Supplementary Material

A PROXIMITY OPERATORS AND MOREAU PROJECTIONS

Throughout, we let $\varphi: \mathbb{R}^{p} \rightarrow \overline{\mathbb{R}}$ (where $\overline{\mathbb{R}} \triangleq \mathbb{R} \cup\{+\infty\}$) be a convex, lower semicontinuous (lsc) (the epigraph epi $\varphi \triangleq\left\{(x, t) \in \mathbb{R}^{p} \times \mathbb{R} \mid \varphi(x) \leq t\right\}$ is closed in $\left.\mathbb{R}^{p} \times \mathbb{R}\right)$, and proper $(\exists \mathbf{x}: \varphi(\mathbf{x}) \neq+\infty)$ function. The Fenchel conjugate of φ is $\varphi^{\star}: \mathbb{R}^{p} \rightarrow \overline{\mathbb{R}}, \varphi^{\star}(\mathbf{y}) \triangleq \sup _{\mathbf{x}} \mathbf{y}^{\top} \mathbf{x}-\varphi(\mathbf{x})$. Let:

$$
M_{\varphi}(\mathbf{y}) \triangleq \inf _{\mathbf{x}} \frac{1}{2}\|\mathbf{x}-\mathbf{y}\|^{2}+\varphi(\mathbf{x}), \quad \text { and } \quad \operatorname{prox}_{\varphi}(\mathbf{y})=\arg \inf _{\mathbf{x}} \frac{1}{2}\|\mathbf{x}-\mathbf{y}\|^{2}+\varphi(\mathbf{x})
$$

the function $M_{\varphi}: \mathbb{R}^{p} \rightarrow \overline{\mathbb{R}}$ is called the Moreau envelope of φ, and the $\operatorname{map}_{\operatorname{prox}}^{\varphi}$: $\mathbb{R}^{p} \rightarrow \mathbb{R}^{p}$ is the proximity operator of φ (Combettes and Wajs, 2006; Moreau, 1962). Proximity operators generalize Euclidean projectors: consider the case $\varphi=\iota_{\mathcal{C}}$, where $\mathcal{C} \subseteq \mathbb{R}^{p}$ is a convex set and $\iota_{\mathcal{C}}$ denotes its indicator (i.e., $\varphi(\mathbf{x})=0$ if $\mathbf{x} \in \mathcal{C}$ and $+\infty$ otherwise). Then, $\operatorname{prox}_{\varphi}$ is the Euclidean projector onto \mathcal{C} and M_{φ} is the residual. Two other important examples of proximity operators follow:

- if $\varphi(\mathbf{x})=(\lambda / 2)\|\mathbf{x}\|^{2}$, then $\operatorname{prox}_{\varphi}(\mathbf{y})=\mathbf{y} /(1+\lambda)$;
- if $\varphi(\mathbf{x})=\tau\|\mathbf{x}\|_{1}$, then $\operatorname{prox}_{\varphi}(\mathbf{y})=\operatorname{soft}(\mathbf{y}, \tau)$ is the soft-threshold function (Wright et al., 2009), defined as $[\operatorname{soft}(\mathbf{y}, \tau)]_{k}=\operatorname{sgn}\left(y_{k}\right) \cdot \max \left\{0,\left|y_{k}\right|-\tau\right\}$.

If $\varphi: \mathbb{R}^{d_{1}} \times \ldots \times \mathbb{R}^{d_{p}} \rightarrow \overline{\mathbb{R}}$ is (group-)separable, i.e., $\varphi(\mathbf{x})=\sum_{k=1}^{p} \varphi_{k}\left(\mathbf{x}_{k}\right)$, where $\mathbf{x}_{k} \in \mathbb{R}^{d_{k}}$, then its proximity operator inherits the same (group-)separability: $\left[\operatorname{prox}_{\varphi}(\mathbf{x})\right]_{k}=\operatorname{prox}_{\varphi_{k}}\left(\mathbf{x}_{k}\right)$ (Wright et al., 2009). For example, the proximity operator of the mixed $\ell_{2,1}$-norm, which is group-separable, has this form. The following proposition extends this result by showing how to compute proximity operators of functions (maybe not separable) that only depend on the ℓ_{2}-norms of groups of components; e.g., the proximity operator of the squared $\ell_{2,1}$-norm reduces to that of squared ℓ_{1}.

Proposition 5 Let $\varphi: \mathbb{R}^{d_{1}} \times \ldots \times \mathbb{R}^{d_{p}} \rightarrow \overline{\mathbb{R}}$ be of the form $\varphi\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{p}\right)=\psi\left(\left\|\mathbf{x}_{1}\right\|, \ldots,\left\|\mathbf{x}_{p}\right\|\right)$ for some $\psi: \mathbb{R}^{p} \rightarrow \overline{\mathbb{R}}$. Then, $M_{\varphi}\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{p}\right)=M_{\psi}\left(\left\|\mathbf{x}_{1}\right\|, \ldots,\left\|\mathbf{x}_{p}\right\|\right)$ and $\left[\operatorname{prox}_{\varphi}\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{p}\right)\right]_{k}=\left[\operatorname{prox}_{\psi}\left(\left\|\mathbf{x}_{1}\right\|, \ldots,\left\|\mathbf{x}_{p}\right\|\right)\right]_{k}\left(\mathbf{x}_{k} /\left\|\mathbf{x}_{k}\right\|\right)$.

Proof: We have respectively:

$$
\begin{align*}
M_{\varphi}\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{p}\right) & =\min _{\mathbf{y}} \frac{1}{2}\|\mathbf{y}-\mathbf{x}\|^{2}+\varphi(\mathbf{y}) \\
& =\min _{\mathbf{y}_{1}, \ldots, \mathbf{y}_{p}} \frac{1}{2} \sum_{k=1}^{p}\left\|\mathbf{y}_{k}-\mathbf{x}_{k}\right\|^{2}+\psi\left(\left\|\mathbf{y}_{1}\right\|, \ldots,\left\|\mathbf{y}_{p}\right\|\right) \\
& =\min _{\mathbf{u} \in \mathbb{R}_{+}^{p}} \psi\left(u_{1}, \ldots, u_{p}\right)+\min _{\mathbf{y}:\left\|\mathbf{y}_{k}\right\|=u_{k}, \forall k} \frac{1}{2} \sum_{k=1}^{p}\left\|\mathbf{y}_{k}-\mathbf{x}_{k}\right\|^{2} \\
& =\min _{\mathbf{u} \in \mathbb{R}_{+}^{p}} \psi\left(u_{1}, \ldots, u_{p}\right)+\frac{1}{2} \sum_{k=1}^{p} \min _{\mathbf{y}_{k}:\left\|\mathbf{y}_{k}\right\|=u_{k}}\left\|\mathbf{y}_{k}-\mathbf{x}_{k}\right\|^{2} \\
& =\min _{\mathbf{u} \in \mathbb{R}_{+}^{p}} \psi\left(u_{1}, \ldots, u_{p}\right)+\frac{1}{2} \sum_{k=1}^{p}\left\|\frac{u_{k}}{\left\|\mathbf{x}_{k}\right\|} \mathbf{x}_{k}-\mathbf{x}_{k}\right\|^{2} \\
& =\min _{\mathbf{u} \in \mathbb{R}_{+}^{p}} \psi\left(u_{1}, \ldots, u_{p}\right)+\frac{1}{2} \sum_{k=1}^{p}\left(u_{k}-\left\|\mathbf{x}_{k}\right\|\right)^{2} \\
& =M_{\psi}\left(\left\|\mathbf{x}_{1}\right\|, \ldots,\left\|\mathbf{x}_{p}\right\|\right) \tag{18}
\end{align*}
$$

