Supplementary Material

A PROXIMITY OPERATORS AND MOREAU PROJECTIONS

Throughout, we let $\varphi: \mathbb{R}^p \to \bar{\mathbb{R}}$ (where $\bar{\mathbb{R}} \triangleq \mathbb{R} \cup \{+\infty\}$) be a convex, lower semicontinuous (lsc) (the epigraph $\operatorname{epi}\varphi \triangleq \{(x,t) \in \mathbb{R}^p \times \mathbb{R} \mid \varphi(x) \leq t\}$ is closed in $\mathbb{R}^p \times \mathbb{R}$), and proper $(\exists \mathbf{x} : \varphi(\mathbf{x}) \neq +\infty)$ function. The *Fenchel conjugate* of φ is $\varphi^* \colon \mathbb{R}^p \to \bar{\mathbb{R}}$, $\varphi^*(\mathbf{y}) \triangleq \sup_{\mathbf{x}} \mathbf{y}^\top \mathbf{x} - \varphi(\mathbf{x})$. Let:

$$M_{\varphi}(\mathbf{y}) \triangleq \inf_{\mathbf{x}} \frac{1}{2} \|\mathbf{x} - \mathbf{y}\|^2 + \varphi(\mathbf{x}), \text{ and } \operatorname{prox}_{\varphi}(\mathbf{y}) = \arg\inf_{\mathbf{x}} \frac{1}{2} \|\mathbf{x} - \mathbf{y}\|^2 + \varphi(\mathbf{x});$$

the function $M_{\varphi}: \mathbb{R}^p \to \mathbb{R}$ is called the *Moreau envelope* of φ , and the map $\operatorname{prox}_{\varphi}: \mathbb{R}^p \to \mathbb{R}^p$ is the *proximity operator* of φ (Combettes and Wajs, 2006; Moreau, 1962). Proximity operators generalize Euclidean projectors: consider the case $\varphi = \iota_{\mathcal{C}}$, where $\mathcal{C} \subseteq \mathbb{R}^p$ is a convex set and $\iota_{\mathcal{C}}$ denotes its indicator (i.e., $\varphi(\mathbf{x}) = 0$ if $\mathbf{x} \in \mathcal{C}$ and $+\infty$ otherwise). Then, $\operatorname{prox}_{\varphi}$ is the Euclidean projector onto \mathcal{C} and M_{φ} is the residual. Two other important examples of proximity operators follow:

- if $\varphi(\mathbf{x}) = (\lambda/2) \|\mathbf{x}\|^2$, then $\operatorname{prox}_{\omega}(\mathbf{y}) = \mathbf{y}/(1+\lambda)$;
- if $\varphi(\mathbf{x}) = \tau \|\mathbf{x}\|_1$, then $\operatorname{prox}_{\varphi}(\mathbf{y}) = \operatorname{soft}(\mathbf{y}, \tau)$ is the *soft-threshold* function (Wright et al., 2009), defined as $[\operatorname{soft}(\mathbf{y}, \tau)]_k = \operatorname{sgn}(y_k) \cdot \max\{0, |y_k| \tau\}.$

If $\varphi: \mathbb{R}^{d_1} \times \ldots \times \mathbb{R}^{d_p} \to \bar{\mathbb{R}}$ is (group-)separable, *i.e.*, $\varphi(\mathbf{x}) = \sum_{k=1}^p \varphi_k(\mathbf{x}_k)$, where $\mathbf{x}_k \in \mathbb{R}^{d_k}$, then its proximity operator inherits the same (group-)separability: $[\operatorname{prox}_{\varphi}(\mathbf{x})]_k = \operatorname{prox}_{\varphi_k}(\mathbf{x}_k)$ (Wright et al., 2009). For example, the proximity operator of the mixed $\ell_{2,1}$ -norm, which is group-separable, has this form. The following proposition extends this result by showing how to compute proximity operators of functions (maybe not separable) that only depend on the ℓ_2 -norms of groups of components; *e.g.*, the proximity operator of the squared $\ell_{2,1}$ -norm reduces to that of squared ℓ_1 .

Proposition 5 Let $\varphi : \mathbb{R}^{d_1} \times \ldots \times \mathbb{R}^{d_p} \to \bar{\mathbb{R}}$ be of the form $\varphi(\mathbf{x}_1, \ldots, \mathbf{x}_p) = \psi(\|\mathbf{x}_1\|, \ldots, \|\mathbf{x}_p\|)$ for some $\psi : \mathbb{R}^p \to \bar{\mathbb{R}}$. Then, $M_{\varphi}(\mathbf{x}_1, \ldots, \mathbf{x}_p) = M_{\psi}(\|\mathbf{x}_1\|, \ldots, \|\mathbf{x}_p\|)$ and $[\operatorname{prox}_{\varphi}(\mathbf{x}_1, \ldots, \mathbf{x}_p)]_k = [\operatorname{prox}_{\psi}(\|\mathbf{x}_1\|, \ldots, \|\mathbf{x}_p\|)]_k(\mathbf{x}_k/\|\mathbf{x}_k\|)$.

Proof: We have respectively:

$$M_{\varphi}(\mathbf{x}_{1},...,\mathbf{x}_{p}) = \min_{\mathbf{y}} \frac{1}{2} \|\mathbf{y} - \mathbf{x}\|^{2} + \varphi(\mathbf{y})$$

$$= \min_{\mathbf{y}_{1},...,\mathbf{y}_{p}} \frac{1}{2} \sum_{k=1}^{p} \|\mathbf{y}_{k} - \mathbf{x}_{k}\|^{2} + \psi(\|\mathbf{y}_{1}\|,...,\|\mathbf{y}_{p}\|)$$

$$= \min_{\mathbf{u} \in \mathbb{R}^{p}_{+}} \psi(u_{1},...,u_{p}) + \min_{\mathbf{y}:\|\mathbf{y}_{k}\|=u_{k},\forall k} \frac{1}{2} \sum_{k=1}^{p} \|\mathbf{y}_{k} - \mathbf{x}_{k}\|^{2}$$

