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Abstract

In the main paper we presented results regarding the MSE of CAKE like estimators, and a risk

bound for CAKE. In this supplementary material we shall provide complete proofs of both these results.

I. OPTIMAL MSE FOR “CAKE LIKE ” ESTIMATORS

In this section we consider estimators of the form

f̂(x) =
1

n

n∑
i=1

m∑
j=1

αij

hd
j

k
(x− xi

hj

)
(1)

where the coefficientsαij ≥ 0 and satisfy the constraint∀i = 1, . . . , n :
∑m

j=1 αij = 1. Our

objective is to calculate the MSE of such an estimator, and the optimal value. We shall call

estimators given in equation (1) “CAKE like estimators”. We need the following definitions and

assumptions.

Definition 1. Let β, L > 0. The Ḧolder classΣ(β, L) is defined as the set of all functions

f : [0, 1]d → R which arel = bβc times differentiable and

|Dlf(x)[h, . . . h︸ ︷︷ ︸
l times

]−Dlf(x′)[h, . . . h︸ ︷︷ ︸
l times

]| ≤ L|x− x′|β−l|h|l ∀x, x′ ∈ [0, 1]d, h ∈ Rd (2)

wherebβc is the greatest integer strictly less thanβ.

Definition 2. Let l ≥ 1 be an integer. We say that a kernelk : Rd → Rd has orderl if∫
u∈Rd

k(u) du = 1,

∫
u∈Rd

uj1
1 uj2

2 . . . ujd

d k(u) du = 0 ∀j1, . . . jd ≥ 0,
d∑

i=1

ji ≤ l (3)

If d = 1, then the above condition becomes
∫

u∈R k(u) du = 1,
∫

u∈R ujk(u) du = 0 ∀j = 1 . . . l.

Assumption 1 (A1). The setK has smoothing kernels whose bandwidthshj ∀j = 1, . . . ,m

staisfy the constraint
hj1

hj2
= cj1j2 ∀j1, j2 = 1 . . . m where0 < cj1j2 < ∞ and hj → 0 as n →∞

∀j = 1 . . . m.

Assumption 2 (A2). The true density functionf belongs to the Holder classΣ(β, L) and the

base kernels are of orderl = bβc . Also C1
def
=

∫
Rd k2(θ) dθ < ∞, C2

def
=

∫
Rd |θ|βk(θ) dθ < ∞.
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Assumption A1 guarantees that as we see more and more samples the bandwidths all tend

to 0 at the same rate. Assumption A2 is satisfied for most commonly used smoothing kernels

such as a Gaussian kernel or Epanechnikov kernel. The analysis has 3 main steps that can be

enumerated as follows.

1) Lemma (1) establishes an upper bound on the bias, variance, and the MSE for CAKE like

estimators in terms ofα’s. The proof techniques used here are fairly standard and similar

to ones used in Tsyabkov [1].

2) The next step is to solve an optimization problem P1 (see page 5 of this supplementary

material) of minimizing the upper bound on the MSE of CAKE like estimators under

convexity constraints onα. This problem doesn’t have a closed form solution in general.

But we show in Lemmas (4-9) that under assumption A1, A2, and for large enoughn it

is indeed possible to give a closed form expression for the optimalα. Using these optimal

α we calculate the optimal upper bound on MSE in Lemma (10).

3) Finally by spectral analysis in Lemmas (11-2) we are able to investiagte the size of the

above derived upper bound on the optimal MSE.

4) The proof of the final result presented in Theorem (3) requires just putting together all the

above lemmas.

Fact 1 (Bias-Variance Decomposition).Let f be the underlying density function. For any

estimatorf̂ let MSE(x0)
def
= E

[
f̂(x0)− f(x0)

]2

, b(x0)
def
= Ef̂(x0)−f(x0), σ2(x0) = E[(f̂(x0)−

E[f̂(x0)])
2]. ThenMSE(x0) = b2(x0) + σ2(x0) where all expectations are taken w.r.t a product

distributionDn defined on a sample ofn points from the distributionD.