where the solution of the innermost minimization problem in $\left(^{*}\right)$ is $\mathbf{y}_{k}=\frac{u_{k}}{\left\|\mathbf{x}_{k}\right\|} \mathbf{x}_{k}$, and therefore $\left[\operatorname{prox}\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{p}\right)\right]_{k}=$ $\left[\operatorname{prox}_{\psi}\left(\left\|\mathbf{x}_{1}\right\|, \ldots,\left\|\mathbf{x}_{p}\right\|\right)\right]_{k} \frac{\mathbf{x}_{k}}{\left\|\mathbf{x}_{k}\right\|}$.
Finally, we recall the Moreau decomposition, relating the proximity operators of Fenchel conjugate functions (Combettes and Wajs, 2006) and present a corollary that is the key to our regret bound in §3.3.

Proposition 6 (Moreau (1962)) For any convex, lsc, proper function $\varphi: \mathbb{R}^{p} \rightarrow \overline{\mathbb{R}}$,

$$
\begin{equation*}
\mathbf{x}=\operatorname{prox}_{\varphi}(\mathbf{x})+\operatorname{prox}_{\varphi^{\star}}(\mathbf{x}) \quad \text { and } \quad\|\mathbf{x}\|^{2} / 2=M_{\varphi}(\mathbf{x})+M_{\varphi^{\star}}(\mathbf{x}) \tag{19}
\end{equation*}
$$

Corollary 7 Let $\varphi: \mathbb{R}^{p} \rightarrow \overline{\mathbb{R}}$ be as in Prop. 6 , and $\overline{\mathbf{x}} \triangleq \operatorname{prox}_{\varphi}(\mathbf{x})$. Then, any $\mathbf{y} \in \mathbb{R}^{p}$ satisfies

$$
\begin{equation*}
\|\mathbf{y}-\overline{\mathbf{x}}\|^{2}-\|\mathbf{y}-\mathbf{x}\|^{2} \leq 2(\varphi(\mathbf{y})-\varphi(\overline{\mathbf{x}})) \tag{20}
\end{equation*}
$$

Proof: We start by stating and proving the following lemma:
Lemma 8 Let $\varphi: \mathbb{R}^{p} \rightarrow \overline{\mathbb{R}}$ be as in Prop. 6, and let $\overline{\mathbf{x}} \triangleq \operatorname{prox}_{\varphi}(\mathbf{x})$. Then, any $\mathbf{y} \in \mathbb{R}^{p}$ satisfies

$$
\begin{equation*}
(\overline{\mathbf{x}}-\mathbf{y})^{\top}(\overline{\mathbf{x}}-\mathbf{x}) \leq \varphi(\mathbf{y})-\varphi(\overline{\mathbf{x}}) \tag{21}
\end{equation*}
$$

Proof (of the Lemma): From (19), we have that

$$
\begin{aligned}
\frac{1}{2}\|\mathbf{x}\|^{2} & =\frac{1}{2}\|\overline{\mathbf{x}}-\mathbf{x}\|^{2}+\varphi(\overline{\mathbf{x}})+\frac{1}{2}\|\overline{\mathbf{x}}\|^{2}+\varphi^{*}(\mathbf{x}-\overline{\mathbf{x}}) \\
& =\frac{1}{2}\|\overline{\mathbf{x}}-\mathbf{x}\|^{2}+\varphi(\overline{\mathbf{x}})+\frac{1}{2}\|\overline{\mathbf{x}}\|^{2}+\sup _{\mathbf{u} \in \mathbb{R}^{p}}\left(\mathbf{u}^{\top}(\mathbf{x}-\overline{\mathbf{x}})-\varphi(\mathbf{u})\right) \\
& \geq \frac{1}{2}\|\overline{\mathbf{x}}-\mathbf{x}\|^{2}+\varphi(\overline{\mathbf{x}})+\frac{1}{2}\|\overline{\mathbf{x}}\|^{2}+\mathbf{y}^{\top}(\mathbf{x}-\overline{\mathbf{x}})-\varphi(\mathbf{y}) \\
& =\frac{1}{2}\|\mathbf{x}\|^{2}+\overline{\mathbf{x}}^{\top}(\overline{\mathbf{x}}-\mathbf{x})+\mathbf{y}^{\top}(\mathbf{x}-\overline{\mathbf{x}})-\varphi(\mathbf{y})+\varphi(\overline{\mathbf{x}}) \\
& =\frac{1}{2}\|\mathbf{x}\|^{2}+(\overline{\mathbf{x}}-\mathbf{y})^{\top}(\overline{\mathbf{x}}-\mathbf{x})-\varphi(\mathbf{y})+\varphi(\overline{\mathbf{x}})
\end{aligned}
$$

from which (21) follows.

Now, take Lemma 8 and bound the left hand side as:

$$
\begin{aligned}
(\overline{\mathbf{x}}-\mathbf{y})^{\top}(\overline{\mathbf{x}}-\mathbf{x}) & \geq(\overline{\mathbf{x}}-\mathbf{y})^{\top}(\overline{\mathbf{x}}-\mathbf{x})-\frac{1}{2}\|\overline{\mathbf{x}}-\mathbf{x}\|^{2} \\
& =(\overline{\mathbf{x}}-\mathbf{y})^{\top}(\overline{\mathbf{x}}-\mathbf{x})-\frac{1}{2}\|\overline{\mathbf{x}}\|^{2}-\frac{1}{2}\|\mathbf{x}\|^{2}+\overline{\mathbf{x}}^{\top} \mathbf{x} \\
& =\frac{1}{2}\|\overline{\mathbf{x}}\|^{2}-\mathbf{y}^{\top}(\overline{\mathbf{x}}-\mathbf{x})-\frac{1}{2}\|\mathbf{x}\|^{2} \\
& =\frac{1}{2}\|\mathbf{y}-\overline{\mathbf{x}}\|^{2}-\frac{1}{2}\|\mathbf{y}-\mathbf{x}\|^{2}
\end{aligned}
$$

This concludes the proof of Corollary 7.
Note that although the Fenchel dual φ^{\star} does not show up in (20), it has a crucial role in this proof.

