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Abstract

In this document, we detail further some
technical proofs not covered in the paper cor-
responding to this supplementary material.

1 Playing against an opponent using a
known model

1.1 Regret upper bounds against the best
history-class-based strategy

Theorem 1 In the case of a Φ-constrained opponent,
using the Φ-UCB algorithm with parameter α > 1/2,
we have the distribution-dependent bound:

RΦ
T ≤

∑
c∈H/Φ;E(Ic(T ))>0

∑
a∈A;∆c(a)>0

4α log(T )

∆c(a)
+ ∆c(a)cα

where Ic(T ) =
∑T
t=1 I[h<t]=c, the per-class gaps

∆c(a)
def
= µc(a

∗
c) − µc(a), and the constant cα =

1 + 4
log(α+1/2) (α+1/2

α−1/2 )2. We also have a distribution-

free bound (i.e. which does not depend on the gaps):

RΦ
T ≤

√
TAC

(
4α log(T ) + cα

)
where C = |{c ∈ |H/Φ|;E(Ic(T )) > 0}| is the number
of classes that may be activated during the run.

Now, in the case of an arbitrary opponent, using Φ-
Exp3 algorithm, we have:

R̃Φ
T ≤

3√
2

√
TCA log(A).

Proof: Φ-UCB: The distribution-dependent bound
for Φ-UCB is a direct application of the result of [2]
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for the algorithm UCB about τa(t)
def
=
∑t
s=1 Ias=a

where at is played by UCB, that states that E(τa(t)) ≤
4α log(t)

∆2
c(a) + cα. Indeed, we use the fact that RΦ

T =∑
c∈H/ΦRT (c) and thus remark that when a class c

is visited, then we play according to a UCB algorithm
for this class.

Thus, for the distribution-free bound, we have:

RΦ
T =

∑
c

∑
a

∆c(a)E(τa(Ic(T )))

≤
∑
c

∑
a

√
E(τa(Ic(T )))

√
4α log(T ) + cα

≤
∑
c

√
E(Ic(T ))

√
A
√

4α log(T ) + cα

≤
√
TCA

√
4α log(T ) + cα,

where we used that
∑
a τa(s) = s for all s, and∑

c Ic(T ) = T , and the Cauchy-Schwartz inequality
twice.

Φ-Exp3: The bound for Φ-Exp3 follows from the
bound of the anytime version of the Exp3 algorithm.
Indeed we have

R̃Φ
T ≤

∑
c

E(
A

2

Ic(T )∑
i=1

ηci +
log(A)

ηcIc(T )

) ;

we deduce the bound by setting ηci =
√

2 logA
Ai . �

1.2 Lower bounds on the regret

Theorem 2 Let sup represents the supremum taken
over all Φ-constrained opponents and inf the infimum
over all forecasters, then the stochastic Φ-regret is
lower-bounded as:

sup
Φ;|H/Φ|=C

inf
algo

sup
Φ−opp

RΦ
T ≥

1

20

√
TAC.

Now, let sup represents the supremum taken over all
possible opponents and inf the infimum over all fore-
casters, then the adversarial Φ-regret is lower-bounded
as:
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sup
Φ;|H/Φ|=C

inf
algo

sup
opp

R̃Φ
T ≥

1

20

√
TAC.

Proof: Let us fix the horizon T and the number of
classes C. We consider the opponent defined using the
specific class-function Φ such that each class c is pe-
riodically visited every C time steps, thus T/C times.
Note that T = T

CC and that this is intuitively the
opponent that makes the algorithm switch between
classes the most.

Now we define more precisely the rewards output by
the opponent. Let us consider the stochastic bandits
such that for each class c, one arm ac is a Bernoulli
B((1 + εc)/2), and all others are B((1− εc)/2).

Then by application of Lemma 2.2 in [2], for εc of

order
√

A
s , we have in the Bandit information setting

the following inequality:

sup
ac

s∑
t=1

µc(ac)− µc(at) ≥ sεc
(

1− 1

A
−
√
sεc
2A

log(
1 + εc
1− εc

)
)
.

