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Supplementary Material
A PROXIMITY OPERATORS AND MOREAU PROJECTIONS

Throughout, we let ϕ : Rp → R̄ (where R̄ , R ∪ {+∞}) be a convex, lower semicontinuous (lsc) (the epigraph
epiϕ , {(x, t) ∈ Rp ×R |ϕ(x) ≤ t} is closed in Rp×R), and proper (∃x : ϕ(x) 6=+∞) function. The Fenchel conjugate
of ϕ is ϕ? : Rp→ R̄, ϕ?(y) , supx y

>x− ϕ(x). Let:

Mϕ(y) , inf
x

1

2
‖x− y‖2 + ϕ(x), and proxϕ(y) = arg inf

x

1

2
‖x− y‖2 + ϕ(x);

the function Mϕ : Rp→ R̄ is called the Moreau envelope of ϕ, and the map proxϕ : Rp→ Rp is the proximity operator
of ϕ (Combettes and Wajs, 2006; Moreau, 1962). Proximity operators generalize Euclidean projectors: consider the case
ϕ = ιC , where C ⊆ Rp is a convex set and ιC denotes its indicator (i.e., ϕ(x) = 0 if x ∈ C and +∞ otherwise). Then,
proxϕ is the Euclidean projector onto C and Mϕ is the residual. Two other important examples of proximity operators
follow:

• if ϕ(x) = (λ/2)‖x‖2, then proxϕ(y) = y/(1 + λ);

• if ϕ(x) = τ‖x‖1, then proxϕ(y) = soft(y, τ) is the soft-threshold function (Wright et al., 2009), defined as
[soft(y, τ)]k = sgn(yk) ·max{0, |yk| − τ}.

If ϕ : Rd1× . . .×Rdp → R̄ is (group-)separable, i.e., ϕ(x) =
∑p
k=1 ϕk(xk), where xk ∈ Rdk , then its proximity operator

inherits the same (group-)separability: [proxϕ(x)]k = proxϕk(xk) (Wright et al., 2009). For example, the proximity
operator of the mixed `2,1-norm, which is group-separable, has this form. The following proposition extends this result
by showing how to compute proximity operators of functions (maybe not separable) that only depend on the `2-norms of
groups of components; e.g., the proximity operator of the squared `2,1-norm reduces to that of squared `1.

Proposition 5 Let ϕ : Rd1 × . . .× Rdp → R̄ be of the form ϕ(x1, . . . ,xp) = ψ(‖x1‖, . . . , ‖xp‖) for some ψ : Rp → R̄.
Then, Mϕ(x1, . . . ,xp) = Mψ(‖x1‖, . . . , ‖xp‖) and [proxϕ(x1, . . . ,xp)]k = [proxψ(‖x1‖, . . . , ‖xp‖)]k(xk/‖xk‖).

Proof: We have respectively:

Mϕ(x1, . . . ,xp) = min
y

1

2
‖y − x‖2 + ϕ(y)

= min
y1,...,yp

1

2

p∑
k=1

‖yk − xk‖2 + ψ(‖y1‖, . . . , ‖yp‖)

= min
u∈Rp+

ψ(u1, . . . , up) + min
y:‖yk‖=uk,∀k

1

2

p∑
k=1

‖yk − xk‖2

= min
u∈Rp+

ψ(u1, . . . , up) +
1

2

p∑
k=1

min
yk:‖yk‖=uk

‖yk − xk‖2 (∗)

= min
u∈Rp+

ψ(u1, . . . , up) +
1

2

p∑
k=1

∥∥∥∥ uk
‖xk‖

xk − xk

∥∥∥∥2

= min
u∈Rp+

ψ(u1, . . . , up) +
1

2

p∑
k=1

(uk − ‖xk‖)2

= Mψ(‖x1‖, . . . , ‖xp‖), (18)

where the solution of the innermost minimization problem in (∗) is yk = uk
‖xk‖xk, and therefore [proxϕ(x1, . . . ,xp)]k =

[proxψ(‖x1‖, . . . , ‖xp‖)]k xk
‖xk‖ .