B PROOF OF LEMMA 2

Let $u(\overline{\boldsymbol{\theta}}, \boldsymbol{\theta}) \triangleq \lambda \Omega(\overline{\boldsymbol{\theta}})-\lambda \Omega(\boldsymbol{\theta})$. We have successively:

$$
\begin{align*}
\left\|\overline{\boldsymbol{\theta}}-\boldsymbol{\theta}_{t+1}\right\|^{2} & \leq^{\text {(i) }}\left\|\overline{\boldsymbol{\theta}}-\tilde{\boldsymbol{\theta}}_{t+1}\right\|^{2} \\
& \leq^{\text {(ii) }}\left\|\overline{\boldsymbol{\theta}}-\tilde{\boldsymbol{\theta}}_{t}\right\|^{2}+2 \eta_{t} \lambda \sum_{j=1}^{J}\left(\Omega_{j}(\overline{\boldsymbol{\theta}})-\Omega_{j}\left(\tilde{\boldsymbol{\theta}}_{t+j / J}\right)\right) \\
& \leq^{\text {(iii) }}\left\|\overline{\boldsymbol{\theta}}-\tilde{\boldsymbol{\theta}}_{t}\right\|^{2}+2 \eta_{t} u\left(\overline{\boldsymbol{\theta}}, \tilde{\boldsymbol{\theta}}_{t+1}\right) \\
& \leq^{\text {(iv) }}\left\|\overline{\boldsymbol{\theta}}-\tilde{\boldsymbol{\theta}}_{t}\right\|^{2}+2 \eta_{t} u\left(\overline{\boldsymbol{\theta}}, \boldsymbol{\theta}_{t+1}\right) \\
& =\left\|\overline{\boldsymbol{\theta}}-\boldsymbol{\theta}_{t}\right\|^{2}+\left\|\boldsymbol{\theta}_{t}-\tilde{\boldsymbol{\theta}}_{t}\right\|^{2}+2\left(\overline{\boldsymbol{\theta}}-\boldsymbol{\theta}_{t}\right)^{\top}\left(\boldsymbol{\theta}_{t}-\tilde{\boldsymbol{\theta}}_{t}\right)+2 \eta_{t} u\left(\overline{\boldsymbol{\theta}}, \boldsymbol{\theta}_{t+1}\right) \\
& =\left\|\overline{\boldsymbol{\theta}}-\boldsymbol{\theta}_{t}\right\|^{2}+\eta_{t}^{2}\|\boldsymbol{g}\|^{2}+2 \eta_{t}\left(\overline{\boldsymbol{\theta}}-\boldsymbol{\theta}_{t}\right)^{\top} \boldsymbol{g}+2 \eta_{t} u\left(\overline{\boldsymbol{\theta}}, \boldsymbol{\theta}_{t+1}\right) \\
& \leq^{\text {(v) }}\left\|\overline{\boldsymbol{\theta}}-\boldsymbol{\theta}_{t}\right\|^{2}+\eta_{t}^{2}\|\boldsymbol{g}\|^{2}+2 \eta_{t}\left(L(\overline{\boldsymbol{\theta}})-L\left(\boldsymbol{\theta}_{t}\right)\right)+2 \eta_{t} u\left(\overline{\boldsymbol{\theta}}, \boldsymbol{\theta}_{t+1}\right) \\
& \leq\left\|\overline{\boldsymbol{\theta}}-\boldsymbol{\theta}_{t}\right\|^{2}+\eta_{t}^{2} G^{2}+2 \eta_{t}\left(L(\overline{\boldsymbol{\theta}})-L\left(\boldsymbol{\theta}_{t}\right)\right)+2 \eta_{t} u\left(\overline{\boldsymbol{\theta}}, \boldsymbol{\theta}_{t+1}\right), \tag{22}
\end{align*}
$$

where the inequality (i) is due to the nonexpansiveness of the projection operator, (ii) follows from applying Corollary 7 J times, (iii) follows from applying the inequality $\Omega_{j}\left(\tilde{\boldsymbol{\theta}}_{t+l / J}\right) \geq \Omega_{j}\left(\tilde{\boldsymbol{\theta}}_{t+(l+1) / J}\right)$ for $l=j, \ldots, J-1$, (iv) results from the fact that $\Omega\left(\tilde{\boldsymbol{\theta}}_{t+1}\right) \geq \Omega\left(\Pi_{\Theta}\left(\tilde{\boldsymbol{\theta}}_{t+1}\right)\right)$, and (v) results from the subgradient inequality of convex functions, which has an extra term $\frac{\sigma}{2}\left\|\overline{\boldsymbol{\theta}}-\boldsymbol{\theta}_{t}\right\|^{2}$ if L is σ-strongly convex.

C PROOF OF PROPOSITION 3

Invoke Lemma 2 and sum for $t=1, \ldots, T$, which gives

$$
\begin{align*}
\sum_{t=1}^{T}\left(L\left(\boldsymbol{\theta}_{t} ; x_{t}, y_{t}\right)+\lambda \Omega\left(\boldsymbol{\theta}_{t}\right)\right)= & \sum_{t=1}^{T}\left(L\left(\boldsymbol{\theta}_{t} ; x_{t}, y_{t}\right)+\lambda \Omega\left(\boldsymbol{\theta}_{t+1}\right)\right)-\lambda\left(\Omega\left(\boldsymbol{\theta}_{T+1}\right)-\Omega\left(\boldsymbol{\theta}_{1}\right)\right) \\
\leq & \sum_{t=1}^{(\mathrm{i})}\left(L\left(\boldsymbol{\theta}_{t} ; x_{t}, y_{t}\right)+\lambda \Omega\left(\boldsymbol{\theta}_{t+1}\right)\right) \\
\leq & \sum_{t=1}^{T}\left(L\left(\boldsymbol{\theta}^{*} ; x_{t}, y_{t}\right)+\lambda \Omega\left(\boldsymbol{\theta}^{*}\right)\right)+\frac{G^{2}}{2} \sum_{t=1}^{T} \eta_{t}+\sum_{t=1}^{T} \frac{\left\|\boldsymbol{\theta}^{*}-\boldsymbol{\theta}_{t}\right\|^{2}-\left\|\boldsymbol{\theta}^{*}-\boldsymbol{\theta}_{t+1}\right\|^{2}}{2 \eta_{t}} \\
= & \sum_{t=1}^{T}\left(L\left(\boldsymbol{\theta}^{*} ; x_{t}, y_{t}\right)+\lambda \Omega\left(\boldsymbol{\theta}^{*}\right)\right)+\frac{G^{2}}{2} \sum_{t=1}^{T} \eta_{t}+\frac{1}{2} \sum_{t=2}^{T}\left(\frac{1}{\eta_{t}}-\frac{1}{\eta_{t-1}}\right) \cdot\left\|\boldsymbol{\theta}^{*}-\boldsymbol{\theta}_{t}\right\|^{2} \\
& +\frac{1}{2 \eta_{1}} \cdot\left\|\boldsymbol{\theta}^{*}-\boldsymbol{\theta}_{1}\right\|^{2}-\frac{1}{2 \eta_{T}} \cdot\left\|\boldsymbol{\theta}^{*}-\boldsymbol{\theta}_{T+1}\right\|^{2} \tag{23}
\end{align*}
$$

