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Abstract

In the main paper we presented results regarding the MSE of CAKE like estimators, and a risk

bound for CAKE. In this supplementary material we shall provide complete proofs of both these results.

[. OPTIMAL MSE FOR“CAKE LIKE” ESTIMATORS

In this section we consider estimators of the form

ZZ%dA) (1)

i=1 j=1

where the coefficients;; > 0 and satisfy the constrainti = 1,...,n : 3>, a;; = 1. Our
objective is to calculate the MSE of such an estimator, and the optimal value. We shall call
estimators given in equation (1) “CAKE like estimators”. We need the following definitions and

assumptions.

Definition 1. Let 3, L > 0. The Hilder classX(/, L) is defined as the set of all functions
f:1]0,1]¢ — R which arel = 3] times differentiable and

|D'f(2)[h,...h] — D' f(z)[h,... ]| < Llz — 2'|" 7| Vo, 2" € [0,1]%, h € R? (2)

l times [ times

where | 3] is the greatest integer strictly less thah
Definition 2. Let! > 1 be an integer. We say that a kernet R? — R? has order! if
d
/ k(u) du = 1,/ wu? .. ultk(u) du =0 Vi, ... jqa >0, Zji <l 3)
ucRd u€R4 -
If d =1, then the above condition becomgs . k(u) du =1, [  wk(u) du=0VYj=1...1.

Assumption 1 (Al). The setK has smoothing kernels whose bandwidthsVj = 1,...,m

staisfy the constrain% = ¢jj, Vi1,J2 =1...m where0 < ¢j,;, < oo andh; — 0 asn — oo
J2

Vi=1...m

Assumption 2 (A2). The true density functiorf belongs to the Hder classX (5, L) and the
base kernels are of order= |3 . AlsoCy = [p, k*(0) df < 00,Cy = [, |0]°k(0) df < oo.
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Assumption Al guarantees that as we see more and more samples the bandwidths all tend
to O at the same rate. Assumption A2 is satisfied for most commonly used smoothing kernels
such as a Gaussian kernel or Epanechnikov kernel. The analysis has 3 main steps that can be

enumerated as follows.

1) Lemma (1) establishes an upper bound on the bias, variance, and the MSE for CAKE like
estimators in terms of’'s. The proof techniques used here are fairly standard and similar
to ones used in Tsyabkov [1].

2) The next step is to solve an optimization problem P1 (see page 5 of this supplementary
material) of minimizing the upper bound on the MSE of CAKE like estimators under
convexity constraints on. This problem doesn’t have a closed form solution in general.
But we show in Lemmas (4-9) that under assumption Al, A2, and for large enoltgh
is indeed possible to give a closed form expression for the optimblsing these optimal
« we calculate the optimal upper bound on MSE in Lemma (10).

3) Finally by spectral analysis in Lemmas (11-2) we are able to investiagte the size of the
above derived upper bound on the optimal MSE.

4) The proof of the final result presented in Theorem (3) requires just putting together all the

above lemmas.

Fact 1 (Bias-Variance Decomposition).Let f be the underlying density function. For any
. 2 . .

estimatorf let MSE(wo) £ E | f(w0) ~ f(0)| ", (o) = Ef (x) ~ f(xo), 0*(w0) = El(f(w0) -

E[f(x0)])%]. ThenMSE(x) = b*(x0) + 02(z,) where all expectations are taken w.r.t a product

distribution D" defined on a sample of points from the distributiorD.

Lemma 1. Consider the CAKE like density estimator as shown in equation (1) wheseare
fixed positive real numbers such th@;’;l a;j =1Vi=1,2...n. Denote byfmax the maximum
value of the underlying density adt = [, k2(0) d6, Cy = [,. |0)°k(0) 40, Cs = L (%L)?, 0, = Cilme

and| - | is the standard Euclidean norm d&. Under assumptions Al, A2 the estimafohas

the following properties

1) 0'2({1,’ ) < lemax ZZ 1ZJ ) hd
2) ‘b($0)| < CT;QZIL Zz 1 Z] 1 al]h‘ﬂ
3) MSE(xo) < Cs (Z@ 12 Qg ]> +C Y Y 5 = o Ma, whereM € ™™™ M -

W|
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0 is defined as

Csh?P + % ifi=p&j=1
Miigp =< @
C3hh) otherwise

Proof:

1) o*(zo) = SE [Z?:l > e ﬁijr, wherej3;; = O‘”k (’” ‘”) —E [a”k ( )} For given

constantsy;; the r.v 3;; are independent wﬁﬁ:[ﬁij} = 0. We have

o?(w0) = %E[Z > Bl (5)

i=1 j=1

Z ZE ] [Sincej;; are 0 mean independent random variables] (6)

=1 j=1

sﬁzzﬁw( ) )

i=1 j=1

1 < i
<L M [ R0 @0 ®

i=1 j=1 J
= ZZ ”fmaxcl 9
=1 j=1

2) To calculate|b(x)| we first calculate thé f(z,). We have

Ef(wo) = &30 X Btk (452) (10)
w et Bk ( (/ZZ> (> i aij) (11)
= % Zj:l fRd k(e)f(xo + hje)sjv (12)

wheres; = Y7 oy, Y s; = n,s; < n Vj =1,2...m. Taylor expanding around

and using the fact that all kernels are symmetric and of otder 5| we get

Ef(l’()) — f(l'o) = %Z;nzl fRd %le(l‘o + Thj@)[hje, ey hJQ]s]k(Q) d@ (13)

| times

< % Z;nzl fRd %h§|9|ﬁ5jk(9) dg (14)
= L8l Jpal01°K(6) A6 (15)
= % > i ZTzl O‘ijhéj- (16)
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where Equation (14) follows from Equation (13) by using the facts that the kéfnels
of order! = || and f € X(5, L).
3) This follows trivially by the bias-variance decomposition and parts (1, 2).
O
This finishes the first part of our analysis. The second part of our analysis is to investigate this
upper bound on the MSE and its optimal value. We do this by establishing the equivalence of

the following four optimization problems for sufficiently large> no( fmax 3, d, L).

Pl1: min o'Ma P2: mina® Pa
aeanXl aERM™
subject o) ay; =1Vi=1,....n subject to a; =1
j=1 j=1
a; >0Vi=1,....,n,5=1...,m a; >0Vi=1...m
P3: mina® Pa P4: min o'Ma
aER™ acRnmx1
subject to ~a; =1 subject o) a;; =1Vi=1,...n.
j=1 j=1
def 8 Ié; T def C'4 C'4 def T
- [\/Cghl,...\/cghm} D= | PEw 4D, (17)
1 m

Lemma 4. The optimization problems P1 and P2 are equivalent to each other.

Proof: The structure of the matrix/ ensures that;, ; = a;,; Vi1, i = 1,2...n and hence
a”Ma = n?a” Pa. Hence optimization problems P1 and P2 are equivalent. O

The proof of next lemma follows trivially by using the Lagrangian of P3 and hence is omitted.

Lemma 5. The solution to the optimization problem P3ds= 15;1—11"11,,1-

Lemma 6. Under assumption Al and/n > no(finaz, 3, d, L) we havea = 15’;1_1;'11 >0

Proof. Since P = vv? + D by Sherman-Morrison-Woodbury formula we will have
D~ tvoT D!

pl=pt_ 2 "~
1+9TD1p

(18)
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From Equation (17) we hav® ! = [g—i, oA } Using Equation (17) we get

(vv"), —Cghﬁhﬁ Vi,j=1...m (19)
(D' DY), g?; R i G =1, .m (20)
1+ "Dy =1+ g (hm” + R+ hﬁf*d) (21)

4

Under assumption Al and for large enough> ny( fima, 8, d, L) such thath; < 1 we have
1+v"D~'v ~ 1. Using Equations (18,19,20,21) we get
hy cyp28+2d i .
po o ath T = 22)
]
—%hf*dhf” otherwise

Using Equation (22) and the expression fomwe get

e gy xom g B+dy B+d
_ 23
A _1 hy h

o = x 6+dﬁth:1...m. (23)
m B +

Zi 10_4__21 12; 1h h

From Assumption Al and for sufficiently large > no(fmas, 3. d, L) we haveh? >> p2**%4,
We get
hd

o ~ m >0 Vt= 1

0

Lemma 7. Under assumption Al and for large enough> ng(fmax 3,d, L) the optimization

problems P2 and P3 are equivalent.