Lemma 1. Consider the CAKE like density estimator as shown in equation (1) whereαij ’s are

fixed positive real numbers such that
∑m

j=1 αij = 1 ∀i = 1, 2 . . . n. Denote byfmax the maximum

value of the underlying density andC1
def
=

∫
Rd k2(θ) dθ, C2

def
=

∫
Rd |θ|βk(θ) dθ, C3

def
= 1

n2 (
C2L

l!
)2, C4

def
= C1fmax

n2

and | · | is the standard Euclidean norm onRd. Under assumptions A1, A2 the estimatorf̂ has

the following properties

1) σ2(x0) ≤ C1fmax

n2

∑n
i=1

∑m
j=1

α2
ij

hd
j

.

2) |b(x0)| ≤ C2L
nl!

∑n
i=1

∑m
j=1 αijh

β
j .

3) MSE(x0) ≤ C3

(∑n
i=1

∑m
j=1 αijh

β
j

)2

+C4

∑n
i=1

∑m
j=1

α2
ij

hd
j

= αT Mα, whereM ∈ Rmn×mn, M �
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0 is defined as

M [ij, pl] =


C3h

2β
j + C4

hd
j

if i = p &j = l

C3h
β
j hβ

l otherwise.
(4)

Proof:

1) σ2(x0) = 1
n2 E

[∑n
i=1

∑m
j=1 βij

]2

, whereβij =
αij

hd
j
k

(
x−xi

hj

)
− E

[
αij

hd
j
k

(
x−xi

hj

)]
. For given

constantsαij the r.v βij are independent withE[βij] = 0. We have

σ2(x0) =
1

n2
E[

n∑
i=1

m∑
j=1

βij]
2 (5)

=
1

n2

n∑
i=1

m∑
j=1

E[β2
ij] [Sinceβij are 0 mean independent random variables] (6)

≤ 1

n2

n∑
i=1

m∑
j=1

α2
ij

h2d
j

Ek2

(
x− xi

hj

)
(7)

≤ 1

n2

n∑
i=1

m∑
j=1

α2
ij

hd
j

fmax

∫
Rd

k2(θ) dθ (8)

=
1

n2

n∑
i=1

m∑
j=1

α2
ij

hd
j

fmaxC1. (9)

2) To calculate|b(x0)| we first calculate theEf̂(x0). We have

Ef̂(x0) = 1
n

∑n
i=1

∑m
j=1 Ez∼D

αij

hd
j
k

(
x0−z

hj

)
(10)

= 1
n

∑m
j=1

1
hd

j
Ez∼Dk

(
x0−z

hj

)
(
∑n

i=1 αij) (11)

= 1
n

∑m
j=1

∫
Rd k(θ)f(x0 + hjθ)sj, (12)

wheresj
def
=

∑n
i=1 αij,

∑m
j=1 sj = n, sj ≤ n ∀j = 1, 2 . . . m. Taylor expanding aroundx0

and using the fact that all kernels are symmetric and of orderl = bβc we get∣∣∣Ef̂(x0)− f(x0)
∣∣∣ =

∣∣∣∣∣∣ 1
n

∑m
j=1

∫
Rd

1
l!
Dlf(x0 + τhjθ)[hjθ, . . . , hjθ︸ ︷︷ ︸

l times

]sjk(θ) dθ

∣∣∣∣∣∣ (13)

≤ 1
n

∑m
j=1

∫
Rd

L
l!
hβ

j |θ|βsjk(θ) dθ (14)

= 1
n

∑m
j=1 sjh

β
j

∫
Rd |θ|βk(θ) dθ (15)

= C2L
nl!

∑n
i=1

∑m
j=1 αijh

β
j . (16)
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where Equation (14) follows from Equation (13) by using the facts that the kernelk(·) is

of order l = bβc andf ∈ Σ(β, L).

3) This follows trivially by the bias-variance decomposition and parts (1, 2).