where the inequality (i) is due to the fact that $\boldsymbol{\theta}_{1}=\mathbf{0}$. Noting that the third term vanishes for a constant learning rate and that the last term is non-positive suffices to prove the first part. For the second part, we continue as:

$$
\begin{align*}
\sum_{t=1}^{T}\left(L\left(\boldsymbol{\theta}_{t} ; x_{t}, y_{t}\right)+\lambda \Omega\left(\boldsymbol{\theta}_{t}\right)\right) & \leq \sum_{t=1}^{T}\left(L\left(\boldsymbol{\theta}^{*} ; x_{t}, y_{t}\right)+\lambda \Omega\left(\boldsymbol{\theta}^{*}\right)\right)+\frac{G^{2}}{2} \sum_{t=1}^{T} \eta_{t}+\frac{F^{2}}{2} \sum_{t=2}^{T}\left(\frac{1}{\eta_{t}}-\frac{1}{\eta_{t-1}}\right)+\frac{F^{2}}{2 \eta_{1}} \\
& =\sum_{t=1}^{T}\left(L\left(\boldsymbol{\theta}^{*} ; x_{t}, y_{t}\right)+\lambda \Omega\left(\boldsymbol{\theta}^{*}\right)\right)+\frac{G^{2}}{2} \sum_{t=1}^{T} \eta_{t}+\frac{F^{2}}{2 \eta_{T}} \\
& \leq \sum_{t=1}^{\text {(ii) }}\left(L\left(\boldsymbol{\theta}^{*} ; x_{t}, y_{t}\right)+\lambda \Omega\left(\boldsymbol{\theta}^{*}\right)\right)+G^{2} \eta_{0}(\sqrt{T}-1 / 2)+\frac{F^{2} \sqrt{T}}{2 \eta_{0}} \\
& \leq \sum_{t=1}^{T}\left(L\left(\boldsymbol{\theta}^{*} ; x_{t}, y_{t}\right)+\lambda \Omega\left(\boldsymbol{\theta}^{*}\right)\right)+\left(G^{2} \eta_{0}+\frac{F^{2}}{2 \eta_{0}}\right) \sqrt{T} \tag{24}
\end{align*}
$$

where equality (ii) is due to the fact that $\sum_{t=1}^{T} \frac{1}{\sqrt{t}} \leq 2 \sqrt{T}-1$. For the third part, continue after inequality (i) as:

$$
\begin{align*}
& \sum_{t=1}^{T}\left(L\left(\boldsymbol{\theta}_{t} ; x_{t}, y_{t}\right)+\lambda \Omega\left(\boldsymbol{\theta}_{t}\right)\right) \leq \sum_{t=1}^{T}\left(L\left(\boldsymbol{\theta}^{*} ; x_{t}, y_{t}\right)+\lambda \Omega\left(\boldsymbol{\theta}^{*}\right)\right)+\frac{G^{2}}{2} \sum_{t=1}^{T} \eta_{t}+\frac{1}{2} \sum_{t=2}^{T}\left(\frac{1}{\eta_{t}}-\frac{1}{\eta_{t-1}}-\sigma\right) \cdot\left\|\boldsymbol{\theta}^{*}-\boldsymbol{\theta}_{t}\right\|^{2} \\
&+\frac{1}{2}\left(\frac{1}{\eta_{1}}-\sigma\right) \cdot\left\|\boldsymbol{\theta}^{*}-\boldsymbol{\theta}_{1}\right\|^{2}-\frac{1}{2 \eta_{T}} \cdot\left\|\boldsymbol{\theta}^{*}-\boldsymbol{\theta}_{T+1}\right\|^{2} \\
&= \sum_{t=1}^{T}\left(L\left(\boldsymbol{\theta}^{*} ; x_{t}, y_{t}\right)+\lambda \Omega\left(\boldsymbol{\theta}^{*}\right)\right)+\frac{G^{2}}{2 \sigma} \sum_{t=1}^{T} \frac{1}{t}-\frac{\sigma T}{2} \cdot\left\|\boldsymbol{\theta}^{*}-\boldsymbol{\theta}_{T+1}\right\|^{2} \\
& \leq \sum_{t=1}^{T}\left(L\left(\boldsymbol{\theta}^{*} ; x_{t}, y_{t}\right)+\lambda \Omega\left(\boldsymbol{\theta}^{*}\right)\right)+\frac{G^{2}}{2 \sigma} \sum_{t=1}^{T} \frac{1}{t} \\
& \leq \tag{25}
\end{align*}
$$

where the equality (iii) is due to the fact that $\sum_{t=1}^{T} \frac{1}{t} \leq 1+\log T$.

D LIPSCHITZ CONSTANTS FOR SOME LOSS FUNCTIONS

Let $\boldsymbol{\theta}^{*}$ be a solution of the problem (9) with $\Theta=\mathcal{H}$. For certain loss functions, we may obtain bounds of the form $\left\|\boldsymbol{\theta}^{*}\right\| \leq \gamma$ for some $\gamma>0$, as the next proposition illustrates. Therefore, we may redefine $\Theta=\{\boldsymbol{\theta} \in \mathcal{H} \mid\|\boldsymbol{\theta}\| \leq \gamma\}$ (a vacuous constraint) without affecting the solution of (9).
Proposition 9 Let $\Omega(\boldsymbol{\theta})=\frac{1}{2}\left(\sum_{m=1}^{M}\left\|\boldsymbol{\theta}_{m}\right\|\right)^{2}$. Let L_{SVM} and L_{CRF} be the structured hinge and logistic losses (4). Assume that the average cost function (in the SVM case) or the average entropy (in the CRF case) are bounded by some $\Lambda \geq 0$, i.e., ${ }^{13}$

$$
\begin{equation*}
\frac{1}{N} \sum_{i=1}^{N} \max _{y_{i}^{\prime} \in \mathcal{Y}\left(x_{t}\right)} c\left(y_{i}^{\prime} ; y_{i}\right) \leq \Lambda \quad \text { or } \quad \frac{1}{N} \sum_{i=1}^{N} H\left(Y_{i}\right) \leq \Lambda \tag{26}
\end{equation*}
$$

Then:

1. The solution of (9) with $\Theta=\mathcal{H}$ satisfies $\left\|\boldsymbol{\theta}^{*}\right\| \leq \sqrt{2 \Lambda / \lambda}$.
2. L is G-Lipschitz on \mathcal{H}, with $G=2 \max _{u \in \mathcal{U}}\|\phi(u)\|$.
3. Consider the following problem obtained from (9) by adding a quadratic term:

$$
\begin{equation*}
\min _{\boldsymbol{\theta}} \frac{\sigma}{2}\|\boldsymbol{\theta}\|^{2}+\lambda \Omega(\boldsymbol{\theta})+\frac{1}{N} \sum_{i=1}^{N} L\left(\boldsymbol{\theta} ; x_{i}, y_{i}\right) \tag{27}
\end{equation*}
$$

The solution of this problem satisfies $\left\|\boldsymbol{\theta}^{*}\right\| \leq \sqrt{2 \Lambda /(\lambda+\sigma)}$.
4. The modified loss $\tilde{L}=L+\frac{\sigma}{2}\|\cdot\|^{2}$ is \tilde{G}-Lipschitz on $\{\boldsymbol{\theta} \mid\|\boldsymbol{\theta}\| \leq \sqrt{2 \Lambda /(\lambda+\sigma)}\}$, where $\tilde{G}=G+\sqrt{2 \sigma^{2} \Lambda /(\lambda+\sigma)}$.