Proof: The difference between the optimization problems P2 and P3 is the absence of
the positivity constraint on the alpha vector. However Lemma (6) guarantees that under the
assumption Al, the resulting solution of optimization problem P3 is positive. Hence we can

conclude that optimization problems P2 and P3 are equivalent. a

Lemma 8. Problems P3 and P4 are equivalent and hence under assumption Al and for large

enoughn > ng(fmax 3,d, L) P1 and P4 are equivalent.

Proof. The proof for the first part of the Lemma is exactly the same as that for Lemma (4).
The second part of the Lemma follows using lemmas (4), (7) and from the first part. O

The proof of next lemma is trivial and hence is omitted.
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Lemma 9. The solution of the optimization problem P4 is givernby: M1 AT (AM 1 AT)~11,,
whereA € R™*™™ and ther®" row of matrix A is given by the vectdf,,, ..., 0,,, 1,,,0,,,...0,]7.

r—1 times n—r times
Lemma 10. Under Al, A2 and for large enough > n¢( fmax 3, d, L) the optimalM SE(xy) <
1'B1, where B = (AM~1AT)~1,

Proof: From Lemma (1) we know that/ SE(zo) < o’ Ma. Now using Lemma (9) we
get the required result. a
The final part of the proof is to analyze the magnitude of the optimal upper bound on

MSE(z). In order to be able to do this we need some simple lemmas.
Lemma 11. |17 B~'1,| < nmax{|)| : X is an eigen value of3}.

Proof: Matrix B is symmetric and hence is normal. Now for any vectoand normal
matrix B we have|1B~'1,| < nmax{|)| : A is an eigen value oB} [2]. Simply Replacer

with the vectorl, to get the desired result. O
Proof: Using the variational characterization of eigen values we have

(AT2)" M1 AT ) Amin(M Y| A" 2|13

Ty

where the last inequality follows from the fact that > 0. a

Lemma 13. A\, (M) < ”Z;—nzl Cgh?ﬁ e’

~d -
h]'

Proof: Itis easy to see that/ = v,v! + D, wherev, = [v,v...v]andD; = diag(D, ... D
Y 101 1 1 1 g( )

ntimes ntimes

and wherev, D are given by the Equation (17). HeN€,a. (M) < Anaz(v101) + Appaz(D1).
Since viv{ = 0, we get A (viv]) < > Ni(viof). Now Yo, N\;(vio]) = trace(viv]) =

ny ", Cgh?ﬁ. SinceD is a diagonal matrix we get,,..(D) <> 7, f—;; O

Lemma 14.If h; = @(n‘ﬁ) then Vn > no(fia0,d, L) under Al, A2 the optimal value of
MSE(x) is O(n~ ).

January 10, 2011 DRAFT



Proof: We have the following chain of inequalities (whefe= (AM—1AT)=1),

1"B1, < nmax{|)\|: X is an eigen value of B (24)
< nl||Bl[2 (25)
=  npmax{y/\:\is an eigen value d@#?} (26)
- Am,-n(AanlAT) (27)
S @ (28)
- a0 @9
< BN GRS G = O ) (30)

Here Equation (25) follows from Equation (24) by the definition of spectral norm and the
fact that spectral norm of a matrix is the smallest of all matrix norms. Equation (26) follows
from Equation (25) by the definition of spectral radius, Equation (27) from Equation (26)
from the definition of matrixB and the fact that matrix3 is symmetric positive definite.

Equation (28) follows from Equation (27) by lemma (12) and Equation (30) from Equation (29)

using lemma (13). a
Lemma 2. Consider the optimization problem

Pl1: min o'Ma

a€Rrmx1
subject to: iaij =1Vvi=1,...,n, a>0.
j=1
Under assumptions Al, A2 and for > no(fmax 3,d, L) the optimal value of the objec-
tive is 17(AM~1AT)~'1,, where A € R™™™ and ther" row of the matrixA is given by
[Qm,...,o,@, 1m,9m,...0,,3]T. Also the optimal value o/ SE(xq) = O(n*%) is attained

Vv
r—1 times nm—r times

whenh,; = @(n*%ﬁ).

Proof: The first part of the proof follows from Lemma (11). The second part of the proof
follows from Lemma (15).