$$= \min_{\mathbf{u} \in \mathbb{R}^{p}_{+}} \psi(u_{1},...,u_{p}) + \frac{1}{2} \sum_{k=1}^{p} \min_{\mathbf{y}_{k}:\|\mathbf{y}_{k}\|=u_{k}} \|\mathbf{y}_{k} - \mathbf{x}_{k}\|^{2} \quad (*)$$

$$= \min_{\mathbf{u} \in \mathbb{R}^{p}_{+}} \psi(u_{1},...,u_{p}) + \frac{1}{2} \sum_{k=1}^{p} \left\| \frac{u_{k}}{\|\mathbf{x}_{k}\|} \mathbf{x}_{k} - \mathbf{x}_{k} \right\|^{2}$$

$$= \min_{\mathbf{u} \in \mathbb{R}^{p}_{+}} \psi(u_{1},...,u_{p}) + \frac{1}{2} \sum_{k=1}^{p} (u_{k} - \|\mathbf{x}_{k}\|)^{2}$$

$$= M_{\psi}(\|\mathbf{x}_{1}\|,...,\|\mathbf{x}_{p}\|), \quad (18)$$

where the solution of the innermost minimization problem in (*) is $\mathbf{y}_k = \frac{u_k}{\|\mathbf{x}_k\|} \mathbf{x}_k$, and therefore $[\operatorname{prox}_{\varphi}(\mathbf{x}_1, \dots, \mathbf{x}_p)]_k = [\operatorname{prox}_{\psi}(\|\mathbf{x}_1\|, \dots, \|\mathbf{x}_p\|)]_k \frac{\mathbf{x}_k}{\|\mathbf{x}_k\|}$.

Finally, we recall the *Moreau decomposition*, relating the proximity operators of Fenchel conjugate functions (Combettes and Wajs, 2006) and present a corollary that is the key to our regret bound in §3.3.

Proposition 6 (Moreau (1962)) For any convex, lsc, proper function $\varphi : \mathbb{R}^p \to \bar{\mathbb{R}}$,

$$\mathbf{x} = \operatorname{prox}_{\varphi}(\mathbf{x}) + \operatorname{prox}_{\varphi^{\star}}(\mathbf{x}) \quad and \quad \|\mathbf{x}\|^{2}/2 = M_{\varphi}(\mathbf{x}) + M_{\varphi^{\star}}(\mathbf{x}).$$
 (19)

Corollary 7 Let $\varphi : \mathbb{R}^p \to \overline{\mathbb{R}}$ be as in Prop. 6, and $\bar{\mathbf{x}} \triangleq \text{prox}_{\varphi}(\mathbf{x})$. Then, any $\mathbf{y} \in \mathbb{R}^p$ satisfies

$$\|\mathbf{y} - \bar{\mathbf{x}}\|^2 - \|\mathbf{y} - \mathbf{x}\|^2 \le 2(\varphi(\mathbf{y}) - \varphi(\bar{\mathbf{x}})). \tag{20}$$

Proof: We start by stating and proving the following lemma:

Lemma 8 Let $\varphi : \mathbb{R}^p \to \overline{\mathbb{R}}$ be as in Prop. 6, and let $\bar{\mathbf{x}} \triangleq \operatorname{prox}_{\varphi}(\mathbf{x})$. Then, any $\mathbf{y} \in \mathbb{R}^p$ satisfies

$$(\bar{\mathbf{x}} - \mathbf{y})^{\top} (\bar{\mathbf{x}} - \mathbf{x}) \le \varphi(\mathbf{y}) - \varphi(\bar{\mathbf{x}})$$
(21)

Proof (of the Lemma): From (19), we have that

$$\begin{split} \frac{1}{2}\|\mathbf{x}\|^2 &= \frac{1}{2}\|\bar{\mathbf{x}} - \mathbf{x}\|^2 + \varphi(\bar{\mathbf{x}}) + \frac{1}{2}\|\bar{\mathbf{x}}\|^2 + \varphi^*(\mathbf{x} - \bar{\mathbf{x}}) \\ &= \frac{1}{2}\|\bar{\mathbf{x}} - \mathbf{x}\|^2 + \varphi(\bar{\mathbf{x}}) + \frac{1}{2}\|\bar{\mathbf{x}}\|^2 + \sup_{\mathbf{u} \in \mathbb{R}^p} \left(\mathbf{u}^\top(\mathbf{x} - \bar{\mathbf{x}}) - \varphi(\mathbf{u})\right) \\ &\geq \frac{1}{2}\|\bar{\mathbf{x}} - \mathbf{x}\|^2 + \varphi(\bar{\mathbf{x}}) + \frac{1}{2}\|\bar{\mathbf{x}}\|^2 + \mathbf{y}^\top(\mathbf{x} - \bar{\mathbf{x}}) - \varphi(\mathbf{y}) \\ &= \frac{1}{2}\|\mathbf{x}\|^2 + \bar{\mathbf{x}}^\top(\bar{\mathbf{x}} - \mathbf{x}) + \mathbf{y}^\top(\mathbf{x} - \bar{\mathbf{x}}) - \varphi(\mathbf{y}) + \varphi(\bar{\mathbf{x}}) \\ &= \frac{1}{2}\|\mathbf{x}\|^2 + (\bar{\mathbf{x}} - \mathbf{y})^\top(\bar{\mathbf{x}} - \mathbf{x}) - \varphi(\mathbf{y}) + \varphi(\bar{\mathbf{x}}), \end{split}$$

from which (21) follows.

Now, take Lemma 8 and bound the left hand side as:

$$(\bar{\mathbf{x}} - \mathbf{y})^{\top}(\bar{\mathbf{x}} - \mathbf{x}) \geq (\bar{\mathbf{x}} - \mathbf{y})^{\top}(\bar{\mathbf{x}} - \mathbf{x}) - \frac{1}{2}\|\bar{\mathbf{x}} - \mathbf{x}\|^{2}$$

$$= (\bar{\mathbf{x}} - \mathbf{y})^{\top}(\bar{\mathbf{x}} - \mathbf{x}) - \frac{1}{2}\|\bar{\mathbf{x}}\|^{2} - \frac{1}{2}\|\mathbf{x}\|^{2} + \bar{\mathbf{x}}^{\top}\mathbf{x}$$

$$= \frac{1}{2}\|\bar{\mathbf{x}}\|^{2} - \mathbf{y}^{\top}(\bar{\mathbf{x}} - \mathbf{x}) - \frac{1}{2}\|\mathbf{x}\|^{2}$$

$$= \frac{1}{2}\|\mathbf{y} - \bar{\mathbf{x}}\|^{2} - \frac{1}{2}\|\mathbf{y} - \mathbf{x}\|^{2}.$$

This concludes the proof of Corollary 7.