Proof: Let $F_{\mathrm{SVM}}(\boldsymbol{\theta})$ and $F_{\mathrm{CRF}}(\boldsymbol{\theta})$ be the objectives of (9) for the SVM and CRF cases. We have

$$
\begin{align*}
& F_{\mathrm{SVM}}(\mathbf{0})=\lambda \Omega(\mathbf{0})+\frac{1}{N} \sum_{i=1}^{N} L_{\mathrm{SVM}}\left(\mathbf{0} ; x_{i}, y_{i}\right)=\frac{1}{N} \sum_{i=1}^{N} \max _{y_{i}^{\prime} \in \mathcal{Y}\left(x_{i}\right)} c\left(y_{i}^{\prime} ; y_{i}\right) \leq \Lambda_{\mathrm{SVM}} \tag{28}\\
& F_{\mathrm{CRF}}(\mathbf{0})=\lambda \Omega(\mathbf{0})+\frac{1}{N} \sum_{i=1}^{N} L_{\mathrm{CRF}}\left(\mathbf{0} ; x_{i}, y_{i}\right)=\frac{1}{N} \sum_{i=1}^{N} \log \left|\mathcal{Y}\left(x_{i}\right)\right| \leq \Lambda_{\mathrm{CRF}} \tag{29}
\end{align*}
$$

Using the facts that $F\left(\boldsymbol{\theta}^{*}\right) \leq F(\mathbf{0})$, that the losses are non-negative, and that $\left(\sum_{i}\left|x_{i}\right|\right)^{2} \geq \sum_{i} x_{i}^{2}$, we obtain $\frac{\lambda}{2}\left\|\boldsymbol{\theta}^{*}\right\|^{2} \leq$ $\lambda \Omega\left(\boldsymbol{\theta}^{*}\right) \leq F\left(\boldsymbol{\theta}^{*}\right) \leq F(\mathbf{0})$, which proves the first statement.

To prove the second statement for the SVM case, note that a subgradient of $L_{\text {SVM }}$ at $\boldsymbol{\theta}$ is $\boldsymbol{g}_{\mathrm{SVM}}=\boldsymbol{\phi}(x, \hat{y})-\boldsymbol{\phi}(x, y)$, where $\hat{y}=\arg \max _{y^{\prime} \in \mathcal{Y}(x)} \boldsymbol{\theta}^{\top}\left(\boldsymbol{\phi}\left(x, y^{\prime}\right)-\boldsymbol{\phi}(x, y)\right)+c\left(y^{\prime} ; y\right)$; and that the gradient of L_{CRF} at $\boldsymbol{\theta}$ is $\boldsymbol{g}_{\mathrm{CRF}}=\mathbb{E}_{\boldsymbol{\theta}} \boldsymbol{\phi}(x, Y)-\boldsymbol{\phi}(x, y)$. Applying Jensen's inequality, we have that $\left\|\boldsymbol{g}_{\mathrm{CRF}}\right\| \leq \mathbb{E}_{\boldsymbol{\theta}}\|\boldsymbol{\phi}(x, Y)-\phi(x, y)\|$. Therefore, both $\left\|\boldsymbol{g}_{\mathrm{SVM}}\right\|$ and $\left\|\boldsymbol{g}_{\mathrm{CRF}}\right\|$ are upper bounded by $\max _{x \in \mathcal{X}, y, y^{\prime} \in \mathcal{Y}(x)}\left\|\phi\left(x, y^{\prime}\right)-\phi(x, y)\right\| \leq 2 \max _{u \in \mathcal{U}}\|\phi(u)\|$.
The same rationale can be used to prove the third and fourth statements.

E COMPUTING THE PROXIMITY OPERATOR OF THE (NON-SEPARABLE) SQUARED ℓ_{1}

We present an algorithm (Alg. 4) that computes the Moreau projection of the squared, weighted ℓ_{1}-norm. Denote by \odot the Hadamard product, $[\mathbf{a} \odot \mathbf{b}]_{k}=a_{k} b_{k}$. Letting $\lambda, \mathbf{d} \geq 0$, and $\phi_{\mathbf{d}}(\mathbf{x}) \triangleq \frac{1}{2}\|\mathbf{d} \odot \mathbf{x}\|_{1}^{2}$, the underlying optimization problem is:

$$
\begin{equation*}
M_{\lambda \phi_{\mathbf{d}}}\left(\mathbf{x}_{0}\right) \triangleq \min _{\mathbf{x} \in \mathbb{R}^{M}} \frac{1}{2}\left\|\mathbf{x}-\mathbf{x}_{0}\right\|^{2}+\frac{\lambda}{2}\left(\sum_{m=1}^{M} d_{m}\left|x_{m}\right|\right)^{2} \tag{30}
\end{equation*}
$$