We are now ready to state and prove our main result.
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Theorem 3. Under assumptions Al, A2 and far, = @(n_wﬁ) Vi = 1,...,m we have
Vn > nq(Cy, L, 1, B, d, L, K e, ) the CAKE like estimatoy given by Equation (1) satisfies

sup  sup Epe |(f(z0) = flw0))?| = O(n757). (31)

zoeR? fEX(B,L)
Proof: Itis enough to prove thatf € ¥(3, L), 79 € R? : frax < C' < oo, for some universal
constantC. Then the result follows from Lemma (2). Choose a set of bounded smoothing kernels

with h; = 1. Now we have from the Lemma (1) that
oL
f(z <—+/Kx—z dz<Cl——|—KmaX<oo (32)
Since the R.H.S. is independent ¢fz,, one can choos€' to be the R.H.S. of the above

equation. a

[I. Risk oF THE CAKE ESTIMATOR

In this section we shall prove an upper bound on theisk of the CAKE estimator in terms

of its empirical risk via uniform stability arguments.

Theorem 4. Let f(x) be the CAKE density estimator defined by the equation

E:EI”K( =) 33)
=1 ]—
wherea* is the solution to the optimization problem
T :min of Za — 2av + M |al|3 (34)
subjectto:» a; =1 Vi=1,...na>0 (35)

J=1

where Z ¢ Rrmxnm o ¢ ¢ RV are defined as

1 T — x; r—x
Z .. _ 7 P
ol = [ i ( - ) k ( - )
vlij] = iiik Ti Ty (36)
] a n2 =1 h;l hj .
P
Suppose we are provided fixed bandwidihs . ., h,, and the true underlying density functign

is bounded by a constart. Letc, = (v/27)?. Then with probability atleast — ¢ over the input
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training samples, the CAKE estimatg§rwith Gaussian base kernels satisfies the risk bound

E,p|f(z) — f(z)| < = Z|f (25) — flaa)]+

| 272 |1 | L ()
ldzh—wm Z—Jzz NI

j=1 j=1 =1

Before we prove the theorem we need the definition of uniform stability of a learning algo-
rithm. In the definition to follow we denote by A any learning algorithm. The learning algorithm
A learns on S and outputs a function (modéj). Also let As_, denote the function outputted by
learning algorithm A when trained on the dataSet. Uniform stability quantifies the algorithms

behaviour when any arbitrary point from a set S is not used for training.

Definition 3. An algorithm A has uniform stabilityy w.r.t the loss functiori if the following

holds true
VS =A{zy,...,x,},Vie{l,....n} : ||l(As,") — (As_,, )| < B (38)

The proof of the above theorem proceeds by bounding the uniform stability of the CAKE
algorithm. The following is an important result concerning the expected risk of a learning

algorithm in terms of its empirical risk.

Theorem 5. Let A be an algorithm with uniform stability w.r.t a loss function such that the
function Ag learnt by the algorithm A when trained on datasesatisfiesvz, S : 0 < I(Ag, z) <
M. Then for anyn > 1, and anyé € (0, 1) with probability atleastl — ¢ over the random draw
of the sample S we have

log(1/0)

2n (39)

1 n
Eowp I(As2) < ~ 2; WA, ) + 26 + (4nf + M)

Theorem (5) and definition (3) were first provided by Bousquet and Elisseeff ([3]) in the context
of supervised learning problems. However it is straightforward to see that their result holds true

for unsupervised learning problems also.

Lemma 6. Givenm fixed bandwidthg:, ..., h,,, the uniform stabilitys of the CAKE estima-

tor obtained by solving the optimization problem T (equations (34-35)) w.r.t the loss function
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I(Ag,z) = |f(z) — f(z)| with Gaussian base kernels is upper bounded by

2 - & 1 "1

Proof: Letl(Ag,z) < |f(z) — f(z)|. Let S_, = {x1,...,2,} — {,} represent the dataset

which doesn't have the training poinf,. The deleted CAKE density estimate learnt using dataset

S_, IS
) (41)

<Yy (4

11]1

where 5* is the solution to the optimization problem

V. Bmln BTMB — 26T (42)
e nm
subjectto:» B =1 Vi=1,...n,8>0 (43)
j=1
B =0Yj=1,...m (44)

where M = Z + A and Z is defined in equation (36). Note that the optimization problem T
given by equations (34-35) and the problem V differ by an additional constraint in V given by
the constraint (44). By definition bounding stability is equivalent to bounding|l(Ag,x) —
l(As_,,z)|. We shall boundi(Ag,z) —I(As_,,x)| and show that the bound doesn’t depend on
x,, Which allows us to get a bound gh Let o* denote the optimal solution of problem T and

4* the optimal solution of problem V.

