7 APPENDIX—SUPPLEMENTARY MATERIAL

7.1 Proof of Theorem 3

Proof. Without loss of generality we assume that $\{1,2\} \in \mathcal{I}$ and $\mathbf{h}^* = (\alpha, -\beta, h_3, \dots, h_n)^{\mathsf{T}}$ where $\alpha\beta > 0$.

There must be a bijection ϕ which satisfies $\phi(1) = 2$, $\phi(2) = 1$ and the three requirements of ϕ in *Definition 2.* Consider $\mathbf{h}^* = (-\beta, \alpha, h_{\phi(3)}, \dots, h_{\phi(n)})^{\top}$. Obviously $\|\mathbf{h}^*\|_1 = \|\mathbf{h}^*\|_1$ and $\|\mathbf{h}^*\|_2 = \|\mathbf{h}^*\|_2$. Moreover, $\forall i$,

$$[g(\mathbf{h}^{\star})]_{i} = \gamma \sum_{l=1}^{n} Q_{i,l} h_{\phi(l)} - \eta h_{\phi(i)} - \operatorname{sgn}(h_{\phi(i)}) \\ = \gamma \sum_{k=1}^{n} Q_{i,\phi^{-1}(k)} h_{k} - \eta h_{\phi(i)} - \operatorname{sgn}(h_{\phi(i)}) \\ = \gamma \sum_{k=1}^{n} Q_{i,\phi(k)} h_{k} - \eta h_{\phi(i)} - \operatorname{sgn}(h_{\phi(i)}) \\ = \gamma \sum_{k=1}^{n} Q_{\phi(i),k} h_{k} - \eta h_{\phi(i)} - \operatorname{sgn}(h_{\phi(i)}) \\ = [g(\mathbf{h}^{\star})]_{\phi(i)}.$$

Hence, $g(\mathbf{h}^{\star}) = \mathbf{0}$ due to the KKT condition $g(\mathbf{h}^{\star}) = \mathbf{0}$, which means that \mathbf{h}^{\star} is also a minimum. Similarly we can derive $\mathbf{h}^{\star \top}Q\mathbf{h}^{\star} = \mathbf{h}^{\star \top}Q\mathbf{h}^{\star}$ and thereby we arrive at $G(\mathbf{h}^{\star}) = G(\mathbf{h}^{\star})$.

Notice that $d_{\mathcal{H}}(\mathbf{h}^*, \mathbf{h}^*) \geq 1$, with the only exception $d_{\mathcal{H}}(\mathbf{h}^*, \mathbf{h}^*) = 0$ when $\operatorname{sgn}(\mathbf{h}^*) = -\operatorname{sgn}(\mathbf{h}^*)$, i.e., $\forall i, \phi(i) \neq i$ and $\mathcal{I}' = \{\{i, \phi(i)\} | i = 1, \dots, n\}$. This completes the proof.

7.2 Proof of Theorem 4

Proof. When n = 2 it is trivial that X_n is anisotropic.

Suppose that n > 2 and $\mathcal{E}(\mathcal{H}_Q)$ has two principal axes \mathbf{v}_j and \mathbf{v}_k with the same length $1/\sqrt{\lambda_j} = 1/\sqrt{\lambda_k}$. Then there is at least one principal axis $\mathbf{v}_l, l \neq j, k$ about which $\mathcal{E}(\mathcal{H}_Q)$ is rotational along the circle spanned by \mathbf{v}_j and \mathbf{v}_k .

From $\forall i, Q_{i,i} = \kappa$ we know that $\mathcal{E}(\mathcal{H}_Q)$ intersects the *i*-th coordinate axis at $\pm \mathbf{e}_i/\sqrt{\kappa}$ with length $1/\sqrt{\kappa}$, where \mathbf{e}_i is the *i*-th unit vector of \mathbb{R}^n . Now $\mathcal{E}(\mathcal{H}_Q)$ has *n* principal axes with at most n-1 different length but another system of *n* orthogonal axes with length $1/\sqrt{\kappa}$, so \mathbf{v}_l must be in the form of

$$\mathbf{v}_l = \frac{\bar{\mathbf{v}}_l}{\|\bar{\mathbf{v}}_l\|_2}, \ \bar{\mathbf{v}}_l = \sum_{i=1}^n \delta_i \mathbf{e}_i \neq \mathbf{0}, \ \delta_i \in \{-1, 0, 1\}.$$

In other words, \mathbf{v}_l lies on the central direction of certain quadrant of a subspace of \mathbb{R}^n determined by \mathbf{v}_j and \mathbf{v}_k . But this is impossible since X_n is not axisymmetric w.r.t. Q. Hence all principal axes of $\mathcal{E}(\mathcal{H}_Q)$ have different length, which is exactly what we were to prove.