Thus with the notations Ic(T ) =
∑T
t=1 Ic=[h<t] and

tc(i) = min{t; Ic(t) ≥ i}, we deduce that:

sup
(ac)c

∑
c

T∑
t=1

(µc(ac)− µc(at))Ic=[h<t] =

∑
c

sup
ac

Ic(T )∑
i=1

(µc(ac)− µc(atc(i))) ≥

∑
c

Ic(T )εc

(
1− 1

A
−
√
εc log(

1 + εc
1− εc

)

√
Ic(T )

2A

)
.

Since the ac are chosen by the opponent such that
each class is visited exactly Ic(T ) = T/C times, then
we deduce that the Φ-pseudo-regret is lower-bounded
as:

sup
(ac)c

∑
c

T∑
t=1

(µc(ac)− µc(at))Ic=[h<t]

≥
∑
c

T

C
εc

(
1− 1

A
−
√
εc log(

1 + εc
1− εc

)

√
T

2AC

)
.

Thus, after some tedious computations to optimize εc,

we finally get a lower bound of order: 1
20

∑
c

√
T
CA =

1
20

√
TAC. Note that this is valid only if εc ∼

√
A

Ic(T )

is small (less than 1), i.e. if the number of classes C
is smaller than a constant times T

A (and if this not the
case, the lower bound becomes obviously of order T ).

The second part of the Theorem can be proved using
the same construction. �

2 Playing against an opponent using a
pool of models

We first remind the result of [1] relating the cumulative
reward of the Exp4 algorithm to the one of the best
expert on top of which it is run. We have:

Lemma 1 For any γ ∈ (0, 1], for any family of ex-
perts which includes the uniform expert, one has

max
θ

T∑
t=1

Ea∼ξθt (rt(a))− Ea1,...,aT (

T∑
t=1

rt(at))

≤ (e− 1)γT +
A log(|Θ|)

γ
.

In our case, since the ξθt are not fixed in advance but
are random variables, we can not apply this Lemma
directly and need to adapt it. Based on the proof of
[1], we can prove the following bound:

Lemma 2 For any γ ∈ (0, 1], for any family of ex-
perts which includes the uniform expert such that all
expert advices are adapted to the filtration of the past,
one has

max
θ

T∑
t=1

Ea1,...,at−1
(Ea∼ξθt (rt(a)))− Ea1,...,aT (

T∑
t=1

rt(at))

≤ (e− 1)γT +
A log(|Θ|)

γ
.

Proof: Indeed, by construction of the algorithm, the
beginning of the original proof from [1] applies and
gives

T∑
t=1

rt(at) ≥ (1− γ)

T∑
t=1

Ea∼ξθt (r̃t(a))− A log(|Θ|)
γ

−(e− 2)
γ

A

T∑
t=1

∑
a∈A

r̃t(a),

where r̃t(a) = rt(at)
qt(a) Iat=a.

Now, we use the fact that ξθt (a) is adapted to the fil-
tration of the past (which we denote F t−1) and the
property that E(r̃t(a)|F t−1) = E(rt(a)|F t−1) to de-
duce that

E(Ea∼ξθt (r̃t(a))) = E(
∑
a∈A

E(r̃t(a)ξθt (a)|F t−1))

= E(
∑
a∈A

E(r̃t(a)|F t−1)ξθt (a))

= E(
∑
a∈A

E(rt(a)|F t−1)ξθt (a))

= E(
∑
a∈A

E(rt(a)ξθt (a)|F t−1))

= E(Ea∼ξθt (rt(a)))
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On the other hand, since by assumption the uniform
expert belongs to the set of considered experts, we also
have

1

A
E(

T∑
t=1

∑
a∈A

r̃t(a)) =

T∑
t=1

E(Ea∼U(A)(rt(a)))

≤ max
θ

T∑
t=1

E(Ea∼ξθt (rt(a))),

where U(A) denotes the uniform distribution over the
set of actions A. This concludes the proof. �

We now define the best model of the pool θ∗ to be

θ∗ = argmax
θ∈Θ

sup
g:H/Φ→A

E
( T∑
t=1

[
rt(g([h<t]))− rt(at)

])
,

We then define for any class c ∈ H/Φθ∗ , the action

a∗c
def
= argmaxa µc(a) that corresponds to the best

history-class-based strategy. Thus we can also write
a∗t = a∗[h<t]θ∗ .