1/ (@)= f (@)= |f-u(2) = f@)I] < /(@)= fonl2)] <

It is enough to upper bound;, 7. Let us denote byl(«*) the vector obtained by setting the
last m components otv* to 0. Then by Cauchy-Scwartz inequality we have

7, < —[lia’) - 57| |1 (46)
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12

where K, € R"V™ and K, [ij] = 7k (Tf“) Vi=1,...n—1,7 =1...m. Since all our base
j J

kernels are Gaussian one can trivially upper bound

n "]
[ Kyla < J(\m——ﬂw;@ (47)

Hence now it is enough to upper bound the quantitya*) — 5*||. Let us denote the objective of
optimization problem T by;(«) and that of problem V by (5). Note thatgr(«), gy (3) = oo

if «, 3 do not belong to the feasible set of the optimization problems T and V respectively. For
any vectord € R™ which is a feasible solution of the optimization problem T, define

11(6) = 011, 0n-1)m, 0, ...,0]. (48)

m

i.e I1(0) is the vector obtained by projectirtgonto the feasible set of optimization problem V.
Observe thayr(«), gy () are both\ strongly convex im, 3 respectively, and hence due to the
strong convexity property and the fact thétis an optimal solution of optimization problem Q
we get

ov(T1(0*)) — gv(5%) > SlIM(a") — 5|1 (49)

By definition g1 (¢) is a quadratic function involving terms not havifig;’s and terms involving
6,5,7 =1,...,m. Since the lastn terms inII(#) are O by definition hencey (I1(¢)) has all the
terms as ingr(#) except for the terms containing,;. Hence we have for ang satisfying the

constraints of P andll(#) satisfying the constraints of problem V
gv(T1(0)) = gr(0) = > Ty, (50)
j=1

HereTy,, are terms ingr (@) involving 6,,;. Now for the vector3* let B* be defined as

Fy 2B Vi=l.m-lj=1..m 1)

j
B*nj g a,:/j VJ — 1, ... (52)

HenceB* belongs to the feasible set of problem V asidbelongs to the feasible set of problem

T. Using equation (53) we get

gv(I(a") = gv(5) = gr(@®) = gr(B)+ Y Ts = > Tar, <D Tg,
. , —

<0 J=1 J=1 J

J

Ta;‘u- (53)
=1

j=
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where the last inequality follows from the fact that is an optimal solution of the optimization

problem T. From the definitions of the functiga(-) and M and using equation (51) we get

m m m n—1 m
(523 — (a;)*)M[nj, nj]

J/

(]
IS
g
|
(]
&
[
[\
(]
&
(]
]
=
Q
£
S
E
(? M 3

-

0

+2 Z Z(ﬁ*njﬁ*nl — Q) Mng, nl] + 2 Z ) Unj

j=1 =1
I#j

J —~
N g

1
<2ma E E Minj, pl] < nE E . (54)
}fnplz1 o = j=1 =1 " (\/h?-l-h%)d

where the penultimate inequality follows from the fact thaf's form a convex combination and

the last inequality from the definition of the matriX¥. Now using equations (46,47,49,53,54)

we get
1 1 12 2 1
h<— 7= 3 |3 : (55)
nJ (v/2m)2 ; h2 | A jz_; ; (v2m)d ( o h,?)d
Now all we need to do is upper bourld. We have
1| & — 1 1
T, = — "Jk; < — —. 56
2 Z hd < hj ) — n( /QW-)dJZIh;; ( )

Putting together the bounds f(ﬂi, T, we get

BSEJ h _ZZ Var AT T

(e

The next lemma bounds the l0EsAg, x) = | f(z) — f(z)].

Lemma 7. Suppose the underlying density function is bounded by a universal costditen
the CAKE estimator with Gaussian kernels as base kernels and with fixed bandiyidths 4,
satisfies|f(z) — f(z)| < B + A e

Proof: We have

n m

1 1
) SBJF—(\/%)d;h_;?D (58)

L
<

[ (@) = f(2)] < |f(2)] + f(a

> 5

i=1 j=1

3I’—‘

H(
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Proof of Theorem 4. Applying theorem (5) to the CAKE algorithm with the loss function
I(Ay,z) £ |f(x) — f(z)| and lemmas (6,7) we get the necessary result. O

I11. ADDITIONAL EXPERIMENTAL RESULTS

In the main paper we showed a couple of results comparing CAKE to other density estimators
on some benchmark 1-d synthetic datasets. In this supplement we show the results on all the

benchmark 1-d synthetic datasets. All the synthetic distributions are from Marron and Wand ([4]).