2

This finishes the first part of our analysis. The second part of our analysis is to investigate this

upper bound on the MSE and its optimal value. We do this by establishing the equivalence of

the following four optimization problems for sufficiently largen ≥ n0(fmax, β, d, L).

P1 : min
α∈Rnm×1

αT Mα P2 : min
α∈Rm

αT Pα

subject to:
m∑

j=1

αij = 1 ∀i = 1, . . . , n subject to:
m∑

j=1

αj = 1

αij ≥ 0 ∀i = 1, . . . , n, j = 1 . . . , m αj ≥ 0 ∀j = 1 . . . m

P3 : min
α∈Rm

αT Pα P4 : min
α∈Rnm×1

αT Mα

subject to:
m∑

j=1

αj = 1 subject to:
m∑

j=1

αij = 1 ∀i = 1, . . . n.

v
def
=

[√
C3h

β
1 , . . .

√
C3h

β
m

]T

, D
def
=

[
C4

hd
1

, . . . ,
C4

hd
m

]
, P

def
= vvT + D. (17)

Lemma 4. The optimization problems P1 and P2 are equivalent to each other.

Proof: The structure of the matrixM ensures thatαi1j = αi2j ∀i1, i2 = 1, 2 . . . n and hence

αT Mα = n2αT Pα. Hence optimization problems P1 and P2 are equivalent. 2

The proof of next lemma follows trivially by using the Lagrangian of P3 and hence is omitted.

Lemma 5. The solution to the optimization problem P3 isα = P−11m

1mP−11m
.

Lemma 6. Under assumption A1 and∀n ≥ n0(fmax, β, d, L) we haveα = P−11m

1T
mP−11m

≥ 0

Proof: SinceP = vvT + D by Sherman-Morrison-Woodbury formula we will have

P−1 = D−1 − D−1vvT D−1

1 + vT D−1v
. (18)
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From Equation (17) we haveD−1 =
[

hd
1

C4
, . . . , hd

m

C4

]
. Using Equation (17) we get

(vvT )i,j =C3h
β
i hβ

j ∀i, j = 1 . . . m (19)

(D−1vvT D−1)i,j =
C3

C2
4

hβ+d
i hβ+d

j ∀i, j = 1, . . . m (20)

1 + vT D−1v =1 +
C3

C4

(
h2β+d

1 + h2β+d
2 + . . . + h2β+d

m

)
(21)

Under assumption A1 and for large enoughn ≥ n0(fmax, β, d, L) such thathj � 1 we have

1 + vT D−1v ≈ 1. Using Equations (18,19,20,21) we get

P−1
i,j =


hd

j

C4
− C3

C2
4
h2β+2d

j if i = j

−C3

C2
4
hβ+d

i hβ+d
j otherwise

(22)

Using Equation (22) and the expression forα we get

αt =

hd
t

C4
− C3

C2
4

∑m
j=1 hβ+d

t hβ+d
j∑m

i=1

hd
j

C4
− C3

C2
4

∑m
i=1

∑m
j=1 hβ+d

t hβ+d
j

∀t = 1 . . . m. (23)

From Assumption A1 and for sufficiently largen ≥ n0(fmax, β, d, L) we havehd
j >> h2β+2d

j .

We get

αt ≈
hd

t∑m
i=1 hd

i

> 0 ∀t = 1, . . . m.

2
Lemma 7. Under assumption A1 and for large enoughn ≥ n0(fmax, β, d, L) the optimization

problems P2 and P3 are equivalent.

Proof: The difference between the optimization problems P2 and P3 is the absence of

the positivity constraint on the alpha vector. However Lemma (6) guarantees that under the

assumption A1, the resulting solution of optimization problem P3 is positive. Hence we can

conclude that optimization problems P2 and P3 are equivalent. 2

Lemma 8. Problems P3 and P4 are equivalent and hence under assumption A1 and for large

enoughn ≥ n0(fmax, β, d, L) P1 and P4 are equivalent.