Finally, we recall the Moreau decomposition, relating the proximity operators of Fenchel conjugate functions (Combettes
and Wajs, 2006) and present a corollary that is the key to our regret bound in §3.3.
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Proposition 6 (Moreau (1962)) For any convex, lsc, proper function ϕ : Rp → R̄,

x = proxϕ(x) + proxϕ?(x) and ‖x‖2/2 = Mϕ(x) +Mϕ?(x). (19)

Corollary 7 Let ϕ : Rp → R̄ be as in Prop. 6, and x̄ , proxϕ(x). Then, any y ∈ Rp satisfies

‖y − x̄‖2 − ‖y − x‖2 ≤ 2(ϕ(y)− ϕ(x̄)). (20)

Proof: We start by stating and proving the following lemma:

Lemma 8 Let ϕ : Rp → R̄ be as in Prop. 6, and let x̄ , proxϕ(x). Then, any y ∈ Rp satisfies

(x̄− y)>(x̄− x) ≤ ϕ(y)− ϕ(x̄) (21)

Proof (of the Lemma): From (19), we have that

1

2
‖x‖2 =

1

2
‖x̄− x‖2 + ϕ(x̄) +

1

2
‖x̄‖2 + ϕ∗(x− x̄)

=
1

2
‖x̄− x‖2 + ϕ(x̄) +

1

2
‖x̄‖2 + sup

u∈Rp

(
u>(x− x̄)− ϕ(u)

)
≥ 1

2
‖x̄− x‖2 + ϕ(x̄) +

1

2
‖x̄‖2 + y>(x− x̄)− ϕ(y)

=
1

2
‖x‖2 + x̄>(x̄− x) + y>(x− x̄)− ϕ(y) + ϕ(x̄)

=
1

2
‖x‖2 + (x̄− y)>(x̄− x)− ϕ(y) + ϕ(x̄),

from which (21) follows.

Now, take Lemma 8 and bound the left hand side as:

(x̄− y)>(x̄− x) ≥ (x̄− y)>(x̄− x)− 1

2
‖x̄− x‖2

= (x̄− y)>(x̄− x)− 1

2
‖x̄‖2 − 1

2
‖x‖2 + x̄>x

=
1

2
‖x̄‖2 − y>(x̄− x)− 1

2
‖x‖2

=
1

2
‖y − x̄‖2 − 1

2
‖y − x‖2.

This concludes the proof of Corollary 7.

Note that although the Fenchel dual ϕ? does not show up in (20), it has a crucial role in this proof.

B PROOF OF LEMMA 2

Let u(θ̄,θ) , λΩ(θ̄)− λΩ(θ). We have successively:

‖θ̄ − θt+1‖2 ≤(i) ‖θ̄ − θ̃t+1‖2

≤(ii) ‖θ̄ − θ̃t‖2 + 2ηtλ
∑J
j=1(Ωj(θ̄)− Ωj(θ̃t+j/J))

≤(iii) ‖θ̄ − θ̃t‖2 + 2ηtu(θ̄, θ̃t+1)

≤(iv) ‖θ̄ − θ̃t‖2 + 2ηtu(θ̄,θt+1)

= ‖θ̄ − θt‖2 + ‖θt − θ̃t‖2 + 2(θ̄ − θt)>(θt − θ̃t) + 2ηtu(θ̄,θt+1)

= ‖θ̄ − θt‖2 + η2
t ‖g‖2 + 2ηt(θ̄ − θt)>g + 2ηtu(θ̄,θt+1)

≤(v) ‖θ̄ − θt‖2 + η2
t ‖g‖2 + 2ηt(L(θ̄)− L(θt)) + 2ηtu(θ̄,θt+1)

≤ ‖θ̄ − θt‖2 + η2
tG

2 + 2ηt(L(θ̄)− L(θt)) + 2ηtu(θ̄,θt+1), (22)
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where the inequality (i) is due to the nonexpansiveness of the projection operator, (ii) follows from applying Corollary 7 J
times, (iii) follows from applying the inequality Ωj(θ̃t+l/J) ≥ Ωj(θ̃t+(l+1)/J) for l = j, . . . , J − 1, (iv) results from the
fact that Ω(θ̃t+1) ≥ Ω(ΠΘ(θ̃t+1)), and (v) results from the subgradient inequality of convex functions, which has an extra
term σ

2 ‖θ̄ − θt‖
2 if L is σ-strongly convex.