2.1 The rebel bandit setting

We now introduce the setting of Rebel bandits that is
interesting by itself. It will be used in order to compute
the model-based regret of the Exp4 algorithm. In this
setting, we consider that at time t the player θ pro-
poses a distribution of probability ξθt over the arms,
but he/she actually receives the reward correspond-
ing to an action drawn with another distribution, say
qt. This will be the distribution of probability pro-
posed by the meta algorithm. We now analyze the
(Φ-constrained) Exp3 and UCB algorithms in this set-
ting and bound the corresponding rebel-regret define
by:

Definition 1 (Rebel regret) The Rebel-regret of the al-
gorithm that proposes at time t the distribution ξθt but
in the game where the action at ∼ qt is played instead
is:

RqT (θ) =
∑
t=1T

Ea1,..,at−1

(
rt(a

∗
[h<t]θ∗

)− Ea∼ξθt (rt(a))
)
.

2.2 Φ-Exp3 in the Rebel bandit setting

We now consider using Exp4 on top of Φ-contrained al-
gorithms. We first use the experts Φθ-Exp3 for θ ∈ Θ
with a slight modification on the definition of the func-
tion l̃ct (a). Indeed since the action at are driven ac-
cording to the meta algorithm and not Φθ-Exp3, we

redefine l̃ct (a) = 1−rt(a)
qt(a) Iat=aI[h<t]θ=c so as to get un-

biased estimate of rt(a) for all a. We now provide a
bound on the Rebel-regret of the Φ∗-Exp3 algorithm.

Theorem 3 The Φθ∗-Exp3 algorithm in the Rebel
bandit setting where qt(a) ≥ δ for all a, and choos-

ing the parameter ηθtθc(i) =
√

δ log(A)
i satisfies

RqT (θ∗) ≤ 2

√
TC logA

δ
.

The proof of this Theorem is reported in the main
paper. We now combine Lemma 2 and Theorem 3 to
get the final bound:

Theorem 4 For any opponent, the adversarial ΦΘ-
regret of Exp4/Exp3 is bounded as

R̃Θ
T = O(T 2/3(AC log(A))1/3 log(|Θ|)1/2),

where C = maxθ∈Θ |H/Φθ| is the maximum number of
classes for models θ ∈ Θ.

Proof: Indeed we can apply Theorem 3 using Exp4
meta algorithm with δ = γ

A . Thus we get:

R̃Θ
T =

T∑
t=1

Ea1,...,at−1(rt(a
∗
[h<t]θ∗

)− Eat∼qtrt(at))

≤ RqT (θ∗) + (e− 1)γT +
A log(|Θ|)

γ

≤ 2

√
TAC logA

γ
+ 2γT +

A log(|Θ|)
γ

.

We thus choose γ = (AC log(A))1/3 log(|Θ|)1/2
(4T )1/3

to con-

clude. �

2.3 Φ-UCB in the Rebel-bandit setting

Similarly, a bound on the Rebel-regret of the Φ∗-UCB
algorithm can be derived assuming that we consider a
Φ∗-constrained opponent with Φ∗ = Φθ

∗ ∈ ΦΘ.

Theorem 5 The Φθ∗-UCB algorithm in the Rebel
bandit setting where qt(a) ≥ δ for all a, and provided
α > 1/2, satisfies

RqT (θ∗) ≤
∑

c∈H/Φ∗

∑
a6=a∗c

∆c(a)
[2α log(T )

∆c(a)2δ
+

√
πδ∆c(a)2

32α log T
+cα

]
We also have the distribution-free bound:

RqT (θ∗) ≤
√
TC∗A

√√√√4α log(T )

δ
+ cα +

√
πδ

32α log(T )
.