[^0]```
Algorithm 4 Moreau projection for the squared weighted \(\ell_{1}\)-norm
 Input: A vector \(\mathbf{x}_{0} \in \mathbb{R}^{M}\), a weight vector \(\mathbf{d} \geq 0\), and a parameter \(\lambda>0\)
 Set \(u_{0 m}=\left|x_{0 m}\right| / d_{m}\) and \(a_{m}=d_{m}^{2}\) for each \(m=1, \ldots, M\)
 Sort \(\mathbf{u}_{0}: u_{0(1)} \geq \ldots \geq u_{0(M)}\)
 Find \(\rho=\max \left\{j \in\{1, \ldots, M\} \left\lvert\, u_{0(j)}-\frac{\lambda}{1+\lambda \sum_{r=1}^{j} a_{(r)}} \sum_{r=1}^{j} a_{(r)} u_{0(r)}>0\right.\right\}\)
 Compute \(\mathbf{u}=\operatorname{soft}\left(\mathbf{u}_{0}, \tau\right)\), where \(\tau=\frac{\lambda}{1+\lambda \sum_{r=1}^{\rho} a_{(r)}} \sum_{r=1}^{\rho} a_{(r)} u_{0(r)}\)
 Output: x s.t. \(x_{r}=\operatorname{sign}\left(x_{0 r}\right) d_{r} u_{r}\).
```

This includes the squared $\ell_{1}$-norm as a particular case, when $\mathbf{d}=\mathbf{1}$ (the case addressed in Alg. 2). The proof is somewhat technical and follows the same procedure employed by Duchi et al. (2008) to derive an algorithm for projecting onto the $\ell_{1}$-ball. The runtime is $O(M \log M)$ (the amount of time that is necessary to sort the vector), but a similar trick as the one described by (Duchi et al., 2008) can be employed to yield $O(M)$ runtime.

Lemma 10 Let $\mathrm{x}^{*}=\operatorname{prox}_{\lambda \phi_{\mathbf{d}}}\left(\mathrm{x}_{0}\right)$ be the solution of (30). Then:

1. $\mathbf{x}^{*}$ agrees in sign with $\mathbf{x}_{0}$, i.e., each component satisfies $x_{0 i} \cdot x_{i}^{*} \geq 0$.
2. Let $\boldsymbol{\sigma} \in\{-1,1\}^{M}$. Then $\operatorname{prox}_{\lambda \phi_{\mathbf{d}}}\left(\boldsymbol{\sigma} \odot \mathbf{x}_{0}\right)=\boldsymbol{\sigma} \odot \operatorname{prox}_{\lambda \phi_{\mathbf{d}}}\left(\mathbf{x}_{0}\right)$, i.e., flipping a sign in $\mathbf{x}_{0}$ produces $a \mathbf{x}^{*}$ with the same sign flipped.

Proof: Suppose that $x_{0 i} \cdot x_{i}^{*}<0$ for some $i$. Then, $\mathbf{x}$ defined by $x_{j}=x_{j}^{*}$ for $j \neq i$ and $x_{i}=-x_{i}^{*}$ achieves a lower objective value than $\mathbf{x}^{*}$, since $\phi_{\mathbf{d}}(\mathbf{x})=\phi_{\mathbf{d}}\left(\mathbf{x}^{*}\right)$ and $\left(x_{i}-x_{0 i}\right)^{2}<\left(x_{i}^{*}-x_{0 i}\right)^{2}$; this contradicts the optimality of $\mathbf{x}^{*}$. The second statement is a simple consequence of the first one and that $\phi_{\mathbf{d}, \lambda}(\boldsymbol{\sigma} \odot \mathbf{x})=\phi_{\mathbf{d}, \lambda}\left(\boldsymbol{\sigma} \odot \mathbf{x}^{*}\right)$.

Lemma 10 enables reducing the problem to the non-negative orthant, by writing $\mathbf{x}_{0}=\boldsymbol{\sigma} \cdot \tilde{\mathbf{x}}_{0}$, with $\tilde{\mathbf{x}}_{0} \geq \mathbf{0}$, obtaining a solution $\tilde{\mathbf{x}}^{*}$ and then recovering the true solution as $\mathbf{x}^{*}=\sigma \cdot \tilde{\mathbf{x}}^{*}$. It therefore suffices to solve (30) with the constraint $\mathbf{x} \geq \mathbf{0}$, which in turn can be transformed into:

$$
\begin{equation*}
\min _{\mathbf{u} \geq \mathbf{0}} F(\mathbf{u}) \triangleq \frac{1}{2} \sum_{m=1}^{M} a_{m}\left(u_{m}-u_{0 m}\right)^{2}+\frac{\lambda}{2}\left(\sum_{m=1}^{M} a_{m} u_{m}\right)^{2} \tag{31}
\end{equation*}
$$

where we made the change of variables $a_{m} \triangleq d_{m}^{2}, u_{0 m} \triangleq x_{0 m} / d_{m}$ and $u_{m} \triangleq x_{m} / d_{m}$.
The Lagrangian of (31) is $\mathcal{L}(\mathbf{u}, \boldsymbol{\xi})=\frac{1}{2} \sum_{m=1}^{M} a_{m}\left(u_{m}-u_{0 m}\right)^{2}+\frac{\lambda}{2}\left(\sum_{m=1}^{M} a_{m} u_{m}\right)^{2}-\boldsymbol{\xi}^{\top} \mathbf{u}$, where $\boldsymbol{\xi} \geq \mathbf{0}$ are Lagrange multipliers. Equating the gradient (w.r.t. u) to zero gives

$$
\begin{equation*}
\mathbf{a} \odot\left(\mathbf{u}-\mathbf{u}_{0}\right)+\lambda \sum_{m=1}^{M} a_{m} u_{m} \mathbf{a}-\boldsymbol{\xi}=\mathbf{0} \tag{32}
\end{equation*}
$$

From the complementary slackness condition, $u_{j}>0$ implies $\xi_{j}=0$, which in turn implies

$$
\begin{equation*}
a_{j}\left(u_{j}-u_{0 j}\right)+\lambda a_{j} \sum_{m=1}^{M} a_{m} u_{m}=0 \tag{33}
\end{equation*}
$$

Thus, if $u_{j}>0$, the solution is of the form $u_{j}=u_{0 j}-\tau$, with $\tau=\lambda \sum_{m=1}^{M} a_{m} u_{m}$. The next lemma shows the existence of a split point below which some coordinates vanish.

Lemma 11 Let $\mathbf{u}^{*}$ be the solution of (31). If $u_{k}^{*}=0$ and $u_{0 j}<u_{0 k}$, then we must have $u_{j}^{*}=0$.