Proof: The proof for the first part of the Lemma is exactly the same as that for Lemma (4).

The second part of the Lemma follows using lemmas (4), (7) and from the first part. 2

The proof of next lemma is trivial and hence is omitted.
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Lemma 9. The solution of the optimization problem P4 is given byα = M−1AT (AM−1AT )−11n,

whereA ∈ Rn×nm and therth row of matrixA is given by the vector[0m, . . . , 0m︸ ︷︷ ︸
r−1 times

, 1m, 0m, . . . 0m︸ ︷︷ ︸
n−r times

]T .

Lemma 10. Under A1, A2 and for large enoughn ≥ n0(fmax, β, d, L) the optimalMSE(x0) ≤

1T
nB1n whereB = (AM−1AT )−1.

Proof: From Lemma (1) we know thatMSE(x0) ≤ αT Mα. Now using Lemma (9) we

get the required result. 2

The final part of the proof is to analyze the magnitude of the optimal upper bound on

MSE(x0). In order to be able to do this we need some simple lemmas.

Lemma 11.
∣∣1T

nB−11n

∣∣ ≤ n max{|λ| : λ is an eigen value ofB}.

Proof: Matrix B is symmetric and hence is normal. Now for any vectorx and normal

matrix B we have
∣∣1T

nB−11n

∣∣ ≤ n max{|λ| : λ is an eigen value ofB} [2]. Simply Replacex

with the vector1n to get the desired result. 2

Lemma 12. λmin(AM−1AT ) ≥ mλmin(M
−1).

Proof: Using the variational characterization of eigen values we have

λmin(AM−1AT ) = min
x

(AT x)T M−1(AT x)

xT x
≥ λmin(M

−1)||AT x||22
xT x

= mλmin(M
−1) > 0

where the last inequality follows from the fact thatM � 0. 2

Lemma 13. λmax(M) ≤ n
∑m

j=1 C3h
2β
j + C4

hd
j
.

Proof: It is easy to see thatM = v1v
T
1 +D1 wherev1 = [v, v . . . v︸ ︷︷ ︸

ntimes

] andD1 = diag(D, . . . D︸ ︷︷ ︸
ntimes

)

and wherev, D are given by the Equation (17). Henceλmax(M) ≤ λmax(v1v
T
1 ) + λmax(D1).

Since v1v
T
1 � 0, we get λmax(v1v

T
1 ) ≤

∑
i λi(v1v

T
1 ). Now

∑
i λi(v1v

T
1 ) = trace(v1v

T
1 ) =

n
∑m

i=1 C3h
2β
j . SinceD is a diagonal matrix we getλmax(D) ≤

∑m
j=1

C4

hd
j
. 2

Lemma 14. If hj = Θ(n−
1

2β+d ) then ∀n ≥ n0(fmaxβ, d, L) under A1, A2 the optimal value of

MSE(x0) is O(n−
2β

2β+d ).
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Proof: We have the following chain of inequalities (whereB
def
= (AM−1AT )−1).

1T
nB1n ≤ n max{|λ| : λ is an eigen value of B} (24)

≤ n|||B|||2 (25)

= n max{
√

λ : λ is an eigen value ofB2} (26)

= n
λmin(AM−1AT )

(27)

≤ n
mλmin(M−1)

(28)

= nλmax(M)
m

(29)

≤ n2

m

∑m
j=1 C3h

2β
j + n

m

∑m
j=1

C4

hd
j

= O(n−
2β

2β+d ) (30)

Here Equation (25) follows from Equation (24) by the definition of spectral norm and the

fact that spectral norm of a matrix is the smallest of all matrix norms. Equation (26) follows

from Equation (25) by the definition of spectral radius, Equation (27) from Equation (26)

from the definition of matrixB and the fact that matrixB is symmetric positive definite.

Equation (28) follows from Equation (27) by lemma (12) and Equation (30) from Equation (29)

using lemma (13). 2

Lemma 2. Consider the optimization problem

P1 : min
α∈Rnm×1

αT Mα

subject to:
m∑

j=1

αij = 1 ∀i = 1, . . . , n, α ≥ 0.