Proof: We write bt the action proposed by the Φ-
UCB algorithm at time t, and at the action effec-
tively played according to distribution qt. We in-
troduce the notations: Ic(T ) =

∑T
t=1 I[h<t]=c, then

tc(i) = min{t; Ic(t) = i} and for all a ∈ A, Ic(T, a) =



Supplementary material - Adaptive Bandits

∑T
t=1 I[h<t]=cIat=a. The proof mainly follows the lines

of [2]. Note that by definition, we want to bound the
following term:

RqT (θ∗) =
∑
c

∑
a

∆c(a)E(

Iθc (T )∑
i=1

Ibt=a) (1)

Step one. Decompose the event bt = a. Let us con-
sider a time t for which [h<t] = c. Then let us consider
a sub-optimal arm a such that ∆c(a) > 0. Thus it ap-
pears that bt = a if one of the following conditions
holds:

(1) µ̃t,c(ac) ≤ µc(ac)

(2) µ̃t,c(a) > µc(a)

(3) ∆c(a) < 2
√

α log T
Iθc (t−1,a)

Indeed, otherwise we would have

µ̃c(ac) > µc(ac) = µc(a) + ∆c(a)

≥ µc(a) + 2

√
α log Ic(t)

Ic(t− 1, a)
≥ µ̃c(a).

Thus we introduce the quantity uc(a) = 4α log T
∆c(a)2 , and

deduce that:

E
( Iθc (T )∑
i=1

Ibt=a
)
≤ E

( Iθc (T )∑
i=1

I(1)or(2)orIθc (t−1,a)<uc(a)

)
.

Step 2. Now since Iθc (., a) is an increasing function
of time (note though, that it does not increase by one
each time bt is proposed...), we can define the stopping
time τc(a) = min{t; Iθc (t, a) ≥ uc(a)}, or equivalently
the stopping instant ic(a) = min{i; Iθc (tθc(i), a) ≥
uc(a)}. Thus we deduce that:

E
( Iθc (T )∑
i=1

Ibt=a
)
≤ E(ic(a)) + E

( Iθc (T )∑
i=ic(a)+1

I(1)or(2)

)
(2)

Now we can bound the second term of (2) by a con-
stant depending only on α, by an easy peeling argu-
ment (we refer to Section 2.2 of [2]):

E
( Iθc (T )∑
i=ic(a)+1

I(1)or(2)

)
≤ 2E

( Iθc (T )∑
i=ic(a)+1

( log i

log 1/β
+1
) 1

i2βα

)
(3)

where β = 1
α+1/2 .

Then, we also have, by integration by parts:

2E(

Iθc (T )∑
i=ic(a)+1

( log i

log 1/β
+ 1
) 1

i2βα
) ≤ 2

∫∞
1

(
log t

log 1/β + 1
)

1
t2βα

)dt

≤ 4
log(1/β)(2βα−1)2 .

Step 3. Thus we focus on the first term E(ic(a)) of
(2). Since we know that qt(a) ≥ δ for all a, t, we thus
deduce that:

E(ic(a)) =
∑∞
l=0 P(ic(a) > l) ≤

l0 +
∑∞
l=l0

P
(
∀j ≤ l Iθc (tθc(j), a) < uc(a)

)
≤

l0 +
∑∞
l=l0

P
(
∀j ≤ l

∑j
i=1 Iatθc(i)=a − qtθc(i)(a) < uc(a)− δj

)
.