7.3 Proof of Theorem 5

Proof. The KKT condition $g(\mathbf{h}) = \mathbf{0}$ implies

$$\mathbf{h} = \hat{Q}\mathbf{y},\tag{12}$$

where $\mathbf{y} = \operatorname{sgn}(\mathbf{h}), \hat{Q} = (\gamma Q - \eta I)^{-1}$, and the constant $\eta < \gamma \lambda_1, \lambda_1$ is the smallest eigenvalue of Q. Substitute (12) into $\|\mathbf{h}\|_2 = 1$, and note that $\hat{Q}^{\top} = \hat{Q}$,

$$(\hat{Q}\mathbf{y})^{\top}(\hat{Q}\mathbf{y}) = 1 \Longrightarrow \mathbf{y}^{\top}\hat{Q}^{2}\mathbf{y} = 1.$$

All eigenvalues of \hat{Q} are different and positive, so are all eigenvalues of \hat{Q} . Consequently, \hat{Q}^2 has a unique spectral decomposition. Let $\hat{Q}^2 = \sum_{i=1}^n \mu_i \mathbf{u}_i \mathbf{u}_i^{\mathsf{T}}$, then $\mathbf{y}^{\mathsf{T}} \hat{Q}^2 \mathbf{y} = \sum_{i=1}^n \mu_i \|\mathbf{u}_i^{\mathsf{T}} \mathbf{y}\|_2^2$.

We assert that $\forall \mathbf{y}_1, \mathbf{y}_2 \in \{-1, +1\}^n$, the only possibility of $\mathbf{y}_1^\top \hat{Q}^2 \mathbf{y}_1 = \mathbf{y}_2^\top \hat{Q}^2 \mathbf{y}_2$ is either $\mathbf{y}_1 = \mathbf{y}_2$ or $\mathbf{y}_1 = -\mathbf{y}_2$. Otherwise, there exist two nonempty disjoint indices \mathcal{J} and \mathcal{K} , such that $\forall j \in \mathcal{J}, k \in \mathcal{K}, [\mathbf{y}_1]_j = -[\mathbf{y}_1]_k = -[\mathbf{y}_2]_j = [\mathbf{y}_2]_k$. Moreover, $\forall i, \sum_{j \in \mathcal{J}} [\mathbf{u}_i]_j [\mathbf{y}_1]_j + \sum_{k \in \mathcal{K}} [\mathbf{u}_i]_k [\mathbf{y}_1]_k = \sum_{j \in \mathcal{J}} [\mathbf{u}_i]_j [\mathbf{y}_2]_j + \sum_{k \in \mathcal{K}} [\mathbf{u}_i]_k [\mathbf{y}_2]_k$ since the spectral decomposition of \hat{Q}^2 is unique. Hence, $\sum_{j \in \mathcal{J}} [\mathbf{u}_i]_j = \sum_{k \in \mathcal{K}} [\mathbf{u}_i]_k$ for all $i = 1, \ldots, n$. This means that the row rank of the matrix $U = (\mathbf{u}_1 | \ldots | \mathbf{u}_n)$ is n - 1, which contradicts the linear independence of $\{\mathbf{u}_1, \ldots, \mathbf{u}_n\}$.

Therefore, all minima of (4) are equivalent w.r.t. $d_{\mathcal{H}}$.

7.4 Proof of Lemma 7

Proof. For any $\mathbf{h} \in \mathcal{H}_Q$, $\exists \boldsymbol{\alpha} \in \mathbb{R}^n$ such that $\mathbf{h} = U\boldsymbol{\alpha}$, where U consists of n orthonormal eigenvectors of Q, and $\|\boldsymbol{\alpha}\|_2 = 1$ since $\|\mathbf{h}\|_2 = 1$ and $U^{\top}U = I$. This $\mathbf{h} = U\boldsymbol{\alpha}$ is a UL decomposition (El-Yaniv & Pechyony, 2007) since U has only information about unlabeled samples. Each column of U has unit length, and thus $\|U\|_{\text{Fro}}^2 = n$. The first part of the bound comes from *inequality (20)* in El-Yaniv and Pechyony (2007).

Another UL decomposition is shown in (12). The equation (12) holds for η^* since it holds for any constant η smaller than γ times the smallest eigenvalue of Q. It is also a kernel UL decomposition since the matrix \hat{Q} is symmetric positive definite. Then, the other part of the bound is derived from *inequality (20)* and *inequality (23)* in El-Yaniv and Pechyony (2007) with $\mu_1 = \sqrt{n}$ and $\mu_2 = \sqrt{\mu}$, respectively.