Note that although the Fenchel dual φ^* does not show up in (20), it has a crucial role in this proof.

B PROOF OF LEMMA 2

Let $u(\bar{\boldsymbol{\theta}}, \boldsymbol{\theta}) \triangleq \lambda \Omega(\bar{\boldsymbol{\theta}}) - \lambda \Omega(\boldsymbol{\theta})$. We have successively:

$$\|\bar{\boldsymbol{\theta}} - \boldsymbol{\theta}_{t+1}\|^{2} \leq^{(i)} \|\bar{\boldsymbol{\theta}} - \tilde{\boldsymbol{\theta}}_{t+1}\|^{2}$$

$$\leq^{(ii)} \|\bar{\boldsymbol{\theta}} - \tilde{\boldsymbol{\theta}}_{t}\|^{2} + 2\eta_{t}\lambda \sum_{j=1}^{J} (\Omega_{j}(\bar{\boldsymbol{\theta}}) - \Omega_{j}(\tilde{\boldsymbol{\theta}}_{t+j/J}))$$

$$\leq^{(iii)} \|\bar{\boldsymbol{\theta}} - \tilde{\boldsymbol{\theta}}_{t}\|^{2} + 2\eta_{t}u(\bar{\boldsymbol{\theta}}, \tilde{\boldsymbol{\theta}}_{t+1})$$

$$\leq^{(iv)} \|\bar{\boldsymbol{\theta}} - \tilde{\boldsymbol{\theta}}_{t}\|^{2} + 2\eta_{t}u(\bar{\boldsymbol{\theta}}, \boldsymbol{\theta}_{t+1})$$

$$= \|\bar{\boldsymbol{\theta}} - \boldsymbol{\theta}_{t}\|^{2} + \|\boldsymbol{\theta}_{t} - \tilde{\boldsymbol{\theta}}_{t}\|^{2} + 2(\bar{\boldsymbol{\theta}} - \boldsymbol{\theta}_{t})^{\top}(\boldsymbol{\theta}_{t} - \tilde{\boldsymbol{\theta}}_{t}) + 2\eta_{t}u(\bar{\boldsymbol{\theta}}, \boldsymbol{\theta}_{t+1})$$

$$= \|\bar{\boldsymbol{\theta}} - \boldsymbol{\theta}_{t}\|^{2} + \eta_{t}^{2}\|\boldsymbol{g}\|^{2} + 2\eta_{t}(\bar{\boldsymbol{\theta}} - \boldsymbol{\theta}_{t})^{\top}\boldsymbol{g} + 2\eta_{t}u(\bar{\boldsymbol{\theta}}, \boldsymbol{\theta}_{t+1})$$

$$\leq^{(v)} \|\bar{\boldsymbol{\theta}} - \boldsymbol{\theta}_{t}\|^{2} + \eta_{t}^{2}\|\boldsymbol{g}\|^{2} + 2\eta_{t}(L(\bar{\boldsymbol{\theta}}) - L(\boldsymbol{\theta}_{t})) + 2\eta_{t}u(\bar{\boldsymbol{\theta}}, \boldsymbol{\theta}_{t+1})$$

$$\leq \|\bar{\boldsymbol{\theta}} - \boldsymbol{\theta}_{t}\|^{2} + \eta_{t}^{2}G^{2} + 2\eta_{t}(L(\bar{\boldsymbol{\theta}}) - L(\boldsymbol{\theta}_{t})) + 2\eta_{t}u(\bar{\boldsymbol{\theta}}, \boldsymbol{\theta}_{t+1}), \tag{22}$$

where the inequality (i) is due to the nonexpansiveness of the projection operator, (ii) follows from applying Corollary 7J times, (iii) follows from applying the inequality $\Omega_j(\tilde{\boldsymbol{\theta}}_{t+l/J}) \geq \Omega_j(\tilde{\boldsymbol{\theta}}_{t+(l+1)/J})$ for $l=j,\ldots,J-1$, (iv) results from the fact that $\Omega(\tilde{\boldsymbol{\theta}}_{t+1}) \geq \Omega(\Pi_{\Theta}(\tilde{\boldsymbol{\theta}}_{t+1}))$, and (v) results from the subgradient inequality of convex functions, which has an extra term $\frac{\sigma}{2} \|\tilde{\boldsymbol{\theta}} - \boldsymbol{\theta}_t\|^2$ if L is σ -strongly convex.