Now by property of martingale difference sequences,

we deduce by setting l0 = puc(a)
δ q, that:

E(ic(a)) ≤ l0 +

∞∑
l=l0

exp(−2(l − l0)2δ2l)

≤ l0 +

∞∑
l=l0

exp(− (l − l0)2

2σ2
),

where we introduced the quantity σ2 = 1
4δ2l0

. Thus
we deduce that:

E(ic(a) ≤ puc(a)

δ
q+

√
π

8

√
δ

uc(a)
. (4)

Step 4. Finally, by combining (3), (4) with (2) and
(1), we deduce the following distribution-dependent
bound on the rebel regret:

RqT (θ∗) ≤
∑

c∈H/Φ∗

∑
a6=a∗c

∆c(a)
[2α log(T )

∆c(a)2δ
+

√
πδ∆c(a)2

32α log T
+cα

]
,

where cα = 1 + 4
log(α+1/2) (α+1/2

α−1/2 )2. We deduce

the distribution-free bound by the same argument

as for Theorem 1, remarking that
√

π
8

√
δ∆c(a)2

4α log T ≤√
π

32α log(T ) = c′α. �

This enables us to deduce the following Theorem, that
we prove using the same method as that of Theorem 4
but for the stochastic ΦΘ-regret of Exp4/UCB.

Theorem 6 Assume that we consider a Φ∗-
constrained opponent with Φ∗ ∈ ΦΘ, then the
stochastic ΦΘ-regret of Exp4/UCB is bounded as:

RΘ
T = O

(
(TA)2/3(C log(T ))1/3 log(|Θ|)1/2

)
,

where C = |H/Φ∗| is the number of classes of the
model Φ∗ of the opponent.

3 Approximation error of the models

The following result sheds light on a specific term that
appears to be an approximation term of the true model
θ∗ by other models θ.



Odalric-Ambrym Maillard, Rémi Munos

Theorem 7 For any (pt(θ))t,θ ∈ [0, 1], thus for any
meta algorithm run on top of Exp3 algorithm and de-
fined with qt(a) =

∑
θ pt(θ)ξ

θ
t (a) and decreasing coef-

ficient ηθt , the following holds true:

R̃Θ
T ≤ E

(∑
θ

∑
c∈θ

Iθc (T )∑
i=1

ηθtθc(i)A

2
ptθc(i)(θ) +

∑
θ

∑
c∈θ

logA

ηθ
tθc(Iθc (T ))

+
∑
θ

∑
c∈θ

inf
aθc

Iθc (T )∑
i=1

(rtθc(i)(a
∗
[h
<tθc(i)

])− rtθc(i)(a
θ
c))ptθc(i)(θ)

)
.

The term on the second line is actually a mixture of
approximation errors of each model, and it seems it
can not be reduced without further assumption on the
quality of the models.

Proof: The proof is in four steps.

Step 1. Rewrite the regret to make appear the prob-
abilities ξθt (a). We first introduce:

RT =

T∑
t=1

rt(a[h<t]∗)− rt(at)

=
∑
θ

T∑
t=1

Eat∼qt(
rt(at)pt(θ)

qt(at)
Iat=a[h<t]∗ )

−rt(at)ξ
θ
t (at)pt(θ)

qt(at)
.

Now we have : l̃θt,cθ (a) = (1−rt(a))pt(θ)qt(a) Iat=aIcθ=[h<t]θ ,

thus taking the expectation over at for each time t, we
have:

R̃T =
∑T
t=1 Ear (rt(a[h<t]∗ − rt(at))

=
∑
θ

∑T
t=1 Eat

(
pt(θ)
qt(at)

Iat=a[h<t]∗ − l̃
θ
t,[h<t]θ

(a[h<t]∗))
)

+
∑
θ

∑T
t=1 Eat

(
Ea∼ξθt (l̃θt,[h<t]θ (a))− pt(θ)ξ

θ
t (at)

qt(at)

)
.

We can simplify the above expression since

Eat(
pt(θ)
qt(at)

Iat=a[h<t]∗ ) = Eat(
pt(θ)ξ

θ
t (at)

qt(at)
) = pt(θ).