Under assumptions A1, A2 and forn ≥ n0(fmax, β, d, L) the optimal value of the objec-

tive is 1T
n (AM−1AT )−11n, where A ∈ Rn×nm and therth row of the matrixA is given by

[0m, . . . , 0m︸ ︷︷ ︸
r−1 times

, 1m, 0m, . . . 0m︸ ︷︷ ︸
nm−r times

]T . Also the optimal value ofMSE(x0) = O(n−
2β

2β+d ) is attained

whenhj = Θ(n−
1

2β+d ).

Proof: The first part of the proof follows from Lemma (11). The second part of the proof

follows from Lemma (15).

We are now ready to state and prove our main result.
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Theorem 3. Under assumptions A1, A2 and forhj = Θ(n−
1

2β+d ) ∀j = 1, . . . ,m we have

∀n ≥ n1(C2, L, l, β, d, L, Kmax) the CAKE like estimator̂f given by Equation (1) satisfies

sup
x0∈Rd

sup
f∈Σ(β,L)

EDn

[
(f̂(x0)− f(x0))

2
]

= O(n−
2β

2β+d ). (31)

Proof: It is enough to prove that∀f ∈ Σ(β, L), x0 ∈ Rd : fmax < C < ∞, for some universal

constantC. Then the result follows from Lemma (2). Choose a set of bounded smoothing kernels

with hj = 1. Now we have from the Lemma (1) that

f(x0) ≤
C2L

l!
+

∫
K(x− z)f(z) dz ≤ C2L

l!
+ Kmax < ∞. (32)

Since the R.H.S. is independent off, x0, one can chooseC to be the R.H.S. of the above

equation. 2

II. R ISK OF THE CAKE ESTIMATOR

In this section we shall prove an upper bound on theL1 risk of the CAKE estimator in terms

of its empirical risk via uniform stability arguments.

Theorem 4. Let f̂(x) be the CAKE density estimator defined by the equation

f̂(x) =
1

n

n∑
i=1

m∑
j=1

α∗ij
hd

j

K
(x− xi

hj

)
(33)

whereα∗ is the solution to the optimization problem

T : min
α

αT Zα− 2αT v + λ||α||22 (34)

subject to:
m∑

j=1

αij = 1 ∀i = 1, . . . n, α ≥ 0 (35)

whereZ ∈ Rnm×nm, α, v ∈ Rnm×1 are defined as

Z[ij, pl] =

∫
1

n2hd
jh

d
l

k

(
x− xi

hj

)
k

(
x− xp

hl

)
v[ij] =

1

n2

n∑
p=1
p6=i

1

hd
j

k

(
xi − xp

hj

)
. (36)

Suppose we are provided fixed bandwidthsh1, . . . , hm and the true underlying density functionf

is bounded by a constantB. Let cd = (
√

2π)d. Then with probability atleast1− δ over the input

January 10, 2011 DRAFT



10

training samples, the CAKE estimator̂f with Gaussian base kernels satisfies the risk bound

Ex∼D|f̂(x)− f(x)| ≤ 1

n

n∑
i=1

|f̂(xi)− f(xi)|+

[
4

cd

[ m∑
j=1

1

hd
j

+
2
√

2
√

cd

√
λ

√√√√ m∑
j=1

1

h2d
j

√√√√ m∑
j=1

m∑
l=1

1

(
√

h2
j + h2

l )
d

]
+ B +

m∑
j=1

1

cdhd
j

]√
ln(1

δ
)

2n
. (37)

Before we prove the theorem we need the definition of uniform stability of a learning algo-

rithm. In the definition to follow we denote by A any learning algorithm. The learning algorithm

A learns on S and outputs a function (model)AS. Also letAS−i
denote the function outputted by

learning algorithm A when trained on the datasetS−i. Uniform stability quantifies the algorithms

behaviour when any arbitrary point from a set S is not used for training.