C PROOF OF PROPOSITION 3

Invoke Lemma 2 and sum for t = 1, ..., T, which gives

$$\sum_{t=1}^{T} \left(L(\boldsymbol{\theta}_{t}; x_{t}, y_{t}) + \lambda \Omega(\boldsymbol{\theta}_{t}) \right) = \sum_{t=1}^{T} \left(L(\boldsymbol{\theta}_{t}; x_{t}, y_{t}) + \lambda \Omega(\boldsymbol{\theta}_{t+1}) \right) - \lambda \left(\Omega(\boldsymbol{\theta}_{T+1}) - \Omega(\boldsymbol{\theta}_{1}) \right) \\
\leq^{(i)} \sum_{t=1}^{T} \left(L(\boldsymbol{\theta}_{t}; x_{t}, y_{t}) + \lambda \Omega(\boldsymbol{\theta}_{t+1}) \right) \\
\leq \sum_{t=1}^{T} \left(L(\boldsymbol{\theta}^{*}; x_{t}, y_{t}) + \lambda \Omega(\boldsymbol{\theta}^{*}) \right) + \frac{G^{2}}{2} \sum_{t=1}^{T} \eta_{t} + \sum_{t=1}^{T} \frac{\|\boldsymbol{\theta}^{*} - \boldsymbol{\theta}_{t}\|^{2} - \|\boldsymbol{\theta}^{*} - \boldsymbol{\theta}_{t+1}\|^{2}}{2\eta_{t}} \\
= \sum_{t=1}^{T} \left(L(\boldsymbol{\theta}^{*}; x_{t}, y_{t}) + \lambda \Omega(\boldsymbol{\theta}^{*}) \right) + \frac{G^{2}}{2} \sum_{t=1}^{T} \eta_{t} + \frac{1}{2} \sum_{t=2}^{T} \left(\frac{1}{\eta_{t}} - \frac{1}{\eta_{t-1}} \right) \cdot \|\boldsymbol{\theta}^{*} - \boldsymbol{\theta}_{t}\|^{2} \\
+ \frac{1}{2\eta_{1}} \cdot \|\boldsymbol{\theta}^{*} - \boldsymbol{\theta}_{1}\|^{2} - \frac{1}{2\eta_{T}} \cdot \|\boldsymbol{\theta}^{*} - \boldsymbol{\theta}_{T+1}\|^{2} \tag{23}$$

where the inequality (i) is due to the fact that $\theta_1 = 0$. Noting that the third term vanishes for a constant learning rate and that the last term is non-positive suffices to prove the first part. For the second part, we continue as:

$$\sum_{t=1}^{T} \left(L(\boldsymbol{\theta}_{t}; x_{t}, y_{t}) + \lambda \Omega(\boldsymbol{\theta}_{t}) \right) \leq \sum_{t=1}^{T} \left(L(\boldsymbol{\theta}^{*}; x_{t}, y_{t}) + \lambda \Omega(\boldsymbol{\theta}^{*}) \right) + \frac{G^{2}}{2} \sum_{t=1}^{T} \eta_{t} + \frac{F^{2}}{2} \sum_{t=2}^{T} \left(\frac{1}{\eta_{t}} - \frac{1}{\eta_{t-1}} \right) + \frac{F^{2}}{2\eta_{1}}$$

$$= \sum_{t=1}^{T} \left(L(\boldsymbol{\theta}^{*}; x_{t}, y_{t}) + \lambda \Omega(\boldsymbol{\theta}^{*}) \right) + \frac{G^{2}}{2} \sum_{t=1}^{T} \eta_{t} + \frac{F^{2}}{2\eta_{T}}$$

$$\leq^{(ii)} \sum_{t=1}^{T} \left(L(\boldsymbol{\theta}^{*}; x_{t}, y_{t}) + \lambda \Omega(\boldsymbol{\theta}^{*}) \right) + G^{2} \eta_{0} (\sqrt{T} - 1/2) + \frac{F^{2} \sqrt{T}}{2\eta_{0}}$$

$$\leq \sum_{t=1}^{T} \left(L(\boldsymbol{\theta}^{*}; x_{t}, y_{t}) + \lambda \Omega(\boldsymbol{\theta}^{*}) \right) + \left(G^{2} \eta_{0} + \frac{F^{2}}{2\eta_{0}} \right) \sqrt{T}, \tag{24}$$

where equality (ii) is due to the fact that $\sum_{t=1}^{T} \frac{1}{\sqrt{t}} \le 2\sqrt{T} - 1$. For the third part, continue after inequality (i) as:

$$\sum_{t=1}^{T} \left(L(\boldsymbol{\theta}_{t}; x_{t}, y_{t}) + \lambda \Omega(\boldsymbol{\theta}_{t}) \right) \leq \sum_{t=1}^{T} \left(L(\boldsymbol{\theta}^{*}; x_{t}, y_{t}) + \lambda \Omega(\boldsymbol{\theta}^{*}) \right) + \frac{G^{2}}{2} \sum_{t=1}^{T} \eta_{t} + \frac{1}{2} \sum_{t=2}^{T} \left(\frac{1}{\eta_{t}} - \frac{1}{\eta_{t-1}} - \sigma \right) \cdot \|\boldsymbol{\theta}^{*} - \boldsymbol{\theta}_{t}\|^{2}
+ \frac{1}{2} \left(\frac{1}{\eta_{1}} - \sigma \right) \cdot \|\boldsymbol{\theta}^{*} - \boldsymbol{\theta}_{1}\|^{2} - \frac{1}{2\eta_{T}} \cdot \|\boldsymbol{\theta}^{*} - \boldsymbol{\theta}_{T+1}\|^{2}
= \sum_{t=1}^{T} \left(L(\boldsymbol{\theta}^{*}; x_{t}, y_{t}) + \lambda \Omega(\boldsymbol{\theta}^{*}) \right) + \frac{G^{2}}{2\sigma} \sum_{t=1}^{T} \frac{1}{t} - \frac{\sigma T}{2} \cdot \|\boldsymbol{\theta}^{*} - \boldsymbol{\theta}_{T+1}\|^{2}
\leq \sum_{t=1}^{T} \left(L(\boldsymbol{\theta}^{*}; x_{t}, y_{t}) + \lambda \Omega(\boldsymbol{\theta}^{*}) \right) + \frac{G^{2}}{2\sigma} \sum_{t=1}^{T} \frac{1}{t}
\leq^{\text{(iii)}} \sum_{t=1}^{T} \left(L(\boldsymbol{\theta}^{*}; x_{t}, y_{t}) + \lambda \Omega(\boldsymbol{\theta}^{*}) \right) + \frac{G^{2}}{2\sigma} (1 + \log T), \tag{25}$$

where the equality (iii) is due to the fact that $\sum_{t=1}^{T} \frac{1}{t} \leq 1 + \log T$.

D LIPSCHITZ CONSTANTS FOR SOME LOSS FUNCTIONS

Let θ^* be a solution of the problem (9) with $\Theta = \mathcal{H}$. For certain loss functions, we may obtain bounds of the form $\|\theta^*\| \le \gamma$ for some $\gamma > 0$, as the next proposition illustrates. Therefore, we may redefine $\Theta = \{\theta \in \mathcal{H} \mid \|\theta\| \le \gamma\}$ (a vacuous constraint) without affecting the solution of (9).