C PROOF OF PROPOSITION 3

Invoke Lemma 2 and sum for t = 1, . . . , T , which gives

T∑
t=1

(L(θt;xt, yt) + λΩ(θt)) =

T∑
t=1

(L(θt;xt, yt) + λΩ(θt+1))− λ(Ω(θT+1)− Ω(θ1))

≤(i)
T∑
t=1

(L(θt;xt, yt) + λΩ(θt+1))

≤
T∑
t=1

(L(θ∗;xt, yt) + λΩ(θ∗)) +
G2

2

T∑
t=1

ηt +

T∑
t=1

‖θ∗ − θt‖2 − ‖θ∗ − θt+1‖2

2ηt

=

T∑
t=1

(L(θ∗;xt, yt) + λΩ(θ∗)) +
G2

2

T∑
t=1

ηt +
1

2

T∑
t=2

(
1

ηt
− 1

ηt−1

)
· ‖θ∗ − θt‖2

+
1

2η1
· ‖θ∗ − θ1‖2 −

1

2ηT
· ‖θ∗ − θT+1‖2 (23)

where the inequality (i) is due to the fact that θ1 = 0. Noting that the third term vanishes for a constant learning rate and
that the last term is non-positive suffices to prove the first part. For the second part, we continue as:

T∑
t=1

(L(θt;xt, yt) + λΩ(θt)) ≤
T∑
t=1

(L(θ∗;xt, yt) + λΩ(θ∗)) +
G2

2

T∑
t=1

ηt +
F 2

2

T∑
t=2

(
1

ηt
− 1

ηt−1

)
+
F 2

2η1

=

T∑
t=1

(L(θ∗;xt, yt) + λΩ(θ∗)) +
G2

2

T∑
t=1

ηt +
F 2

2ηT

≤(ii)
T∑
t=1

(L(θ∗;xt, yt) + λΩ(θ∗)) +G2η0(
√
T − 1/2) +

F 2
√
T

2η0

≤
T∑
t=1

(L(θ∗;xt, yt) + λΩ(θ∗)) +

(
G2η0 +

F 2

2η0

)√
T , (24)

where equality (ii) is due to the fact that
∑T
t=1

1√
t
≤ 2
√
T − 1. For the third part, continue after inequality (i) as:

T∑
t=1

(L(θt;xt, yt) + λΩ(θt)) ≤
T∑
t=1

(L(θ∗;xt, yt) + λΩ(θ∗)) +
G2

2

T∑
t=1

ηt +
1

2

T∑
t=2

(
1

ηt
− 1

ηt−1
− σ

)
· ‖θ∗ − θt‖2

+
1

2

(
1

η1
− σ

)
· ‖θ∗ − θ1‖2 −

1

2ηT
· ‖θ∗ − θT+1‖2

=

T∑
t=1

(L(θ∗;xt, yt) + λΩ(θ∗)) +
G2

2σ

T∑
t=1

1

t
− σT

2
· ‖θ∗ − θT+1‖2

≤
T∑
t=1

(L(θ∗;xt, yt) + λΩ(θ∗)) +
G2

2σ

T∑
t=1

1

t

≤(iii)
T∑
t=1

(L(θ∗;xt, yt) + λΩ(θ∗)) +
G2

2σ
(1 + log T ), (25)

where the equality (iii) is due to the fact that
∑T
t=1

1
t ≤ 1 + log T .
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D LIPSCHITZ CONSTANTS FOR SOME LOSS FUNCTIONS

Let θ∗ be a solution of the problem (9) with Θ = H. For certain loss functions, we may obtain bounds of the form
‖θ∗‖ ≤ γ for some γ > 0, as the next proposition illustrates. Therefore, we may redefine Θ = {θ ∈ H | ‖θ‖ ≤ γ} (a
vacuous constraint) without affecting the solution of (9).