Definition 3. An algorithm A has uniform stabilityβ w.r.t the loss functionl if the following

holds true

∀S = {x1, . . . , xn},∀i ∈ {1, . . . , n} : ||l(AS, ·)− l(AS−i
, ·)||∞ ≤ β (38)

The proof of the above theorem proceeds by bounding the uniform stability of the CAKE

algorithm. The following is an important result concerning the expected risk of a learning

algorithm in terms of its empirical risk.

Theorem 5. Let A be an algorithm with uniform stabilityβ w.r.t a loss functionl such that the

functionAS learnt by the algorithm A when trained on datasetS satisfies∀x, S : 0 ≤ l(AS, x) ≤

M . Then for anyn ≥ 1, and anyδ ∈ (0, 1) with probability atleast1− δ over the random draw

of the sample S we have

Ex∼D l(As, x) ≤ 1

n

n∑
i=1

l(As, xi) + 2β + (4nβ + M)

√
log(1/δ)

2n
. (39)

Theorem (5) and definition (3) were first provided by Bousquet and Elisseeff ([3]) in the context

of supervised learning problems. However it is straightforward to see that their result holds true

for unsupervised learning problems also.

Lemma 6. Givenm fixed bandwidthsh1, . . . , hm, the uniform stabilityβ of the CAKE estima-

tor obtained by solving the optimization problem T (equations (34-35)) w.r.t the loss function
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l(AS, x) = |f̂(x)− f(x)| with Gaussian base kernels is upper bounded by

β ≤ 2

n
√

λ(
√

2π)
3d
4

√√√√ m∑
j=1

1

h2d
j

√√√√2
m∑

l=1

m∑
j=1

1(√
h2

j + h2
l

)d
+

1

n(
√

2π)d

m∑
j=1

1

hd
j

. (40)

Proof: Let l(AS, x)
def
= |f̂(x)− f(x)|. Let S−n = {x1, . . . , xn}− {xn} represent the dataset

which doesn’t have the training pointxn. The deleted CAKE density estimate learnt using dataset

S−n is

f̂−n(x) ≈ 1

n

n∑
i=1

m∑
j=1

β∗ij
hd

j

k

(
x− xi

hj

)
(41)

whereβ∗ is the solution to the optimization problem

V : min
β∈Rnm

βT Mβ − 2βT v (42)

subject to:
m∑

j=1

βij = 1 ∀i = 1, . . . n, β ≥ 0 (43)

βnj = 0 ∀j = 1, . . . m (44)

whereM = Z + λI and Z is defined in equation (36). Note that the optimization problem T

given by equations (34-35) and the problem V differ by an additional constraint in V given by

the constraint (44). By definition bounding stability is equivalent to bounding∀i : |l(AS, x) −

l(AS−i
, x)|. We shall bound|l(AS, x)− l(AS−n , x)| and show that the bound doesn’t depend on

xn, which allows us to get a bound onβ. Let α∗ denote the optimal solution of problem T and

β∗ the optimal solution of problem V.

∣∣|f̂(x)−f(x)|−|f̂−n(x)−f(x)|
∣∣ ≤ |f̂(x)− f̂−n(x)| ≤ 1

n

∣∣∣n−1∑
i=1

m∑
j=1

1

hd
j

(α∗ij − β∗ij)k

(
x− xi

hj

)∣∣∣︸ ︷︷ ︸
T1

+

1

n

∣∣∣ m∑
j=1

α∗nj

1

hd
j

k
(x− xn

hj

)∣∣∣︸ ︷︷ ︸
T2

(45)

It is enough to upper boundT1, T2. Let us denote byΠ(α∗) the vector obtained by setting the

last m components ofα∗ to 0. Then by Cauchy-Scwartz inequality we have

T1 ≤
1

n
||Π(α∗)− β∗|| ||Kv|| (46)
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whereKv ∈ R(n−1)m andKv[ij] = 1
hd

j
k

(
x−xi

hj

)
∀i = 1, . . . n− 1, j = 1 . . . m. Since all our base

kernels are Gaussian one can trivially upper bound

||Kv||2 ≤

√√√√ n

(
√

2π)2d

m∑
j=1

1

h2d
j

. (47)