Proposition 9 Let $\Omega(\theta) = \frac{1}{2} (\sum_{m=1}^{M} \|\theta_m\|)^2$. Let L_{SVM} and L_{CRF} be the structured hinge and logistic losses (4). Assume that the average cost function (in the SVM case) or the average entropy (in the CRF case) are bounded by some $\Lambda \geq 0$, i.e., $\frac{13}{12}$

$$\frac{1}{N} \sum_{i=1}^{N} \max_{y_i' \in \in \mathcal{Y}(x_t)} c(y_i'; y_i) \le \Lambda \quad or \quad \frac{1}{N} \sum_{i=1}^{N} H(Y_i) \le \Lambda. \tag{26}$$

Then:

- 1. The solution of (9) with $\Theta = \mathcal{H}$ satisfies $\|\boldsymbol{\theta}^*\| \leq \sqrt{2\Lambda/\lambda}$.
- 2. L is G-Lipschitz on \mathcal{H} , with $G = 2 \max_{u \in \mathcal{U}} \|\phi(u)\|$.
- 3. Consider the following problem obtained from (9) by adding a quadratic term:

$$\min_{\boldsymbol{\theta}} \frac{\sigma}{2} \|\boldsymbol{\theta}\|^2 + \lambda \Omega(\boldsymbol{\theta}) + \frac{1}{N} \sum_{i=1}^{N} L(\boldsymbol{\theta}; x_i, y_i).$$
 (27)

The solution of this problem satisfies $\|\boldsymbol{\theta}^*\| \leq \sqrt{2\Lambda/(\lambda+\sigma)}$.

4. The modified loss
$$\tilde{L} = L + \frac{\sigma}{2} \|.\|^2$$
 is \tilde{G} -Lipschitz on $\left\{ \boldsymbol{\theta} \mid \|\boldsymbol{\theta}\| \leq \sqrt{2\Lambda/(\lambda + \sigma)} \right\}$, where $\tilde{G} = G + \sqrt{2\sigma^2\Lambda/(\lambda + \sigma)}$.

Proof: Let $F_{\text{SVM}}(\theta)$ and $F_{\text{CRF}}(\theta)$ be the objectives of (9) for the SVM and CRF cases. We have

$$F_{\text{SVM}}(\mathbf{0}) = \lambda \Omega(\mathbf{0}) + \frac{1}{N} \sum_{i=1}^{N} L_{\text{SVM}}(\mathbf{0}; x_i, y_i) = \frac{1}{N} \sum_{i=1}^{N} \max_{y_i' \in \mathcal{Y}(x_i)} c(y_i'; y_i) \le \Lambda_{\text{SVM}}$$
(28)

$$F_{\text{CRF}}(\mathbf{0}) = \lambda \Omega(\mathbf{0}) + \frac{1}{N} \sum_{i=1}^{N} L_{\text{CRF}}(\mathbf{0}; x_i, y_i) = \frac{1}{N} \sum_{i=1}^{N} \log |\mathcal{Y}(x_i)| \le \Lambda_{\text{CRF}}$$
(29)

Using the facts that $F(\theta^*) \leq F(\mathbf{0})$, that the losses are non-negative, and that $(\sum_i |x_i|)^2 \geq \sum_i x_i^2$, we obtain $\frac{\lambda}{2} \|\theta^*\|^2 \leq \lambda \Omega(\theta^*) \leq F(\theta^*) \leq F(\mathbf{0})$, which proves the first statement.

To prove the second statement for the SVM case, note that a subgradient of L_{SVM} at $\boldsymbol{\theta}$ is $\boldsymbol{g}_{\text{SVM}} = \boldsymbol{\phi}(x,\hat{y}) - \boldsymbol{\phi}(x,y)$, where $\hat{y} = \arg\max_{y' \in \mathcal{Y}(x)} \boldsymbol{\theta}^{\top}(\boldsymbol{\phi}(x,y') - \boldsymbol{\phi}(x,y)) + c(y';y)$; and that the gradient of L_{CRF} at $\boldsymbol{\theta}$ is $\boldsymbol{g}_{\text{CRF}} = \mathbb{E}_{\boldsymbol{\theta}} \boldsymbol{\phi}(x,Y) - \boldsymbol{\phi}(x,y)$. Applying Jensen's inequality, we have that $\|\boldsymbol{g}_{\text{CRF}}\| \leq \mathbb{E}_{\boldsymbol{\theta}} \|\boldsymbol{\phi}(x,Y) - \boldsymbol{\phi}(x,y)\|$. Therefore, both $\|\boldsymbol{g}_{\text{SVM}}\|$ and $\|\boldsymbol{g}_{\text{CRF}}\|$ are upper bounded by $\max_{x \in \mathcal{X}, y, y' \in \mathcal{Y}(x)} \|\boldsymbol{\phi}(x,y') - \boldsymbol{\phi}(x,y)\| \leq 2 \max_{u \in \mathcal{U}} \|\boldsymbol{\phi}(u)\|$.

The same rationale can be used to prove the third and fourth statements.

E COMPUTING THE PROXIMITY OPERATOR OF THE (NON-SEPARABLE) SQUARED ℓ_1

We present an algorithm (Alg. 4) that computes the Moreau projection of the *squared*, weighted ℓ_1 -norm. Denote by \odot the Hadamard product, $[\mathbf{a} \odot \mathbf{b}]_k = a_k b_k$. Letting $\lambda, \mathbf{d} \geq 0$, and $\phi_{\mathbf{d}}(\mathbf{x}) \triangleq \frac{1}{2} ||\mathbf{d} \odot \mathbf{x}||_1^2$, the underlying optimization problem is:

$$M_{\lambda\phi_{\mathbf{d}}}(\mathbf{x}_0) \triangleq \min_{\mathbf{x} \in \mathbb{R}^M} \frac{1}{2} \|\mathbf{x} - \mathbf{x}_0\|^2 + \frac{\lambda}{2} \left(\sum_{m=1}^M d_m |x_m| \right)^2.$$
 (30)

¹³In sequence binary labeling, we have $\Lambda = \bar{P}$ for the CRF case and for the SVM case with a Hamming cost function, where \bar{P} is the average sequence length. Observe that the entropy of a distribution over labelings of a sequence of length P is upper bounded by $\log 2^P = P$.