Proposition 9 Let Ω(θ) = 1
2 (
∑M
m=1 ‖θm‖)2. LetLSVM andLCRF be the structured hinge and logistic losses (4). Assume

that the average cost function (in the SVM case) or the average entropy (in the CRF case) are bounded by some Λ ≥ 0,
i.e.,13

1

N

N∑
i=1

max
y′i∈∈Y(xt)

c(y′i; yi) ≤ Λ or
1

N

N∑
i=1

H(Yi) ≤ Λ. (26)

Then:

1. The solution of (9) with Θ = H satisfies ‖θ∗‖ ≤
√

2Λ/λ.

2. L is G-Lipschitz onH, with G = 2 maxu∈U ‖φ(u)‖.

3. Consider the following problem obtained from (9) by adding a quadratic term:

min
θ

σ

2
‖θ‖2 + λΩ(θ) +

1

N

N∑
i=1

L(θ;xi, yi). (27)

The solution of this problem satisfies ‖θ∗‖ ≤
√

2Λ/(λ+ σ).

4. The modified loss L̃ = L+ σ
2 ‖.‖

2 is G̃-Lipschitz on
{
θ | ‖θ‖ ≤

√
2Λ/(λ+ σ)

}
, where G̃ = G+

√
2σ2Λ/(λ+ σ).

Proof: Let FSVM(θ) and FCRF(θ) be the objectives of (9) for the SVM and CRF cases. We have

FSVM(0) = λΩ(0) +
1

N

N∑
i=1

LSVM(0;xi, yi) =
1

N

N∑
i=1

max
y′i∈Y(xi)

c(y′i; yi) ≤ ΛSVM (28)

FCRF(0) = λΩ(0) +
1

N

N∑
i=1

LCRF(0;xi, yi) =
1

N

N∑
i=1

log |Y(xi)| ≤ ΛCRF (29)

Using the facts that F (θ∗) ≤ F (0), that the losses are non-negative, and that (
∑
i |xi|)2 ≥

∑
i x

2
i , we obtain λ

2 ‖θ
∗‖2 ≤

λΩ(θ∗) ≤ F (θ∗) ≤ F (0), which proves the first statement.

To prove the second statement for the SVM case, note that a subgradient of LSVM at θ is gSVM = φ(x, ŷ)−φ(x, y), where
ŷ = arg maxy′∈Y(x) θ

>(φ(x, y′)−φ(x, y))+c(y′; y); and that the gradient ofLCRF at θ is gCRF = Eθφ(x, Y )−φ(x, y).
Applying Jensen’s inequality, we have that ‖gCRF‖ ≤ Eθ‖φ(x, Y )− φ(x, y)‖. Therefore, both ‖gSVM‖ and ‖gCRF‖ are
upper bounded by maxx∈X ,y,y′∈Y(x) ‖φ(x, y′)− φ(x, y)‖ ≤ 2 maxu∈U ‖φ(u)‖.

The same rationale can be used to prove the third and fourth statements.

E COMPUTING THE PROXIMITY OPERATOR OF THE (NON-SEPARABLE)
SQUARED `1

We present an algorithm (Alg. 4) that computes the Moreau projection of the squared, weighted `1-norm. Denote by � the
Hadamard product, [a� b]k = akbk. Letting λ,d ≥ 0, and φd(x) , 1

2‖d� x‖21, the underlying optimization problem is:

Mλφd
(x0) , min

x∈RM
1

2
‖x− x0‖2 +

λ

2

(
M∑
m=1

dm|xm|

)2

. (30)

13In sequence binary labeling, we have Λ = P̄ for the CRF case and for the SVM case with a Hamming cost function, where P̄ is
the average sequence length. Observe that the entropy of a distribution over labelings of a sequence of length P is upper bounded by
log 2P = P .
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Algorithm 4 Moreau projection for the squared weighted `1-norm
Input: A vector x0 ∈ RM , a weight vector d ≥ 0, and a parameter λ > 0
Set u0m = |x0m|/dm and am = d2

m for each m = 1, . . . ,M
Sort u0: u0(1) ≥ . . . ≥ u0(M)

Find ρ = max
{
j ∈ {1, . . . ,M} | u0(j) − λ

1+λ
∑j
r=1 a(r)

∑j
r=1 a(r)u0(r) > 0

}
Compute u = soft(u0, τ), where τ = λ

1+λ
∑ρ
r=1 a(r)

∑ρ
r=1 a(r)u0(r)

Output: x s.t. xr = sign(x0r)drur.