Hence now it is enough to upper bound the quantity||Π(α∗)−β∗||. Let us denote the objective of

optimization problem T bygT (α) and that of problem V bygV (β). Note thatgT (α), gV (β) = ∞

if α, β do not belong to the feasible set of the optimization problems T and V respectively. For

any vectorθ ∈ Rnm which is a feasible solution of the optimization problem T, define

Π(θ)
def
= [θ11, . . . , θ(n−1)m, 0, . . . , 0︸ ︷︷ ︸

m

]. (48)

i.e Π(θ) is the vector obtained by projectingθ onto the feasible set of optimization problem V.

Observe thatgT (α), gV (β) are bothλ strongly convex inα, β respectively, and hence due to the

strong convexity property and the fact thatβ∗ is an optimal solution of optimization problem Q

we get

gV (Π(α∗))− gV (β∗) ≥ λ

2
||Π(α∗)− β∗||2. (49)

By definition gT (θ) is a quadratic function involving terms not havingθnj ’s and terms involving

θnj, j = 1, . . . ,m. Since the lastm terms inΠ(θ) are 0 by definition hencegV (Π(θ)) has all the

terms as ingT (θ) except for the terms containingθnj. Hence we have for anyθ satisfying the

constraints of P andΠ(θ) satisfying the constraints of problem V

gV (Π(θ)) = gT (θ)−
m∑

j=1

Tθnj
. (50)

HereTθnj
are terms ingT (θ) involving θnj. Now for the vectorβ∗ let β̄∗ be defined as

β̄∗ij
def
= β∗ij ∀i = 1, . . . , n− 1, j = 1 . . . , m (51)

β̄∗nj
def
= α∗nj ∀j = 1, . . . m (52)

Henceβ∗ belongs to the feasible set of problem V andβ̄∗ belongs to the feasible set of problem

T. Using equation (53) we get

gV (Π(α∗))− gV (β∗) = gT (α∗)− gT (β̄∗)︸ ︷︷ ︸
≤0

+
m∑

j=1

Tβ̄∗nj
−

m∑
j=1

Tα∗nj
≤

m∑
j=1

Tβ̄∗nj
−

m∑
j=1

Tα∗nj
(53)
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where the last inequality follows from the fact thatα∗ is an optimal solution of the optimization

problem T. From the definitions of the functiongT (·) andM and using equation (51) we get

m∑
j=1

Tβ̄∗nj
−

m∑
j=1

Tα∗nj
= 2

m∑
j=1

α∗nj

n−1∑
p=1

m∑
l=1

(β∗pl − α∗pl)M [nj, pl] +
m∑

j=1

(β̄∗nj
2 − (α∗nj)

2)M [nj, nj]︸ ︷︷ ︸
0

+ 2
m∑

j=1

m∑
l=1
l 6=j

(β̄∗njβ̄
∗
nl − αnjαnl)M [nj, nl]

︸ ︷︷ ︸
0

+ 2
m∑

j=1

(β̄∗nj − α∗nj)vnj︸ ︷︷ ︸
0

≤ 2 max
j=1...m

n−1∑
p=1

m∑
l=1

(β∗pl − α∗pl)M [nj, pl] ≤ n
m∑

j=1

m∑
l=1

2

n2(
√

2π)d

1(√
h2

j + h2
l

)d
. (54)

where the penultimate inequality follows from the fact thatα∗nj ’s form a convex combination and

the last inequality from the definition of the matrixM . Now using equations (46,47,49,53,54)

we get

T1 ≤
1

n

√√√√ 1

(
√

2π)2d

m∑
j=1

1

h2d
j

√√√√√2

λ

m∑
j=1

m∑
l=1

2

(
√

2π)d

1(√
h2

j + h2
l

)d
. (55)