Algorithm 4 Moreau projection for the squared weighted ℓ_1 -norm

Input: A vector $\mathbf{x}_0 \in \mathbb{R}^M$, a weight vector $\mathbf{d} \geq 0$, and a parameter $\lambda > 0$

Set $u_{0m} = |x_{0m}|/d_m$ and $a_m = d_m^2$ for each m = 1, ..., M

Sort \mathbf{u}_0 : $u_{0(1)} \ge \ldots \ge u_{0(M)}$

Find $\rho = \max\left\{j \in \{1,\dots,M\} \mid u_{0(j)} - \frac{\lambda}{1 + \lambda \sum_{r=1}^{j} a_{(r)}} \sum_{r=1}^{j} a_{(r)} u_{0(r)} > 0\right\}$

Compute $\mathbf{u} = \operatorname{soft}(\mathbf{u}_0, \tau)$, where $\tau = \frac{\lambda}{1 + \lambda \sum_{r=1}^{p} a_{(r)}} \sum_{r=1}^{p} a_{(r)} u_{0(r)}$

Output: **x** s.t. $x_r = \text{sign}(x_{0r})d_ru_r$.

This includes the squared ℓ_1 -norm as a particular case, when $\mathbf{d}=\mathbf{1}$ (the case addressed in Alg. 2). The proof is somewhat technical and follows the same procedure employed by Duchi et al. (2008) to derive an algorithm for projecting onto the ℓ_1 -ball. The runtime is $O(M\log M)$ (the amount of time that is necessary to sort the vector), but a similar trick as the one described by (Duchi et al., 2008) can be employed to yield O(M) runtime.

Lemma 10 Let $\mathbf{x}^* = \text{prox}_{\lambda \phi_{\mathbf{d}}}(\mathbf{x}_0)$ be the solution of (30). Then:

- 1. \mathbf{x}^* agrees in sign with \mathbf{x}_0 , i.e., each component satisfies $x_{0i} \cdot x_i^* \geq 0$.
- 2. Let $\sigma \in \{-1,1\}^M$. Then $\operatorname{prox}_{\lambda\phi_{\mathbf{d}}}(\sigma \odot \mathbf{x}_0) = \sigma \odot \operatorname{prox}_{\lambda\phi_{\mathbf{d}}}(\mathbf{x}_0)$, i.e., flipping a sign in \mathbf{x}_0 produces a \mathbf{x}^* with the same sign flipped.

Proof: Suppose that $x_{0i} \cdot x_i^* < 0$ for some i. Then, \mathbf{x} defined by $x_j = x_j^*$ for $j \neq i$ and $x_i = -x_i^*$ achieves a lower objective value than \mathbf{x}^* , since $\phi_{\mathbf{d}}(\mathbf{x}) = \phi_{\mathbf{d}}(\mathbf{x}^*)$ and $(x_i - x_{0i})^2 < (x_i^* - x_{0i})^2$; this contradicts the optimality of \mathbf{x}^* . The second statement is a simple consequence of the first one and that $\phi_{\mathbf{d},\lambda}(\boldsymbol{\sigma}\odot\mathbf{x}) = \phi_{\mathbf{d},\lambda}(\boldsymbol{\sigma}\odot\mathbf{x}^*)$.

Lemma 10 enables reducing the problem to the non-negative orthant, by writing $\mathbf{x}_0 = \boldsymbol{\sigma} \cdot \tilde{\mathbf{x}}_0$, with $\tilde{\mathbf{x}}_0 \geq \mathbf{0}$, obtaining a solution $\tilde{\mathbf{x}}^*$ and then recovering the true solution as $\mathbf{x}^* = \boldsymbol{\sigma} \cdot \tilde{\mathbf{x}}^*$. It therefore suffices to solve (30) with the constraint $\mathbf{x} \geq \mathbf{0}$, which in turn can be transformed into:

$$\min_{\mathbf{u} \ge \mathbf{0}} F(\mathbf{u}) \triangleq \frac{1}{2} \sum_{m=1}^{M} a_m (u_m - u_{0m})^2 + \frac{\lambda}{2} \left(\sum_{m=1}^{M} a_m u_m \right)^2, \tag{31}$$

where we made the change of variables $a_m \triangleq d_m^2$, $u_{0m} \triangleq x_{0m}/d_m$ and $u_m \triangleq x_m/d_m$.

The Lagrangian of (31) is $\mathcal{L}(\mathbf{u}, \boldsymbol{\xi}) = \frac{1}{2} \sum_{m=1}^{M} a_m (u_m - u_{0m})^2 + \frac{\lambda}{2} \left(\sum_{m=1}^{M} a_m u_m \right)^2 - \boldsymbol{\xi}^{\top} \mathbf{u}$, where $\boldsymbol{\xi} \geq \mathbf{0}$ are Lagrange multipliers. Equating the gradient (w.r.t. \mathbf{u}) to zero gives

$$\mathbf{a} \odot (\mathbf{u} - \mathbf{u}_0) + \lambda \sum_{m=1}^{M} a_m u_m \mathbf{a} - \boldsymbol{\xi} = \mathbf{0}.$$
 (32)

From the complementary slackness condition, $u_j > 0$ implies $\xi_j = 0$, which in turn implies

$$a_j(u_j - u_{0j}) + \lambda a_j \sum_{m=1}^{M} a_m u_m = 0.$$
(33)

Thus, if $u_j > 0$, the solution is of the form $u_j = u_{0j} - \tau$, with $\tau = \lambda \sum_{m=1}^{M} a_m u_m$. The next lemma shows the existence of a split point below which some coordinates vanish.

Lemma 11 Let \mathbf{u}^* be the solution of (31). If $u_k^* = 0$ and $u_{0j} < u_{0k}$, then we must have $u_j^* = 0$.

