Maximum Volume Clustering

7 APPENDIX—SUPPLEMENTARY
MATERIAL

7.1 Proof of Theorem 3

Proof. Without loss of generality we assume that
{1,2} € Z and h* = (o, =3, h3, ..., hy)" where aff >
0.

There must be a bijection ¢ which satisfies ¢(1) = 2,
#(2) = 1 and the three requirements of ¢ in Defini-
tion 2. Consider h* = (=8, a,hy), - - -, hgn))'. Ob-
viously [|[h*||;=|h*||; and |h*|l2=|h*|]2. Moreover,
Vi,

lg(h*)];

=7 Z; Qiihoay — nheg) — sgn(hg))
=7 Z:Zl Qi g1 )k — hg (i) — sen(hg))
=7 Z::1 Qi,o(k) Pk — Moy — sgn(he))
=7 Z:Zl Qo (i), ke — nhegy — sgn(hg(iy)
= [9(h*)] (-

Hence, g(h*) = 0 due to the KKT condition g(h*) =
0, which means that h* is also a minimum. Similarly
we can derive h*TQh* = h*"Qh* and thereby we arrive

at G(h*) = G(h*).

Notice that dy(h*,h*) > 1, with the only excep-
tion dy(h*,h*) = 0 when sgn(h*) = —sgn(h*), ie

Vi, p(i) # i and ' = {{i,¢(i)}]i = 1,...,n}. This
completes the proof. O

7.2 Proof of Theorem 4

Proof. When n = 2 it is trivial that X, is anisotropic.

Suppose that n > 2 and £(H ) has two principal axes
v; and vi with the same length 1/\/A; = 1/V/A.
Then there is at least one principal axis v;,l # j,k
about which &£(Hg) is rotational along the circle
spanned by v; and vy.

From Vi, Q; ; = k we know that £(H¢) intersects the i-
th coordinate axis at +e;//k with length 1/y/k, where
e; is the i-th unit vector of R". Now &(Hg) has n
principal axes with at most n — 1 different length but
another system of n orthogonal axes with length 1/4/k,
so v; must be in the form of

Zaeﬁéo 6 €{—1,0,1}.

V
L ||vl||2

In other words, v; lies on the central direction of cer-
tain quadrant of a subspace of R™ determined by v;
and vi. But this is impossible since X, is not axisym-
metric w.r.t. Q.

Hence all principal axes of £(H¢) have different length,
which is exactly what we were to prove. O

7.3 Proof of Theorem 5

Proof. The KKT condition g(h) = 0 implies

h = Qy, (12)

where y = sgn(h),Q = (yQ —nI)~', and the constant
n < A1, A1 is the smallest eigenvalue of ). Substitute
(12) into ||h[|z = 1, and note that QT = Q,

Q) (Qy)=1=y Q% =1.

All eigenvalues of @ are different and positive, so are
all eigenvalues of Q Consequently, Q2 has a unique
spectral decomposition. Let Q2 =Y puu . then
y' Q% = 30 pillujyll3.

We assert that Vy;,y» € {—1,+1}", the only pos-
sibility of y Q2y1 y2Q2y2 is either y; = ys or
y1 = —y2. Otherwise, there exist two nonempty
disjoint indices J and K, such that Vj € J,k €
K.[yil; = —=yils = —[y2l; = [y2ls. Moreover, Vi,
Yieqlililyily + e lulilyil = 2 s lwililya]; +
> ke Wik [y2]x since the spectral decomposition of Q?
is unique. Hence, > . ;[w]; = > cxc[ufx for all
i = 1,...,n. This means that the row rank of the
matrix U = (uy|...|u,) is n — 1, which contradicts
the linear independence of {uy,...,u,}.

Therefore, all minima of (4) are equivalent w.r.t. dy.
O

7.4 Proof of Lemma 7

Proof. For any h € 7—~[Q, Ja € R" such that h = Ue,
where U consists of n orthonormal eigenvectors of @,
and ||alz = 1 since |h||z = 1 and UTU = I. This
h = Ua is a UL decomposition (El-Yaniv & Pechyony,
2007) since U has only information about unlabeled
samples. Each column of U has unit length, and thus
U3, = n. The first part of the bound comes from
inequality (20) in El-Yaniv and Pechyony (2007).

Another UL decomposition is shown in (12). The
equation (12) holds for n* since it holds for any con-
stant 7 smaller than v times the smallest eigenvalue of
Q. Tt is also a kernel UL decomposition since the ma-
trix Q is symmetric positive definite. Then, the other
part of the bound is derived from inequality (20) and
inequality (23) in El-Yaniv and Pechyony (2007) with

p1 = +/n and py = \/p, respectively. O