Now all we need to do is upper boundT2. We have

T2 =
1

n

∣∣∣∣∣
m∑

j=1

α∗nj

hd
j

k
(x− xi

hj

)∣∣∣∣∣ ≤ 1

n(
√

2π)d

m∑
j=1

1

hd
j

. (56)

Putting together the bounds forT1, T2 we get

β ≤ 1

n

√√√√ 1

(
√

2π)2d

m∑
j=1

1

h2d
j

√√√√√2

λ

m∑
j=1

m∑
l=1

2

(
√

2π)d

1(√
h2

j + h2
l

)d
+

1

n(
√

2π)d

m∑
j=1

1

hd
j

. (57)

2

The next lemma bounds the lossl(AS, x) = |f̂(x)− f(x)|.

Lemma 7. Suppose the underlying density function is bounded by a universal constantB. Then

the CAKE estimator with Gaussian kernels as base kernels and with fixed bandwidthsh1, . . . , hm

satisfies|f̂(x)− f(x)| ≤ B + 1
(
√

2π)d

∑m
j=1

1
hd

j
.

Proof: We have

|f̂(x)− f(x)| ≤ |f̂(x)|+ f(x) ≤ B +
1

n

n∑
i=1

m∑
j=1

αij

hd
j

k
(x− xi

hj

)
≤ B +

1

(
√

2π)d

m∑
j=1

1

hd
j

2 (58)
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Proof of Theorem 4. Applying theorem (5) to the CAKE algorithm with the loss function

l(As, x)
def
= |f̂(x)− f(x)| and lemmas (6,7) we get the necessary result. 2

III. A DDITIONAL EXPERIMENTAL RESULTS

In the main paper we showed a couple of results comparing CAKE to other density estimators

on some benchmark 1-d synthetic datasets. In this supplement we show the results on all the

benchmark 1-d synthetic datasets. All the synthetic distributions are from Marron and Wand ([4]).
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Fig. 1: Performance on a product distribution with strongly skewed density along x-axis and

unifrorm density along y-axis.
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Fig. 2: Performance of various density estimators on a product distribution with Trimodal density

along x-axis and unifrorm density along y-axis.
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Fig. 3: Performance of various density estimators on a product distribution with Claw density

along x-axis and unifrorm density along y-axis.
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Fig. 4: Performance of various density estimators on the multi-dimensional version of old faithful

dataset.
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Density function CAKE Adaptive Variable RODEO RSDE

Skewed Unimodal 0.0960 0.0829 0.0827 0.0982 0.1061

Strongly Skewed 0.05907 0.06419 0.1305 0.0584 0.468

Kurtotic Unimodal 0.7688 0.721564 0.8326 0.7144 0.1604

Outlier Density 0.80 0.851 0.6907 0.8856 1.70

Bimodal Density 0.02073 0.02337 0.1979 0.0313 0.079

Separated Bimodal Density 0.02963 0.01272 0.1723 0.0377 0.168

Asymmetric Bimodal Density 0.1242 0.1467 0.1928 0.1258 0.0747

Claw 0.1030 0.0639 0.0781 0.1272 0.1597

Double claw 0.2683 0.2590 2.755 1.3159 0.1288

Asymmetric claw 0.2378 0.2449 0.9883 0.1194 0.1248

Asymmetric double claw 0.2097 0.2036 2.1711 1.0060 0.1199

Smooth Comb 0.3543 0.4039 1.5482 1.1866 0.175

Discrete comb 0.1489 0.1980 0.6887 0.4419 0.2092

Strongly skewed+Uniform 0.0939 0.38 0.3816 1.4232 0.3654

Claw+ Uniform 0.1797 0.1873 0.181 1.0837 0.1708

Trimodal+Uniform 0.1239 0.1390 0.1300 1.10067 0.1151

TABLE I: RMSE values of different density estimators on various synthetic 1-d and 2-d

distribution.

table
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