Proof: Suppose that $u_j^* = \epsilon > 0$. We will construct a $\tilde{\mathbf{u}}$ whose objective value is lower than $F(\mathbf{u}^*)$, which contradicts the optimality of \mathbf{u}^* : set $\tilde{u}_l = u_l^*$ for $l \notin \{j, k\}$, $\tilde{u}_k = \epsilon c$, and $\tilde{u}_j = \epsilon (1 - ca_k/a_j)$, where $c = \min\{a_j/a_k, 1\}$. We have $\sum_{m=1}^M a_m u_m^* = \sum_{m=1}^M a_m \tilde{u}_m$, and therefore

$$2(F(\tilde{\mathbf{u}}) - F(\mathbf{u}^*)) = \sum_{m=1}^{M} a_m (\tilde{u}_m - u_{0m})^2 - \sum_{m=1}^{M} a_m (u_m^* - u_{0m})^2$$
$$= a_j (\tilde{u}_j - u_{0j})^2 - a_j (u_j^* - u_{0j})^2 + a_k (\tilde{u}_k - u_{0k})^2 - a_k (u_k^* - u_{0k})^2. \tag{34}$$

Consider the following two cases: (i) if $a_j \leq a_k$, then $\tilde{u}_k = \epsilon a_j/a_k$ and $\tilde{u}_j = 0$. Substituting in (34), we obtain $2(F(\tilde{\mathbf{u}}) - F(\mathbf{u}^*)) = \epsilon^2 \left(a_j^2/a_k - a_j\right) \leq 0$, which leads to the contradiction $F(\tilde{\mathbf{u}}) \leq F(\mathbf{u}^*)$. If (ii) $a_j > a_k$, then $\tilde{u}_k = \epsilon$ and $\tilde{u}_j = \epsilon \left(1 - a_k/a_j\right)$. Substituting in (34), we obtain $2(F(\tilde{\mathbf{u}}) - F(\mathbf{u}^*)) = a_j \epsilon^2 \left(1 - a_k/a_j\right)^2 + 2a_k \epsilon u_{0j} - 2a_k \epsilon u_{0k} + a_k \epsilon^2 - a_j \epsilon^2 < a_k^2/a_j \epsilon^2 - 2a_k \epsilon^2 + a_k \epsilon^2 = \epsilon^2 \left(a_k^2/a_j - a_k\right) < 0$, which also leads to a contradiction.

Let $u_{0(1)} \geq \ldots \geq u_{0(M)}$ be the entries of \mathbf{u}_0 sorted in decreasing order, and let $u_{(1)}^*, \ldots, u_{(M)}^*$ be the entries of \mathbf{u}^* under the same permutation. Let ρ be the number of nonzero entries in \mathbf{u}^* , i.e., $u_{(\rho)}^* > 0$, and, if $\rho < M$, $u_{(\rho+1)}^* = 0$. Summing (33) for $(j) = 1, \ldots, \rho$, we get

$$\sum_{r=1}^{\rho} a_{(r)} u_{(r)}^* - \sum_{r=1}^{\rho} a_{(r)} u_{0(r)} + \left(\sum_{r=1}^{\rho} a_{(r)}\right) \lambda \sum_{r=1}^{\rho} a_{(r)} u_{(r)}^* = 0, \tag{35}$$

which implies

$$\sum_{m=1}^{M} u_m^* = \sum_{r=1}^{\rho} u_{(r)}^* = \frac{1}{1 + \lambda \sum_{r=1}^{\rho} a_{(r)}} \sum_{r=1}^{\rho} a_{(r)} u_{0(r)}, \tag{36}$$

and therefore $au = \frac{\lambda}{1+\lambda\sum_{r=1}^{\rho}a_{(r)}}\sum_{r=1}^{\rho}a_{(r)}u_{0(r)}$. The complementary slackness conditions for $r=\rho$ and $r=\rho+1$ imply

$$u_{(\rho)}^* - u_{0(\rho)} + \lambda \sum_{r=1}^{\rho} a_{(r)} u_{(r)}^* = 0 \quad \text{and} \quad -u_{0(\rho+1)}^* + \lambda \sum_{r=1}^{\rho} a_{(r)} u_{(r)}^* = \xi_{(\rho+1)} \ge 0; \tag{37}$$

therefore $u_{0(\rho)} > u_{0(\rho)} - u_{(\rho)}^* = \tau \ge u_{0(\rho+1)}$. This implies that ρ is such that

$$u_{0(\rho)} > \frac{\lambda}{1 + \lambda \sum_{r=1}^{\rho} a_{(r)}} \sum_{r=1}^{\rho} a_{(r)} u_{0(r)} \ge u_{0(\rho+1)}. \tag{38}$$

The next proposition goes farther by exactly determining ρ .

Proposition 12 *The quantity* ρ *can be determined via:*

$$\rho = \max \left\{ j \in \{1, \dots, M\} \mid u_{0(j)} - \frac{\lambda}{1 + \lambda \sum_{r=1}^{j} a_{(r)}} \sum_{r=1}^{j} a_{(r)} u_{0(r)} > 0 \right\}.$$
 (39)

Proof: Let $\rho^* = \max\{j | u_{(j)}^* > 0\}$. We have that $u_{(r)}^* = u_{0(r)} - \tau^*$ for $r \leq \rho^*$, where $\tau^* = \frac{\lambda}{1 + \lambda \sum_{r=1}^{\rho^*} a_{(r)}} \sum_{r=1}^{\rho^*} a_{(r)} u_{0(r)}$, and therefore $\rho \geq \rho^*$. We need to prove that $\rho \leq \rho^*$, which we will do by contradiction. Assume that $\rho > \rho^*$. Let \mathbf{u} be the vector induced by the choice of ρ , i.e., $u_{(r)} = 0$ for $r > \rho$ and $u_{(r)} = u_{0(r)} - \tau$ for $r \leq \rho$, where $\tau = \frac{\lambda}{1 + \lambda \sum_{r=1}^{\rho} a_{(r)}} \sum_{r=1}^{\rho} a_{(r)} u_{0(r)}$. From the definition of ρ , we have $u_{(\rho)} = u_{0(\rho)} - \tau > 0$, which implies $u_{(r)} = u_{0(r)} - \tau > 0$ for each $r \leq \rho$. In addition,

