7 APPENDIX—SUPPLEMENTARY MATERIAL

7.1 Proof of Theorem 3

Proof. Without loss of generality we assume that $\{1,2\} \in \mathcal{I}$ and $\mathbf{h}^{*}=\left(\alpha,-\beta, h_{3}, \ldots, h_{n}\right)^{\top}$ where $\alpha \beta>$ 0.

There must be a bijection ϕ which satisfies $\phi(1)=2$, $\phi(2)=1$ and the three requirements of ϕ in Definition 2. Consider $\mathbf{h}^{\star}=\left(-\beta, \alpha, h_{\phi(3)}, \ldots, h_{\phi(n)}\right)^{\top}$. Obviously $\left\|\mathbf{h}^{\star}\right\|_{1}=\left\|\mathbf{h}^{*}\right\|_{1}$ and $\left\|\mathbf{h}^{\star}\right\|_{2}=\left\|\mathbf{h}^{*}\right\|_{2}$. Moreover, $\forall i$,

$$
\begin{aligned}
& {\left[g\left(\mathbf{h}^{\star}\right)\right]_{i}} \\
& =\gamma \sum_{l=1}^{n} Q_{i, l} h_{\phi(l)}-\eta h_{\phi(i)}-\operatorname{sgn}\left(h_{\phi(i)}\right) \\
& =\gamma \sum_{k=1}^{n} Q_{i, \phi^{-1}(k)} h_{k}-\eta h_{\phi(i)}-\operatorname{sgn}\left(h_{\phi(i)}\right) \\
& =\gamma \sum_{k=1}^{n} Q_{i, \phi(k)} h_{k}-\eta h_{\phi(i)}-\operatorname{sgn}\left(h_{\phi(i)}\right) \\
& =\gamma \sum_{k=1}^{n} Q_{\phi(i), k} h_{k}-\eta h_{\phi(i)}-\operatorname{sgn}\left(h_{\phi(i)}\right) \\
& =\left[g\left(\mathbf{h}^{*}\right)\right]_{\phi(i)} .
\end{aligned}
$$

Hence, $g\left(\mathbf{h}^{\star}\right)=\mathbf{0}$ due to the KKT condition $g\left(\mathbf{h}^{*}\right)=$ $\mathbf{0}$, which means that \mathbf{h}^{\star} is also a minimum. Similarly we can derive $\mathbf{h}^{\star \top} Q \mathbf{h}^{\star}=\mathbf{h}^{* \top} Q \mathbf{h}^{*}$ and thereby we arrive at $G\left(\mathbf{h}^{\star}\right)=G\left(\mathbf{h}^{*}\right)$.

Notice that $d_{\mathcal{H}}\left(\mathbf{h}^{*}, \mathbf{h}^{\star}\right) \geq 1$, with the only exception $d_{\mathcal{H}}\left(\mathbf{h}^{*}, \mathbf{h}^{\star}\right)=0$ when $\operatorname{sgn}\left(\mathbf{h}^{\star}\right)=-\operatorname{sgn}\left(\mathbf{h}^{*}\right)$, i.e., $\forall i, \phi(i) \neq i$ and $\mathcal{I}^{\prime}=\{\{i, \phi(i)\} \mid i=1, \ldots, n\}$. This completes the proof.

7.2 Proof of Theorem 4

Proof. When $n=2$ it is trivial that X_{n} is anisotropic.
Suppose that $n>2$ and $\mathcal{E}\left(\mathcal{H}_{Q}\right)$ has two principal axes \mathbf{v}_{j} and \mathbf{v}_{k} with the same length $1 / \sqrt{\lambda_{j}}=1 / \sqrt{\lambda_{k}}$. Then there is at least one principal axis $\mathbf{v}_{l}, l \neq j, k$ about which $\mathcal{E}\left(\mathcal{H}_{Q}\right)$ is rotational along the circle spanned by \mathbf{v}_{j} and \mathbf{v}_{k}.

From $\forall i, Q_{i, i}=\kappa$ we know that $\mathcal{E}\left(\mathcal{H}_{Q}\right)$ intersects the i th coordinate axis at $\pm \mathbf{e}_{i} / \sqrt{\kappa}$ with length $1 / \sqrt{\kappa}$, where \mathbf{e}_{i} is the i-th unit vector of \mathbb{R}^{n}. Now $\mathcal{E}\left(\mathcal{H}_{Q}\right)$ has n principal axes with at most $n-1$ different length but another system of n orthogonal axes with length $1 / \sqrt{\kappa}$, so \mathbf{v}_{l} must be in the form of

$$
\mathbf{v}_{l}=\frac{\overline{\mathbf{v}}_{l}}{\left\|\overline{\mathbf{v}}_{l}\right\|_{2}}, \overline{\mathbf{v}}_{l}=\sum_{i=1}^{n} \delta_{i} \mathbf{e}_{i} \neq \mathbf{0}, \delta_{i} \in\{-1,0,1\}
$$

In other words, \mathbf{v}_{l} lies on the central direction of certain quadrant of a subspace of \mathbb{R}^{n} determined by \mathbf{v}_{j} and \mathbf{v}_{k}. But this is impossible since X_{n} is not axisymmetric w.r.t. Q.