This includes the squared `1-norm as a particular case, when d = 1 (the case addressed in Alg. 2). The proof is somewhat
technical and follows the same procedure employed by Duchi et al. (2008) to derive an algorithm for projecting onto the
`1-ball. The runtime is O(M logM) (the amount of time that is necessary to sort the vector), but a similar trick as the one
described by (Duchi et al., 2008) can be employed to yield O(M) runtime.

Lemma 10 Let x∗ = proxλφd
(x0) be the solution of (30). Then:

1. x∗ agrees in sign with x0, i.e., each component satisfies x0i · x∗i ≥ 0.

2. Let σ ∈ {−1, 1}M . Then proxλφd
(σ � x0) = σ � proxλφd

(x0), i.e., flipping a sign in x0 produces a x∗ with the
same sign flipped.

Proof: Suppose that x0i · x∗i < 0 for some i. Then, x defined by xj = x∗j for j 6= i and xi = −x∗i achieves a lower
objective value than x∗, since φd(x) = φd(x∗) and (xi − x0i)

2 < (x∗i − x0i)
2; this contradicts the optimality of x∗. The

second statement is a simple consequence of the first one and that φd,λ(σ � x) = φd,λ(σ � x∗).

Lemma 10 enables reducing the problem to the non-negative orthant, by writing x0 = σ · x̃0, with x̃0 ≥ 0, obtaining a
solution x̃∗ and then recovering the true solution as x∗ = σ · x̃∗. It therefore suffices to solve (30) with the constraint
x ≥ 0, which in turn can be transformed into:

min
u≥0

F (u) ,
1

2

M∑
m=1

am(um − u0m)2 +
λ

2

(
M∑
m=1

amum

)2

, (31)

where we made the change of variables am , d2
m, u0m , x0m/dm and um , xm/dm.

The Lagrangian of (31) is L(u, ξ) = 1
2

∑M
m=1 am(um− u0m)2 + λ

2

(∑M
m=1 amum

)2

− ξ>u, where ξ ≥ 0 are Lagrange
multipliers. Equating the gradient (w.r.t. u) to zero gives

a� (u− u0) + λ
M∑
m=1

amuma− ξ = 0. (32)

From the complementary slackness condition, uj > 0 implies ξj = 0, which in turn implies

aj(uj − u0j) + λaj

M∑
m=1

amum = 0. (33)

Thus, if uj > 0, the solution is of the form uj = u0j − τ , with τ = λ
∑M
m=1 amum. The next lemma shows the existence

of a split point below which some coordinates vanish.

Lemma 11 Let u∗ be the solution of (31). If u∗k = 0 and u0j < u0k, then we must have u∗j = 0.

Proof: Suppose that u∗j = ε > 0. We will construct a ũ whose objective value is lower than F (u∗), which contradicts
the optimality of u∗: set ũl = u∗l for l /∈ {j, k}, ũk = εc, and ũj = ε (1− cak/aj), where c = min{aj/ak, 1}. We have∑M
m=1 amu

∗
m =

∑M
m=1 amũm, and therefore

2(F (ũ)− F (u∗)) =

M∑
m=1

am(ũm − u0m)2 −
M∑
m=1

am(u∗m − u0m)2

= aj(ũj − u0j)
2 − aj(u∗j − u0j)

2 + ak(ũk − u0k)2 − ak(u∗k − u0k)2. (34)
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Consider the following two cases: (i) if aj ≤ ak, then ũk = εaj/ak and ũj = 0. Substituting in (34), we obtain
2(F (ũ)− F (u∗)) = ε2

(
a2
j/ak − aj

)
≤ 0, which leads to the contradiction F (ũ) ≤ F (u∗). If (ii) aj > ak, then ũk = ε

and ũj = ε (1− ak/aj). Substituting in (34), we obtain 2(F (ũ)− F (u∗)) = ajε
2 (1− ak/aj)2

+ 2akεu0j − 2akεu0k +
akε

2 − ajε2 < a2
k/ajε

2 − 2akε
2 + akε

2 = ε2
(
a2
k/aj − ak

)
< 0, which also leads to a contradiction.