$$\sum_{r=1}^{M} a_{r} u_{r} = \sum_{r=1}^{\rho} a_{(r)} u_{0(r)} - \sum_{r=1}^{\rho} a_{(r)} \tau = \left(1 - \frac{\lambda \sum_{r=1}^{\rho} a_{(r)}}{1 + \lambda \sum_{r=1}^{\rho} a_{(r)}}\right) \sum_{r=1}^{\rho} a_{(r)} u_{0(r)}$$

$$= \frac{1}{1 + \lambda \sum_{r=1}^{\rho} a_{(r)}} \sum_{r=1}^{\rho} a_{(r)} u_{0(r)} = \frac{\tau}{\lambda},$$

$$\sum_{r=1}^{M} a_{r} (u_{r} - u_{0r})^{2} = \sum_{r=1}^{\rho^{*}} a_{(r)} \tau^{2} + \sum_{r=\rho^{*}+1}^{\rho} a_{(r)} \tau^{2} + \sum_{r=\rho+1}^{M} a_{(r)} u_{0(r)}^{2}$$

$$< \sum_{r=1}^{\rho^{*}} a_{(r)} \tau^{2} + \sum_{r=\rho^{*}+1}^{M} a_{(r)} u_{0(r)}^{2}.$$

$$(41)$$

We next consider two cases:

- 1. $\boxed{\tau^* \geq \tau}$. From (41), we have that $\sum_{r=1}^M a_r (u_r u_{0r})^2 < \sum_{r=1}^{\rho^*} a_{(r)} \tau^2 + \sum_{r=\rho^*+1}^M a_{(r)} u_{0(r)}^2 \leq \sum_{r=1}^{\rho^*} a_{(r)} (\tau^*)^2 + \sum_{r=\rho^*+1}^M a_{(r)} u_{0(r)}^2 = \sum_{r=1}^M a_r (u_r^* u_{0r})^2$. From (40), we have that $\left(\sum_{r=1}^M a_r u_r\right)^2 = \tau^2/\lambda^2 \leq (\tau^*)^2/\lambda^2$. Summing the two inequalities, we get $F(\mathbf{u}) < F(\mathbf{u}^*)$, which leads to a contradiction.
- 2. $\tau^* < \tau$. We will construct a vector $\tilde{\mathbf{u}}$ from \mathbf{u}^* and show that $F(\tilde{\mathbf{u}}) < F(\mathbf{u}^*)$. Define

$$\tilde{u}_{(r)} = \begin{cases}
 u_{(\rho^*)}^* - \frac{2a_{(\rho^*+1)}}{a_{(\rho^*)} + a_{(\rho^*+1)}} \epsilon, & \text{if } r = \rho^* \\
 \frac{2a_{(\rho^*)}}{a_{(\rho^*)} + a_{(\rho^*+1)}} \epsilon, & \text{if } r = \rho^* + 1 \\
 u_{(r)}^* & \text{otherwise,}
\end{cases}$$
(42)

where $\epsilon = (u_{0(\rho^*+1)} - \tau^*)/2$. Note that $\sum_{r=1}^M a_r \tilde{u}_r = \sum_{r=1}^M a_r u_r^*$. From the assumptions that $\tau^* < \tau$ and $\rho^* < \rho$, we have that $u_{(\rho^*+1)}^* = u_{0(\rho^*+1)} - \tau > 0$, which implies that $\tilde{u}_{(\rho^*+1)} = \frac{a_{(\rho^*)}(u_{0(\rho^*+1)} - \tau^*)}{a_{(\rho^*)} + a_{(\rho^*+1)}} > \frac{a_{(\rho^*)}(u_{0(\rho^*+1)} - \tau^*)}{a_{(\rho^*)} + a_{(\rho^*+1)}} > 0$, and that $u_{(\rho^*)}^* = u_{0(\rho^*)} - \tau^* - \frac{a_{(\rho^*+1)}(u_{0(\rho^*+1)} - \tau^*)}{a_{(\rho^*)} + a_{(\rho^*+1)}} = u_{0(\rho^*)} - \frac{a_{(\rho^*)}(u_{0(\rho^*+1)} - \tau^*)}{a_{(\rho^*)} + a_{(\rho^*+1)}} = u_{0(\rho^*)} - \frac{a_{(\rho^*+1)}(u_{0(\rho^*+1)} - \tau^*)}{a_{(\rho^*)} + a_{(\rho^*+1)}} = u_{0(\rho^*)}$

$$2(F(\mathbf{u}^*) - F(\tilde{\mathbf{u}})) = \sum_{r=1}^{M} a_r (u_r^* - u_{0r})^2 - \sum_{r=1}^{M} a_r (\tilde{u}_r - u_{0r})^2$$

$$= a_{(\rho^*)} (\tau^*)^2 + a_{(\rho^*+1)} u_{0(\rho^*+1)}^2 - a_{(\rho^*)} \left(\tau^* + \frac{2a_{(\rho^*+1)}\epsilon}{a_{(\rho^*)} + a_{(\rho^*+1)}}\right)^2$$

$$-a_{(\rho^*+1)} \left(u_{0(\rho^*+1)} - \frac{2a_{(\rho^*)}\epsilon}{a_{(\rho^*)} + a_{(\rho^*+1)}}\right)^2$$

$$= -\frac{4a_{(\rho^*)} a_{(\rho^*+1)}\epsilon}{a_{(\rho^*)} + a_{(\rho^*+1)}} \underbrace{(\tau^* - u_{0(\rho^*+1)})}_{-2\epsilon} - \frac{4a_{(\rho^*)} a_{(\rho^*+1)}\epsilon^2}{\left(a_{(\rho^*)} + a_{(\rho^*+1)}\right)^2} - \frac{4a_{(\rho^*)} a_{(\rho^*+1)}\epsilon^2}{\left(a_{(\rho^*)} + a_{(\rho^*+1)}\right)^2}$$

$$= \frac{4a_{(\rho^*)} a_{(\rho^*+1)}\epsilon^2}{a_{(\rho^*)} + a_{(\rho^*+1)}} \ge 0, \tag{43}$$

which leads to a contradiction and completes the proof.