Hence all principal axes of $\mathcal{E}\left(\mathcal{H}_{Q}\right)$ have different length, which is exactly what we were to prove.

7.3 Proof of Theorem 5

Proof. The KKT condition $g(\mathbf{h})=\mathbf{0}$ implies

$$
\begin{equation*}
\mathbf{h}=\hat{Q} \mathbf{y} \tag{12}
\end{equation*}
$$

where $\mathbf{y}=\operatorname{sgn}(\mathbf{h}), \hat{Q}=(\gamma Q-\eta I)^{-1}$, and the constant $\eta<\gamma \lambda_{1}, \lambda_{1}$ is the smallest eigenvalue of Q. Substitute (12) into $\|\mathbf{h}\|_{2}=1$, and note that $\hat{Q}^{\top}=\hat{Q}$,

$$
(\hat{Q} \mathbf{y})^{\top}(\hat{Q} \mathbf{y})=1 \Longrightarrow \mathbf{y}^{\top} \hat{Q}^{2} \mathbf{y}=1
$$

All eigenvalues of Q are different and positive, so are all eigenvalues of \hat{Q}. Consequently, \hat{Q}^{2} has a unique spectral decomposition. Let $\hat{Q}^{2}=\sum_{i=1}^{n} \mu_{i} \mathbf{u}_{i} \mathbf{u}_{i}^{\top}$, then $\mathbf{y}^{\top} \hat{Q}^{2} \mathbf{y}=\sum_{i=1}^{n} \mu_{i}\left\|\mathbf{u}_{i}^{\top} \mathbf{y}\right\|_{2}^{2}$.
We assert that $\forall \mathbf{y}_{1}, \mathbf{y}_{2} \in\{-1,+1\}^{n}$, the only possibility of $\mathbf{y}_{1}^{\top} \hat{Q}^{2} \mathbf{y}_{1}=\mathbf{y}_{2}^{\top} \hat{Q}^{2} \mathbf{y}_{2}$ is either $\mathbf{y}_{1}=\mathbf{y}_{2}$ or $\mathbf{y}_{1}=-\mathbf{y}_{2}$. Otherwise, there exist two nonempty disjoint indices \mathcal{J} and \mathcal{K}, such that $\forall j \in \mathcal{J}, k \in$ $\mathcal{K},\left[\mathbf{y}_{1}\right]_{j}=-\left[\mathbf{y}_{1}\right]_{k}=-\left[\mathbf{y}_{2}\right]_{j}=\left[\mathbf{y}_{2}\right]_{k}$. Moreover, $\forall i$, $\sum_{j \in \mathcal{J}}\left[\mathbf{u}_{i}\right]_{j}\left[\mathbf{y}_{1}\right]_{j}+\sum_{k \in \mathcal{K}}\left[\mathbf{u}_{i}\right]_{k}\left[\mathbf{y}_{1}\right]_{k}=\sum_{j \in \mathcal{J}}\left[\mathbf{u}_{i}\right]_{j}\left[\mathbf{y}_{2}\right]_{j}+$ $\sum_{k \in \mathcal{K}}\left[\mathbf{u}_{i}\right]_{k}\left[\mathbf{y}_{2}\right]_{k}$ since the spectral decomposition of \hat{Q}^{2} is unique. Hence, $\sum_{j \in \mathcal{J}}\left[\mathbf{u}_{i}\right]_{j}=\sum_{k \in \mathcal{K}}\left[\mathbf{u}_{i}\right]_{k}$ for all $i=1, \ldots, n$. This means that the row rank of the matrix $U=\left(\mathbf{u}_{1}|\ldots| \mathbf{u}_{n}\right)$ is $n-1$, which contradicts the linear independence of $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{n}\right\}$.
Therefore, all minima of (4) are equivalent w.r.t. $d_{\mathcal{H}}$.

7.4 Proof of Lemma 7

Proof. For any $\mathbf{h} \in \widetilde{\mathcal{H}}_{Q}, \exists \boldsymbol{\alpha} \in \mathbb{R}^{n}$ such that $\mathbf{h}=U \boldsymbol{\alpha}$, where U consists of n orthonormal eigenvectors of Q, and $\|\boldsymbol{\alpha}\|_{2}=1$ since $\|\mathbf{h}\|_{2}=1$ and $U^{\top} U=I$. This $\mathbf{h}=U \boldsymbol{\alpha}$ is a UL decomposition (El-Yaniv \& Pechyony, 2007) since U has only information about unlabeled samples. Each column of U has unit length, and thus $\|U\|_{\text {Fro }}^{2}=n$. The first part of the bound comes from inequality (20) in El-Yaniv and Pechyony (2007).

Another UL decomposition is shown in (12). The equation (12) holds for η^{*} since it holds for any constant η smaller than γ times the smallest eigenvalue of Q. It is also a kernel UL decomposition since the matrix \hat{Q} is symmetric positive definite. Then, the other part of the bound is derived from inequality (20) and inequality (23) in El-Yaniv and Pechyony (2007) with $\mu_{1}=\sqrt{n}$ and $\mu_{2}=\sqrt{\mu}$, respectively.

