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7 APPENDIX—SUPPLEMENTARY
MATERIAL

7.1 Proof of Theorem 3

Proof. Without loss of generality we assume that
{1, 2} ∈ I and h∗ = (α,−β, h3, . . . , hn)> where αβ >
0.

There must be a bijection φ which satisfies φ(1) = 2,
φ(2) = 1 and the three requirements of φ in Defini-
tion 2. Consider h? = (−β, α, hφ(3), . . . , hφ(n))>. Ob-
viously ‖h?‖1=‖h∗‖1 and ‖h?‖2=‖h∗‖2. Moreover,
∀i,

[g(h?)]i

= γ
∑n

l=1
Qi,lhφ(l) − ηhφ(i) − sgn(hφ(i))

= γ
∑n

k=1
Qi,φ−1(k)hk − ηhφ(i) − sgn(hφ(i))

= γ
∑n

k=1
Qi,φ(k)hk − ηhφ(i) − sgn(hφ(i))

= γ
∑n

k=1
Qφ(i),khk − ηhφ(i) − sgn(hφ(i))

= [g(h∗)]φ(i).

Hence, g(h?) = 0 due to the KKT condition g(h∗) =
0, which means that h? is also a minimum. Similarly
we can derive h?>Qh? = h∗>Qh∗ and thereby we arrive
at G(h?) = G(h∗).

Notice that dH(h∗,h?) ≥ 1, with the only excep-
tion dH(h∗,h?) = 0 when sgn(h?) = − sgn(h∗), i.e.,
∀i, φ(i) 6= i and I ′ = {{i, φ(i)}|i = 1, . . . , n}. This
completes the proof.

7.2 Proof of Theorem 4

Proof. When n = 2 it is trivial that Xn is anisotropic.

Suppose that n > 2 and E(HQ) has two principal axes
vj and vk with the same length 1/

√
λj = 1/

√
λk.

Then there is at least one principal axis vl, l 6= j, k
about which E(HQ) is rotational along the circle
spanned by vj and vk.

From ∀i, Qi,i = κ we know that E(HQ) intersects the i-
th coordinate axis at ±ei/

√
κ with length 1/

√
κ, where

ei is the i-th unit vector of Rn. Now E(HQ) has n
principal axes with at most n− 1 different length but
another system of n orthogonal axes with length 1/

√
κ,

so vl must be in the form of

vl =
v̄l
‖v̄l‖2

, v̄l =

n∑
i=1

δiei 6= 0, δi ∈ {−1, 0, 1}.

In other words, vl lies on the central direction of cer-
tain quadrant of a subspace of Rn determined by vj
and vk. But this is impossible since Xn is not axisym-
metric w.r.t. Q.

Hence all principal axes of E(HQ) have different length,
which is exactly what we were to prove.

7.3 Proof of Theorem 5

Proof. The KKT condition g(h) = 0 implies

h = Q̂y, (12)

where y = sgn(h), Q̂ = (γQ− ηI)−1, and the constant
η < γλ1, λ1 is the smallest eigenvalue of Q. Substitute
(12) into ‖h‖2 = 1, and note that Q̂>= Q̂,

(Q̂y)>(Q̂y) = 1 =⇒ y>Q̂2y = 1.

All eigenvalues of Q are different and positive, so are
all eigenvalues of Q̂. Consequently, Q̂2 has a unique
spectral decomposition. Let Q̂2 =

∑n
i=1 µiuiu

>
i , then

y>Q̂2y =
∑n
i=1 µi‖u>iy‖22.

We assert that ∀y1,y2 ∈ {−1,+1}n, the only pos-
sibility of y>1Q̂

2y1 = y>2Q̂
2y2 is either y1 = y2 or

y1 = −y2. Otherwise, there exist two nonempty
disjoint indices J and K, such that ∀j ∈ J , k ∈
K, [y1]j = −[y1]k = −[y2]j = [y2]k. Moreover, ∀i,∑
j∈J [ui]j [y1]j +

∑
k∈K[ui]k[y1]k =

∑
j∈J [ui]j [y2]j +∑

k∈K[ui]k[y2]k since the spectral decomposition of Q̂2

is unique. Hence,
∑
j∈J [ui]j =

∑
k∈K[ui]k for all

i = 1, . . . , n. This means that the row rank of the
matrix U = (u1| . . . |un) is n − 1, which contradicts
the linear independence of {u1, . . . ,un}.

Therefore, all minima of (4) are equivalent w.r.t. dH.

7.4 Proof of Lemma 7

Proof. For any h ∈ H̃Q, ∃α ∈ Rn such that h = Uα,
where U consists of n orthonormal eigenvectors of Q,
and ‖α‖2 = 1 since ‖h‖2 = 1 and U>U = I. This
h = Uα is a UL decomposition (El-Yaniv & Pechyony,
2007) since U has only information about unlabeled
samples. Each column of U has unit length, and thus
‖U‖2Fro = n. The first part of the bound comes from
inequality (20) in El-Yaniv and Pechyony (2007).

Another UL decomposition is shown in (12). The
equation (12) holds for η∗ since it holds for any con-
stant η smaller than γ times the smallest eigenvalue of
Q. It is also a kernel UL decomposition since the ma-
trix Q̂ is symmetric positive definite. Then, the other
part of the bound is derived from inequality (20) and
inequality (23) in El-Yaniv and Pechyony (2007) with
µ1 =

√
n and µ2 =

√
µ, respectively.