Let u0(1) ≥ . . . ≥ u0(M) be the entries of u0 sorted in decreasing order, and let u∗(1), . . . , u
∗
(M) be the entries of u∗ under

the same permutation. Let ρ be the number of nonzero entries in u∗ , i.e., u∗(ρ) > 0, and, if ρ < M , u∗(ρ+1) = 0. Summing
(33) for (j) = 1, . . . , ρ, we get

ρ∑
r=1

a(r)u
∗
(r) −

ρ∑
r=1

a(r)u0(r) +

(
ρ∑
r=1

a(r)

)
λ

ρ∑
r=1

a(r)u
∗
(r) = 0, (35)

which implies
M∑
m=1

u∗m =

ρ∑
r=1

u∗(r) =
1

1 + λ
∑ρ
r=1 a(r)

ρ∑
r=1

a(r)u0(r), (36)

and therefore τ = λ
1+λ

∑ρ
r=1 a(r)

∑ρ
r=1 a(r)u0(r). The complementary slackness conditions for r = ρ and r = ρ+ 1 imply

u∗(ρ) − u0(ρ) + λ

ρ∑
r=1

a(r)u
∗
(r) = 0 and − u∗0(ρ+1) + λ

ρ∑
r=1

a(r)u
∗
(r) = ξ(ρ+1) ≥ 0; (37)

therefore u0(ρ) > u0(ρ) − u∗(ρ) = τ ≥ u0(ρ+1). This implies that ρ is such that

u0(ρ) >
λ

1 + λ
∑ρ
r=1 a(r)

ρ∑
r=1

a(r)u0(r) ≥ u0(ρ+1). (38)

The next proposition goes farther by exactly determining ρ.

Proposition 12 The quantity ρ can be determined via:

ρ = max

{
j ∈ {1, . . . ,M}

∣∣∣ u0(j) −
λ

1 + λ
∑j
r=1 a(r)

j∑
r=1

a(r)u0(r) > 0

}
. (39)

Proof: Let ρ∗ = max{j|u∗(j) > 0}. We have that u∗(r) = u0(r)−τ∗ for r ≤ ρ∗, where τ∗ = λ

1+λ
∑ρ∗
r=1 a(r)

∑ρ∗

r=1 a(r)u0(r),

and therefore ρ ≥ ρ∗. We need to prove that ρ ≤ ρ∗, which we will do by contradiction. Assume that ρ > ρ∗. Let
u be the vector induced by the choice of ρ, i.e., u(r) = 0 for r > ρ and u(r) = u0(r) − τ for r ≤ ρ, where τ =

λ
1+λ

∑ρ
r=1 a(r)

∑ρ
r=1 a(r)u0(r). From the definition of ρ, we have u(ρ) = u0(ρ)−τ > 0, which implies u(r) = u0(r)−τ > 0

for each r ≤ ρ. In addition,

M∑
r=1

arur =

ρ∑
r=1

a(r)u0(r) −
ρ∑
r=1

a(r)τ =

(
1−

λ
∑ρ
r=1 a(r)

1 + λ
∑ρ
r=1 a(r)

) ρ∑
r=1

a(r)u0(r)

=
1

1 + λ
∑ρ
r=1 a(r)

ρ∑
r=1

a(r)u0(r) =
τ

λ
, (40)

M∑
r=1

ar(ur − u0r)
2 =

ρ∗∑
r=1

a(r)τ
2 +

ρ∑
r=ρ∗+1

a(r)τ
2 +

M∑
r=ρ+1

a(r)u
2
0(r)