Proof: Suppose that $u_{j}^{*}=\epsilon>0$. We will construct a $\tilde{\mathbf{u}}$ whose objective value is lower than $F\left(\mathbf{u}^{*}\right)$, which contradicts the optimality of $\mathbf{u}^{*}$ : set $\tilde{u}_{l}=u_{l}^{*}$ for $l \notin\{j, k\}, \tilde{u}_{k}=\epsilon c$, and $\tilde{u}_{j}=\epsilon\left(1-c a_{k} / a_{j}\right)$, where $c=\min \left\{a_{j} / a_{k}, 1\right\}$. We have $\sum_{m=1}^{M} a_{m} u_{m}^{*}=\sum_{m=1}^{M} a_{m} \tilde{u}_{m}$, and therefore

$$
\begin{align*}
2\left(F(\tilde{\mathbf{u}})-F\left(\mathbf{u}^{*}\right)\right) & =\sum_{m=1}^{M} a_{m}\left(\tilde{u}_{m}-u_{0 m}\right)^{2}-\sum_{m=1}^{M} a_{m}\left(u_{m}^{*}-u_{0 m}\right)^{2} \\
& =a_{j}\left(\tilde{u}_{j}-u_{0 j}\right)^{2}-a_{j}\left(u_{j}^{*}-u_{0 j}\right)^{2}+a_{k}\left(\tilde{u}_{k}-u_{0 k}\right)^{2}-a_{k}\left(u_{k}^{*}-u_{0 k}\right)^{2} \tag{34}
\end{align*}
$$

Consider the following two cases: (i) if $a_{j} \leq a_{k}$, then $\tilde{u}_{k}=\epsilon a_{j} / a_{k}$ and $\tilde{u}_{j}=0$. Substituting in (34), we obtain $2\left(F(\tilde{\mathbf{u}})-F\left(\mathbf{u}^{*}\right)\right)=\epsilon^{2}\left(a_{j}^{2} / a_{k}-a_{j}\right) \leq 0$, which leads to the contradiction $F(\tilde{\mathbf{u}}) \leq F\left(\mathbf{u}^{*}\right)$. If (ii) $a_{j}>a_{k}$, then $\tilde{u}_{k}=\epsilon$ and $\tilde{u}_{j}=\epsilon\left(1-a_{k} / a_{j}\right)$. Substituting in (34), we obtain $2\left(F(\tilde{\mathbf{u}})-F\left(\mathbf{u}^{*}\right)\right)=a_{j} \epsilon^{2}\left(1-a_{k} / a_{j}\right)^{2}+2 a_{k} \epsilon u_{0 j}-2 a_{k} \epsilon u_{0 k}+$ $a_{k} \epsilon^{2}-a_{j} \epsilon^{2}<a_{k}^{2} / a_{j} \epsilon^{2}-2 a_{k} \epsilon^{2}+a_{k} \epsilon^{2}=\epsilon^{2}\left(a_{k}^{2} / a_{j}-a_{k}\right)<0$, which also leads to a contradiction.

Let $u_{0(1)} \geq \ldots \geq u_{0(M)}$ be the entries of $\mathbf{u}_{0}$ sorted in decreasing order, and let $u_{(1)}^{*}, \ldots, u_{(M)}^{*}$ be the entries of $\mathbf{u}^{*}$ under the same permutation. Let $\rho$ be the number of nonzero entries in $\mathbf{u}^{*}$, i.e., $u_{(\rho)}^{*}>0$, and, if $\rho<M, u_{(\rho+1)}^{*}=0$. Summing (33) for $(j)=1, \ldots, \rho$, we get

$$
\begin{equation*}
\sum_{r=1}^{\rho} a_{(r)} u_{(r)}^{*}-\sum_{r=1}^{\rho} a_{(r)} u_{0(r)}+\left(\sum_{r=1}^{\rho} a_{(r)}\right) \lambda \sum_{r=1}^{\rho} a_{(r)} u_{(r)}^{*}=0 \tag{35}
\end{equation*}
$$

which implies

$$
\begin{equation*}
\sum_{m=1}^{M} u_{m}^{*}=\sum_{r=1}^{\rho} u_{(r)}^{*}=\frac{1}{1+\lambda \sum_{r=1}^{\rho} a_{(r)}} \sum_{r=1}^{\rho} a_{(r)} u_{0(r)} \tag{36}
\end{equation*}
$$

and therefore $\tau=\frac{\lambda}{1+\lambda \sum_{r=1}^{\rho} a_{(r)}} \sum_{r=1}^{\rho} a_{(r)} u_{0(r)}$. The complementary slackness conditions for $r=\rho$ and $r=\rho+1$ imply

$$
\begin{equation*}
u_{(\rho)}^{*}-u_{0(\rho)}+\lambda \sum_{r=1}^{\rho} a_{(r)} u_{(r)}^{*}=0 \quad \text { and } \quad-u_{0(\rho+1)}^{*}+\lambda \sum_{r=1}^{\rho} a_{(r)} u_{(r)}^{*}=\xi_{(\rho+1)} \geq 0 \tag{37}
\end{equation*}
$$

therefore $u_{0(\rho)}>u_{0(\rho)}-u_{(\rho)}^{*}=\tau \geq u_{0(\rho+1)}$. This implies that $\rho$ is such that

$$
\begin{equation*}
u_{0(\rho)}>\frac{\lambda}{1+\lambda \sum_{r=1}^{\rho} a_{(r)}} \sum_{r=1}^{\rho} a_{(r)} u_{0(r)} \geq u_{0(\rho+1)} \tag{38}
\end{equation*}
$$

The next proposition goes farther by exactly determining $\rho$.
Proposition 12 The quantity $\rho$ can be determined via:

$$
\begin{equation*}
\rho=\max \left\{j \in\{1, \ldots, M\} \left\lvert\, u_{0(j)}-\frac{\lambda}{1+\lambda \sum_{r=1}^{j} a_{(r)}} \sum_{r=1}^{j} a_{(r)} u_{0(r)}>0\right.\right\} . \tag{39}
\end{equation*}
$$

 and therefore $\rho \geq \rho^{*}$. We need to prove that $\rho \leq \rho^{*}$, which we will do by contradiction. Assume that $\rho>\rho^{*}$. Let $\mathbf{u}$ be the vector induced by the choice of $\rho$, i.e., $u_{(r)}=0$ for $r>\rho$ and $u_{(r)}=u_{0(r)}-\tau$ for $r \leq \rho$, where $\tau=$ $\frac{\lambda}{1+\lambda \sum_{r=1}^{\rho} a_{(r)}} \sum_{r=1}^{\rho} a_{(r)} u_{0(r)}$. From the definition of $\rho$, we have $u_{(\rho)}=u_{0(\rho)}-\tau>0$, which implies $u_{(r)}=u_{0(r)}-\tau>0$ for each $r \leq \rho$. In addition,

$$
\begin{align*}
\sum_{r=1}^{M} a_{r} u_{r} & =\sum_{r=1}^{\rho} a_{(r)} u_{0(r)}-\sum_{r=1}^{\rho} a_{(r)} \tau=\left(1-\frac{\lambda \sum_{r=1}^{\rho} a_{(r)}}{1+\lambda \sum_{r=1}^{\rho} a_{(r)}}\right) \sum_{r=1}^{\rho} a_{(r)} u_{0(r)} \\
& =\frac{1}{1+\lambda \sum_{r=1}^{\rho} a_{(r)}} \sum_{r=1}^{\rho} a_{(r)} u_{0(r)}=\frac{\tau}{\lambda}  \tag{40}\\
\sum_{r=1}^{M} a_{r}\left(u_{r}-u_{0 r}\right)^{2} & =\sum_{r=1}^{\rho^{*}} a_{(r)} \tau^{2}+\sum_{r=\rho^{*}+1}^{\rho} a_{(r)} \tau^{2}+\sum_{r=\rho+1}^{M} a_{(r)} u_{0(r)}^{2} \\
& <\sum_{r=1}^{\rho^{*}} a_{(r)} \tau^{2}+\sum_{r=\rho^{*}+1}^{M} a_{(r)} u_{0(r)}^{2} . \tag{41}
\end{align*}
$$

We next consider two cases:
1.