Skewed Unimodal Density
0.7 | ; ;

—AKDE
- CAKE

0.61 --RSDE
Rodeo

0.5 . ---VKDE

0.4-

0.2r

0.1r

(a) Skewed Unimodal Density
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Strongly Skewed Density

16 8 — AKDE

w - CAKE

1.4- & ~RSDE
Rodeo

---VKDE

—~True
2 3
(b) Strongly Skewed Density
Kurtotic Unimodal Density

35 | | | — AKDE

- CAKE

3 ) —--RSDE
Rodeo

---VKDE

251 ; —~True

2" ]
1.5 ' ]
1 - 4
0.5¢ ]
_03 3

(c) Kurtotic Unimodal Density
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Outlier Density

3.5 —AKDE
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3 —-—RSDE
Rodeo
---VKDE
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2r i
1.5 il 1
1t i
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—03 -2 -1 0 1 2 ’ 3
(d) Outlier Density
Bimodal Density
0.4 |
. —AKDE
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(e) Bimodal Density
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Separated Bimodal Density

0.7

0.4r

0.3}

(f) Separated Bimodal Density

Asymmetric Bimodal Density

0.7

0.6f

0.5f

0.3f
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0.1

i [—AKDE

(g9) Asymmetric Bimodal Density
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0.8

Claw Density

0.5f

0.4-

0.2r

0.1r

1.2

(h) Claw Density

Double Claw Density

0.6

0.2r

SR

x - . - - .
" 5 u H H H
" N N " "

—AKDE
- CAKE
--RSDE

Rodeo
---VKDE

—True

(i) Double Claw Density
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Asymmetric Claw Density
1.2 — Fwr ‘

(j) Assymetric Claw Density

Asymmetric Double Claw Density

12 . ‘
b —AKDE

Lo —~CAKE

1+ e b ' —~-RSDE
fon o Rodeg

oo poo ---VKDE

(k) Assymetric Double Claw Density
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Smooth Comb Density
T i

1.2
—AKDE

() Smooth Comb Density

Discrete Comb Density

(m) Discrete Comb Density
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Fig. 1. Performance on a product distribution with strongly skewed density along x-axis and

unifrorm density along y-axis.
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Fig. 2: Performance of various density estimators on a product distribution with Trimodal density
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Density function CAKE | Adaptive | Variable | RODEO | RSDE
Skewed Unimodal 0.0960 | 0.0829 0.0827 | 0.0982 | 0.1061
Strongly Skewed 0.05907| 0.06419 | 0.1305 | 0.0584 | 0.468
Kurtotic Unimodal 0.7688 | 0.721564 | 0.8326 0.7144 0.1604
Outlier Density 0.80 0.851 0.6907 | 0.8856 1.70
Bimodal Density 0.02073| 0.02337 | 0.1979 0.0313 0.079

Separated Bimodal Density | 0.02963| 0.01272 | 0.1723 0.0377 0.168
Asymmetric Bimodal Density] 0.1242 | 0.1467 0.1928 0.1258 0.0747

Claw 0.1030 | 0.0639 0.0781 0.1272 0.1597
Double claw 0.2683 | 0.2590 2.755 1.3159 0.1288
Asymmetric claw 0.2378 | 0.2449 0.9883 0.1194 0.1248
Asymmetric double claw 0.2097 | 0.2036 21711 1.0060 0.1199
Smooth Comb 0.3543 | 0.4039 1.5482 1.1866 0.175

Discrete comb 0.1489 | 0.1980 0.6887 0.4419 0.2092
Strongly skewed+Uniform 0.0939 | 0.38 0.3816 1.4232 0.3654
Claw+ Uniform 0.1797 | 0.1873 0.181 1.0837 0.1708
Trimodal+Uniform 0.1239 | 0.1390 0.1300 1.10067 | 0.1151

TABLE I: RMSE values of different density estimators on various synthetic 1-d and 2-d
distribution.

table
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