<

ρ∗∑
r=1

a(r)τ
2 +

M∑
r=ρ∗+1

a(r)u
2
0(r). (41)

We next consider two cases:
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1. τ∗ ≥ τ . From (41), we have that
∑M
r=1 ar(ur − u0r)

2 <
∑ρ∗

r=1 a(r)τ
2 +

∑M
r=ρ∗+1 a(r)u

2
0(r) ≤

∑ρ∗

r=1 a(r)(τ
∗)2 +∑M

r=ρ∗+1 a(r)u
2
0(r) =

∑M
r=1 ar(u

∗
r − u0r)

2. From (40), we have that
(∑M

r=1 arur

)2

= τ2/λ2 ≤ (τ∗)2/λ2. Sum-
ming the two inequalities, we get F (u) < F (u∗), which leads to a contradiction.

2. τ∗ < τ . We will construct a vector ũ from u∗ and show that F (ũ) < F (u∗). Define

ũ(r) =


u∗(ρ∗) −

2a(ρ∗+1)

a(ρ∗)+a(ρ∗+1)
ε, if r = ρ∗

2a(ρ∗)
a(ρ∗)+a(ρ∗+1)

ε, if r = ρ∗ + 1

u∗(r) otherwise,

(42)

where ε = (u0(ρ∗+1) − τ∗)/2. Note that
∑M
r=1 arũr =

∑M
r=1 aru

∗
r . From the assumptions that τ∗ < τ and ρ∗ < ρ,

we have that u∗(ρ∗+1) = u0(ρ∗+1) − τ > 0, which implies that ũ(ρ∗+1) =
a(ρ∗)(u0(ρ∗+1)−τ∗)
a(ρ∗)+a(ρ∗+1)

>
a(ρ∗)(u0(ρ∗+1)−τ)

a(ρ∗)+a(ρ∗+1)
=

a(ρ∗)u
∗
(ρ∗+1)

a(ρ∗)+a(ρ∗+1)
> 0, and that u∗(ρ∗) = u0(ρ∗) − τ∗ − a(ρ∗+1)(u0(ρ∗+1)−τ∗)

a(ρ∗)+a(ρ∗+1)
= u0(ρ∗) −

a(ρ∗+1)u0(ρ∗+1)

a(ρ∗)+a(ρ∗+1)
−(

1− a(ρ∗+1)

a(ρ∗)+a(ρ∗+1)

)
τ∗ >(i)

(
1− a(ρ∗+1)

a(ρ∗)+a(ρ∗+1)

)
(u0(ρ∗+1) − τ) =

(
1− a(ρ∗+1)

a(ρ∗)+a(ρ∗+1)

)
(u∗(ρ∗+1)) > 0, where in-

equality (i) is justified by the facts that u0(ρ∗) ≥ u0(ρ∗+1) and τ > τ∗. This ensures that ũ is well defined. We
have:

2(F (u∗)− F (ũ)) =

M∑
r=1

ar(u
∗
r − u0r)

2 −
M∑
r=1

ar(ũr − u0r)
2

= a(ρ∗)(τ
∗)2 + a(ρ∗+1)u

2
0(ρ∗+1) − a(ρ∗)

(
τ∗ +

2a(ρ∗+1)ε

a(ρ∗) + a(ρ∗+1)

)2

−a(ρ∗+1)

(
u0(ρ∗+1) −

2a(ρ∗)ε

a(ρ∗) + a(ρ∗+1)

)2

= −
4a(ρ∗)a(ρ∗+1)ε

a(ρ∗) + a(ρ∗+1)
(τ∗ − u0(ρ∗+1))︸ ︷︷ ︸

−2ε

−
4a(ρ∗)a

2
(ρ∗+1)ε

2(
a(ρ∗) + a(ρ∗+1)

)2 − 4a2
(ρ∗)a(ρ∗+1)ε

2(
a(ρ∗) + a(ρ∗+1)

)2
=

4a(ρ∗)a(ρ∗+1)ε
2

a(ρ∗) + a(ρ∗+1)
≥ 0, (43)

which leads to a contradiction and completes the proof.