$\tau^{*} \geq \tau$. From (41), we have that $\sum_{r=1}^{M} a_{r}\left(u_{r}-u_{0 r}\right)^{2}<\sum_{r=1}^{\rho^{*}} a_{(r)} \tau^{2}+\sum_{r=\rho^{*}+1}^{M} a_{(r)} u_{0(r)}^{2} \leq \sum_{r=1}^{\rho^{*}} a_{(r)}\left(\tau^{*}\right)^{2}+$ $\sum_{r=\rho^{*}+1}^{M} a_{(r)} u_{0(r)}^{2}=\sum_{r=1}^{M} a_{r}\left(u_{r}^{*}-u_{0 r}\right)^{2}$. From (40), we have that $\left(\sum_{r=1}^{M} a_{r} u_{r}\right)^{2}=\tau^{2} / \lambda^{2} \leq\left(\tau^{*}\right)^{2} / \lambda^{2}$. Summing the two inequalities, we get $F(\mathbf{u})<F\left(\mathbf{u}^{*}\right)$, which leads to a contradiction.
2. $\tau^{*}<\tau$. We will construct a vector $\tilde{\mathbf{u}}$ from $\mathbf{u}^{*}$ and show that $F(\tilde{\mathbf{u}})<F\left(\mathbf{u}^{*}\right)$. Define

$$
\tilde{u}_{(r)}= \begin{cases}u_{\left(\rho^{*}\right)}^{*}-\frac{2 a_{\left(\rho^{*}+1\right)}}{a_{\left(\rho^{*}\right)}+a_{\left(\rho_{(\rho+}+1\right)}} \epsilon & \text { if } r=\rho^{*}  \tag{42}\\ \frac{2 a_{\left(\rho^{*}\right.}}{a_{\left(\rho^{*}\right)}+a_{\left(\rho^{*}+1\right)}} \epsilon, & \text { if } r=\rho^{*}+1 \\ u_{(r)}^{*} & \text { otherwise },\end{cases}
$$

where $\epsilon=\left(u_{0\left(\rho^{*}+1\right)}-\tau^{*}\right) / 2$. Note that $\sum_{r=1}^{M} a_{r} \tilde{u}_{r}=\sum_{r=1}^{M} a_{r} u_{r}^{*}$. From the assumptions that $\tau^{*}<\tau$ and $\rho^{*}<\rho$, we have that $u_{\left(\rho^{*}+1\right)}^{*}=u_{0\left(\rho^{*}+1\right)}-\tau>0$, which implies that $\tilde{u}_{\left(\rho^{*}+1\right)}=\frac{a_{\left(\rho^{*}\right)}\left(u_{0\left(\rho^{*}+1\right)}-\tau^{*}\right)}{a_{\left(\rho^{*}\right)}+a_{\left(\rho^{*}+1\right)}}>\frac{a_{\left(\rho^{*}\right)}\left(u_{0\left(\rho^{*}+1\right)}-\tau\right)}{a_{\left(\rho^{*}\right)}+a_{\left(\rho^{*}+1\right)}}=$ $\frac{a_{\left(\rho^{*}\right)} u_{\left(\rho^{*}+1\right)}^{*}}{a_{\left(\rho^{*}\right)}^{*}+a_{\left(\rho^{*}+1\right)}}>0$, and that $u_{\left(\rho^{*}\right)}^{*}=u_{0\left(\rho^{*}\right)}-\tau^{*}-\frac{a_{\left(\rho^{*}+1\right)}\left(u_{0\left(\rho^{*}+1\right)}-\tau^{*}\right)}{a_{\left(\rho^{*}\right)}+a_{\left(\rho^{*}+1\right)}}=u_{0\left(\rho^{*}\right)}-\frac{a_{\left(\rho^{*}+1\right)} u_{0\left(\rho^{*}+1\right)}}{a_{\left(\rho^{*}\right)}+a_{\left(\rho^{*}+1\right)}}-$ $\left(1-\frac{a_{\left(\rho^{*}+1\right)}}{a_{\left(\rho^{*}\right)}+a_{\left(\rho^{*}+1\right)}}\right) \tau^{*}>^{\mathrm{i})}\left(1-\frac{a_{\left(\rho^{*}+1\right)}}{a_{\left(\rho^{*}\right)}+a_{\left(\rho^{*}+1\right)}}\right)\left(u_{0\left(\rho^{*}+1\right)}-\tau\right)=\left(1-\frac{a_{\left(\rho^{*}+1\right)}}{a_{\left(\rho^{*}\right)}+a_{\left(\rho^{*}+1\right)}}\right)\left(u_{\left(\rho^{*}+1\right)}^{*}\right)>0$, where inequality (i) is justified by the facts that $u_{0\left(\rho^{*}\right)} \geq u_{0\left(\rho^{*}+1\right)}$ and $\tau>\tau^{*}$. This ensures that $\tilde{\mathbf{u}}$ is well defined. We have:

$$
\begin{align*}
2\left(F\left(\mathbf{u}^{*}\right)-F(\tilde{\mathbf{u}})\right)= & \sum_{r=1}^{M} a_{r}\left(u_{r}^{*}-u_{0 r}\right)^{2}-\sum_{r=1}^{M} a_{r}\left(\tilde{u}_{r}-u_{0 r}\right)^{2} \\
= & a_{\left(\rho^{*}\right)}\left(\tau^{*}\right)^{2}+a_{\left(\rho^{*}+1\right)} u_{\left(\rho^{*}+1\right)}^{2}-a_{\left(\rho^{*}\right)}\left(\tau^{*}+\frac{2 a_{\left(\rho^{*}+1\right)} \epsilon}{a_{\left(\rho^{*}\right)}+a_{\left(\rho^{*}+1\right)}}\right)^{2} \\
& -a_{\left(\rho^{*}+1\right)}\left(u_{0\left(\rho^{*}+1\right)}-\frac{2 a_{\left(\rho^{*}\right)} \epsilon}{a_{\left(\rho^{*}\right)}+a_{\left(\rho^{*}+1\right)}}\right)^{2} \\
= & -\frac{4 a_{\left(\rho^{*}\right)} a_{\left(\rho^{*}+1\right)} \epsilon}{a_{\left(\rho^{*}\right)}+a_{\left(\rho^{*}+1\right)}} \underbrace{\left(\tau^{*}-u_{0\left(\rho^{*}+1\right)}\right)}_{-2 \epsilon}-\frac{4 a_{\left(\rho^{*}\right)} a_{\left(\rho^{*}+1\right)}^{2} \epsilon^{2}}{\left(a_{\left(\rho^{*}\right)}+a_{\left.\left(\rho^{*}+1\right)\right)^{2}}\right.}-\frac{4 a_{\left(\rho^{*}\right)}^{2} a_{\left(\rho^{*}+1\right)} \epsilon^{2}}{\left(a_{\left(\rho^{*}\right)}+a_{\left.\left(\rho^{*}+1\right)\right)}\right)^{2}} \\
= & \frac{4 a_{\left(\rho^{*}\right)} a_{\left(\rho^{*}+1\right)} \epsilon^{2}}{a_{\left(\rho^{*}\right)}+a_{\left(\rho^{*}+1\right)}} \geq 0, \tag{43}
\end{align*}
$$

which leads to a contradiction and completes the proof.


[^0]:    ${ }^{13}$ In sequence binary labeling, we have $\Lambda=\bar{P}$ for the CRF case and for the SVM case with a Hamming cost function, where $\bar{P}$ is the average sequence length. Observe that the entropy of a distribution over labelings of a sequence of length $P$ is upper bounded by $\log 2^{P}=P$.