Step 2. Decompose the term Ea∼ξθt (l̃θt,[h<t]θ (a)) in

order to use the definition of ξθt . Indeed, one can upper
bound this term by

Ea∼ξθt (l̃θt,[h<t]θ (a)) ≤ ηθt
2
Ea∼ξθt (l̃θt,[h<t]θ (a)2)

− 1

ηθt
log(

∑
a

exp(−ηθt l̃θt,[h<t]θ (a)ξθt (a))).

Thus, since by definition we have that ξθt (a) =
exp(−ηθt

∑t−1
s=1 l̃

θ
s,[h<t]θ

(a))∑
a exp(−ηθt

∑t−1
s=1 l̃

θ
s,[h<t]θ

(a)
, we can introduce the quan-

tity Ψθ
t (η, c) = 1

η log( 1
A

∑
a exp(−η

∑t
s=1 l̃

θ
s,c(a))) so

that the previous regret term writes:

R̃T ≤
∑
θ

T∑
t=1

Eat(
ηθt
2

(1− rt(at))2 p
2
t (θ)ξ

θ
t (at)

q2
t (at)

)

+
∑
θ

( T∑
t=1

Eat(Ψθ
t−1(ηθt , [h<t]θ)−Ψθ

t (η
θ
t , [h<t]θ))

− Eat(l̃θt,[h<t]θ (a[h<t]∗))
)
.

Step 3. Introduce the equivalence classes. We now
consider the term in the right hand side of the above
equation defined with Ψ functions. Note that we do
not change the bound on the term R̃T by considering
the sum over the θ such that pt(θ) > 0.

Let us introduce the following notations Iθc (t) =∑t
s=1 Ic=[h<s]θ Ips(θ)>0 and tθc(i) = min{t; Iθc (t) = i}.

Thus we can write:∑
θ

∑T
t=1(Ψθ

t−1(ηθt , [h<t]θ)−Ψθ
t (η

θ
t , [h<t]θ))Ipt(θ)>0

=
∑
θ

∑
c∈θ
∑Iθc (T )
i=1 Ψθ

tθc(i)−1(ηθtθc(i), c)−Ψθ
tθc(i)(η

θ
tθc(i), c)

=
∑
θ

∑
c∈θ
∑Iθc (T )−1
i=1 (Ψθ

tθc(i)(η
θ
tθc(i)+1, c)−Ψθ

tθc(i)(η
θ
tθc(i), c)

−Ψθ
tθc(Iθc (T ))(η

θ
tθc(Iθc (T )), c).

Now, by definition of Ψθ
t , the last term of this

sum, −Ψθ
tθc(Iθc (T ))(η

θ
tθc(Iθc (T )), c), is equal to the following

quantity

logA

η
− 1

η
log(

1

A

∑
a

exp(−η
tθc(Iθc (T ))∑
s=1

l̃θs,c(a))),

where η = ηθtθc(Iθc (T )), which can be upper bounded by

logA
η +

∑tθc(Iθc (T ))
s=1 l̃θs,c(a) for any given a = aθc .

Step 4. Now since ηθtθc(i) ≤ ηθtθc(i)+1 and Ψθ
tθc(i)(·, c)

is increasing for all θ, c, we deduce from the previous
equations that:

R̃T ≤
∑
θ

∑
c∈θ

Iθc (T )∑
i=1

∑
a

ηθtθc(i)

2

p2
tθc(i)(θ)ξ

θ
tθc(i)(a)

qtθc(i)(a)

+
∑
θ

∑
c∈θ

logA

ηθ
tθc(Iθc (T ))

+
∑
θ

∑
c∈θ

inf
aθc

tθc(Iθc (T ))∑
t=1

Eat(l̃θt,c(aθc)− l̃θt,c(a[h<t]∗)).

Now we conclude by taking the expectation, seeing
that ptθc(i)(θ)ξtθc(i) ≤ qtθc(i)(a), and that by definition

Eat(l̃θt,c(aθc)) = (1− rt(aθc))pt(θ)Ic=[h<t]θ .
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