sults for GG were RMSE = 0.849, MAE = 0.664 and
OLL = −363690 (for K = 30). While better than the
results shown in Table 2, these are still worse than the
ones obtained for RG and RR.

We further evaluate the heteroscedastic noise model
at larger scale by running our algorithms on the 10
Million rating data set with K = 15. The RMSE,
MAE and OLL are respectively equal to 0.786, 0.610
and −3310589 for RR, and 0.789, 0.612 and −3433667
for GG. Hence, RR outperforms GG again on all the
metrics.

Table 3: Test results on Jester-1-3 for K = 15.

Model RMSE MAE

RR 4.454 3.439
RG 4.456 3.468
GR 4.463 3.451
GR-mf 4.482 3.460
GG 4.406 3.480

Next, we tested the algorithm on the Jester-1-3 data
sets; the results are shown in Table 3. We note that
GG performs best in terms of RMSE, but worst in
terms of MAE. The RMSE corresponds to the loss that
is minimised in Gaussian PMF; this means that using
a Gaussian model is asymptotically optimal. Since
only users with at least 15 ratings were selected in this
data set, the variance reduction due to the use of a
robust estimator is not large enough to improve the
test RMSE. Moreover, RMSE is the most commonly
used metric in collaborative filtering, but it is not a
robust measure for assessing the model predictive per-
formance,especially when the distribution of the data
is peaked and even if they take values on a finite do-
main. Finally, note that GR-mf performs worse than
GR for all metrics.

8 CONCLUSION

Adequate noise models are often the key to good pre-
dictive performance. Perhaps, a good example are au-
toregressive conditional heteroscedastic (ARCH) mod-
els proposed in the late eighties and which are now
commonly used to model financial time series with
varying volatility. Recently, several works, ranging
from regression [TL05] to clustering [AV07], indicated
that constructing probabilistic models based on heavy-
tailed distributions is very useful in practice. Real
data is in general not only partially observed, but it
is often also corrupted by atypical errors due to faulty
measurement tools, human mistakes or even malicious
intent. Heavy-tailed distributions are natural candi-
dates to handle these outliers.

In this work, however, we show that heavy-tailed dis-
tributions, which exhibit a high kurtosis, are also use-
ful to incorporate robustness in probabilistic models of
data with a bounded range, whether the scale is con-
tinuous or ordinal. In the already well studied task
of collaborative filtering, we showed that performance
improves when considering noise models that take the
high variability of ratings into account. It is expected
that these results will carry over to most data impu-
tation tasks with a mix of continuous and/or ordinal
data.
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A LATENT VARIABLE VIEW OF

THE STUDENT-t

Let w be a D-dimensional Gaussian random vec-
tor, such that p(w|τw) = N (w|τwΛw). Assuming a
Gamma prior Ga(τw|a, b) leads to

p(w) =

∫

τw

p(w|τw) p(τw) dτw

=
|Λw|1/2

(2π)D/2

ba

Γ(a)

∫

τw

τ
a+ D

2 −1
w e−( 1

2w⊤Λww+b)τw dτw

=
|Λw|1/2

(2π)D/2

ba

Γ(a)

Γ(D
2 + a)

(b+ 1
2w

⊤Λww)
D
2 +a

= St(0, a
b Λw, 2a),

where the zero-mean multivariate Student-t probabil-
ity density function is defined as follows

St(x|0,Λ, ν) =
Γ(D+ν

2 )|Λ|1/2

Γ(ν
2 )(νπ)D/2

(
1 +

1

ν
x⊤Λx

)−D+ν
2

.

Vector x is D-dimensional, Λ is the precision matrix
and ν is the shape parameter (or the number of degrees
of freedom when an integer). Note that this is a dif-
ferent hierarchical construction than the one proposed
in [LR95].

B Specific form of q(αn) and q(βm)

Consider the observed variable x and the set of latent
variables y = {yk}k and z = {zk}k. Next we show
how to easily compute the posterior q(zk) when con-
sidering a structured variational approximation with
joint posterior q(y, z) =

∏
k q(yk, zk).

Assume the marginal p(x) is analytically intractable.
The variational lower bound is defined as

−F(q) = 〈ln p(x,y, z)〉q(y,z) + H [q(y, z)] ,

where q(y, z) =
∏

k q(yk, zk). Let us denote the in-
complete product

∏
k′ 6=k q(yk′ , zk′) by q(y\k, z\k). Ex-

ploiting the specific form of the variational posterior
and ignoring terms independent of zk, we obtain

−F(q) =

∫
〈ln p(x,y, z)〉q(yk|zk)q(y\k,z\k)q(zk)dzk

+

∫
H [q(yk|zk)] q(zk)dzk + H [q(zk)] + const

=

∫
ln e

〈ln p(x,y,z)〉q(yk|zk)q(y\k,z\k)+H[q(yk|zk)]
q(zk)dzk

+ H [q(zk)] + const .

Up to a normalising constant Z we have that −F(q)
is equal to

−KL
(
q(zk)|| 1Z e

〈ln p(x,y,z)〉q(yk|zk)q(y\k,z\k)+H[q(yk|zk)]
)
.

Hence, when assuming q(Φ,α) =
∏

n q(φn, αn), the
bound (7) is maximal if

q(αn) ∝ e〈ln p(R,Φ,Ω,α,β)〉q(φn|αn)q(Φ\n,α\n)q(Ω,β)

× eH[q(φn|αn)],

where q(Φ\n,α\n) =
∏

n′ 6=n q(φn′ , αn′). The varia-
tional posterior q(βm) is obtained in the same manner.

C GENERALISED INVERSE

GAUSSIAN

The generalised inverse Gaussian distribution [Jør82]
is given by

N−1(x|ν, χ, ϕ) =
1

Z(ν, χ, ϕ)
xν−1e−

1
2 (χx−1+ϕx),

where Z(ν, χ, ϕ) = 2 (χ/φ)
ν/2

Kν(
√
χϕ) with Kν(·)

denoting the modified Bessel function of the second
kind with index ν ∈ R. The following expecta-
tions are useful: 〈x〉 =

√
χ/φRν(

√
χφ), 〈x−1〉 =√

φ/χR−ν(
√
χφ) and 〈lnx〉 = ln

√
χ
φ + d ln Kν(

√
χφ)

dν ,

where we defined Rν(·) = Kν+1(·)/Kν(·).
When χ = 0 and ν > 0, the generalised inverse Gaus-
sian reduces to the Gamma:

Ga(x|a, b) =
ba

Γ(a)
xa−1e−bx,

where a, b > 0 and Γ(·) is the (complete) gamma
function. It is straightforward to verify this result
by setting a = ν and b = ϕ/2, and noting that
limz→0Kν(z) = Γ(ν)2ν−1z−ν for ν > 0.


